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Abstract—This paper presents NeuTM, a framework for net-
work Traffic Matrix (TM) prediction based on Long Short-Term
Memory Recurrent Neural Networks (LSTM RNNs). TM predic-
tion is defined as the problem of estimating future network traffic
matrix from the previous and achieved network traffic data. It
is widely used in network planning, resource management and
network security. Long Short-Term Memory (LSTM) is a specific
recurrent neural network (RNN) architecture that is well-suited
to learn from data and classify or predict time series with time
lags of unknown size. LSTMs have been shown to model long-
range dependencies more accurately than conventional RNNs.
NeuTM is a LSTM RNN-based framework for predicting TM
in large networks. By validating our framework on real-world
data from GÉANT network, we show that our model converges
quickly and gives state of the art TM prediction performance.

keywords - Traffic Matrix, Prediction, Neural Networks,
Long Short-Term Mermory, Software Defined Networking

I. INTRODUCTION

Having an accurate and timely network TM is essential
for most network operation/management tasks such as traffic
accounting, short-time traffic scheduling or re-routing, long-
term capacity planning, network design, and network anomaly
detection. For example, to detect DDoS attacks in their early
stage, it is necessary to be able to detect high-volume traffic
clusters in real-time, which is not possible relying only on
current monitoring tools. Another example is, upon congestion
occurrence in the network, traditional routing protocols cannot
react immediately to adjust traffic distribution, resulting in
high delay, packet loss and jitter. Thanks to the early warnings,
a proactive prediction-based approach would be faster, in
terms of high-volume traffic detection and DDoS prevention.
Similarly, predicting network congestion is more effective than
reactive methods that detect congestion through measurements,
only after it has significantly influenced the network operation.

Network traffic is characterized by: self-similarity, multi-
scalarity, long-range dependence and a highly nonlinear nature
(insufficiently modeled by Poisson and Gaussian models for
example). These statistical characteristics determine the traf-
fic’s predictability [1].

Several methods have been proposed for network traffic
prediction and can be classified into two categories: linear pre-
diction and nonlinear prediction. The ARMA/ARIMA model
[3], [6], [8] and the HoltWinters algorithm [3] are the most
widely used traditional linear prediction methods. Nonlinear
forecasting methods commonly involve neural networks (NN)
[3], [9], [10]. The experimental results from [14] show that

nonlinear traffic prediction based on NNs outperforms linear
forecasting models (e.g. ARMA, ARAR, HW). [14] suggests
that if we take into account both precision and complexity, the
best results are obtained by a Feed Forward Neural Network
predictor with multiresolution learning approach. However,
most of the research using neural networks for network traffic
prediction aims to predict the aggregate traffic value. In this
work, our goal is to predict the traffic matrix which is a far
more challenging task.

Unlike feed forward neural networks (FFNN), Recurrent
Neural Network (RNNs) have cyclic connections over time.
The activations from each time step are stored in the internal
state of the network to provide a temporal memory. This
capability makes RNNs better suited for sequence modeling
tasks such as time series prediction and sequence labeling
tasks. Particularly, Long Short-Term Memory (LSTM) is a
powerful RNN architecture that was recently designed by
Hochreiter and Schmidhuber [16] to address the vanishing and
exploding gradient problems [7] that conventional RNNs suffer
from. RNNs (including LSTMs) have been successfully used
for handwriting recognition [2], language modeling, phonetic
labeling of acoustic frames [11].

Our contribution in this paper is threefold.

• First, we present, for the first time, a LSTM based
framework for large scale TM prediction.

• Second, we implement our framework and deploy it on
a Software Defined Network (SDN) and train it on real
world data using GÉANT data set.

• Finally, we evaluate our LSTM models at different con-
figurations. We also compare our model to traditional
models and show that LSTM models converge quickly
and give state of the art TM prediction performance.

Note that we do not address the problem of TM estimation
in this paper and we suppose that historical TM data is already
accurately obtained.

The remainder of this paper is organized as follows: Section
II summarizes time-series prediction techniques. LSTM archi-
tecture and equations are detailed in section III. The process
of feeding the LSTM model and predicting TM is described
in section IV. Evaluation and results are presented in section
V. Related work is discussed in section VI and the paper is
concluded by section VII.
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II. TIME SERIES PREDICTION

For completeness sake, we give a brief summary of various
linear predictors based on traditional statistical techniques. We
use the same notation and definitions as in [14] and we refer
to the original paper and to [23] for a thorough background.
Then we discuss NNs usage for time series prediction.

1) Linear Prediction:
a) ARMA model: The time series {Xt} is called an

ARMA(p, q) process if {Xt} is stationary and

Xt−φ1Xt−1−...−φpXt−p = Zt+θ1Zt−1+...+θqZt−q (1)

where {Zt} ≈ WN(0, σ2) is white noise with zero mean
and variance σ2 and the polynomials φ(z) = 1 − φ1z −
... − φpz

p and θ(z) = 1 + θ1z + ... + θqz
q have no

common factors. Predictions can be made recursively using:

X̂n+1 =


∑n

j=1 θnj(Xn+1−j − X̂n+1−j) if1 ≤ n ≤ m)∑q
j=1 θnj(Xn+1−j − X̂n+1−j)

+φ1Xn + ..+ φpXn+1−p ifn ≥ m
where m = max(p, q) and θnj is determined using the
innovations algorithm.

b) ARAR algorithm: The ARAR algorithm applies
memory-shortening transformations, followed by modeling the
dataset as an AR(p) process: Xt = φ1Xt−1+..+φpXt−p+Zt.
The time series {Yt} of long-memory or moderately long-
memory is processed until the transformed series can be
declared to be short-memory and stationary:

St = ψ(B)Yt = Yt + ψ1Yt−1 + ...+ ψkYt−k (2)

The autoregressive model fitted to the mean-corrected series
Xt = St − S, t = k + 1, n, where S represents the sample
mean for Sk+1, ..., Sn , is given by φ(B)Xt = Zt , where
φ(B) = 1 − φ1B − φl1B

l1 − φl2B
l2 − φl3B

l3 , {Zt} ≈
WN(0, σ2), while the coefficients φj and the variance σ2 are
calculated using the YuleWalker equations described in [23].
We obtain the relationship:

ξ(B)Yt = φ(1)S + Zt (3)

where ξ(B)Yt = ψ(B)ϕ(B) = 1 + ξ1B + ... + ξk+l3B
k+l3

From the following recursion relation we can determine the
linear predictors

PnYn+h = −
k+l3∑
j=1

ξPnYn+h−j + φ(1)S h ≥ 1 (4)

with the initial condition PnYn+h = Yn+h for h ≤ 0.

c) HoltWinters algorithm: The HoltWinters forecasting
algorithm is an exponential smoothing method that uses recur-
sions to predict the future value of series containing a trend.
If the time series has a trend, then the forecast function is:

Ŷn+h = PnYn+h = ân + b̂nh (5)

where ân and b̂n are the estimates of the level of the trend
function and the slope respectively. These are calculated using
the following recursive equations:{

ân+1 = αYn+1 + (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)̂bn
(6)

Where Ŷn+1 = PnYn+1 = ân + b̂n represents the one-step
forecast. The initial conditions are: â2 = Y2 and b̂2 = Y2 −
Y1. The smoothing parameters α and β can be chosen either
randomly (between 0 and 1), or by minimizing the sum of
squared one-step errors

∑n
i=3(Yi − Pi−1Yi)

2 [23].
2) Neural Networks for Time Series Prediction: Thanks to

their strong self-learning and their ability to learn complex
non-linear patterns, Neural Networks (NNs) are widely used
for modeling and predicting time-series. NNs are capable
of estimating almost any linear or non-linear function in an
efficient and stable manner, when the underlying data relation-
ships very complex. Unlike the techniques presented above,
NNs rely on the observed data rather than on an analytical
model. Furthermore, The architecture and the parameters of a
NN are determined solely by the dataset.

A neural network consists of interconnected nodes, called
neurons. The interconnections are weighted and the weights
are also called parameters. Neurons are organized in layers: a)
an input layer, b) one or more hidden layers and c) an output
layer. The most popular NN architecture is feed-forward in
which the information goes through the network only in the
forward direction, i.e. from the input layer towards the output
layer, as illustrated in figure 1.

III. LONG SHORT TERM MEMORY NEURAL NETWORKS

FFNNs can provide only limited temporal modeling by
operating on a fixed-size window of TM sequence. They can
only model the data within the window and are unsuited to
handle historical dependencies. By contrast, recurrent neural
networks or deep recurrent neural networks (figure 2) contain
cycles that feed back the network activations from a previous
time step as inputs to influence predictions at the current time
step (figure 3). These activations are stored in the internal
states of the network as temporal contextual information [11].

However, training conventional RNNs with the gradient-
based back-propagation through time (BPTT) technique is
difficult due to the vanishing gradient and exploding gradient
problems. The influence of a given input on the hidden layers,
and therefore on the network output, either decays or blows
up exponentially when cycling around the network’s recurrent
connections. These problems limit the capability of RNNs to
model the long range context dependencies to 5-10 discrete
time steps between relevant input signals and output [12].

To address these problems, an elegant RNN architecture
named Long Short-Term Memory (LSTM) has been designed
[16]. LSTMs and conventional RNNs have been successfully
applied to sequence prediction and sequence labeling tasks.
LSTM models have been shown to perform better than con-
ventional RNNs on learning context-free and context-sensitive
languages for example [5].



Fig. 1: Feed Forward Deep Neural Net-
work Fig. 2: Deep Recurrent Neural Network

Fig. 3: DRNN learning over time

A. LSTM Architecture

An LSTM RNN is composed of units called memory
blocks. Each memory block contains memory cells with self-
connections storing (remembering) the temporal state of the
network in addition to special multiplicative units called
gates to control the flow of information. Each memory block
contains an input gate to control the flow of input activations
into the memory cell, an output gate to control the output flow
of cell activations into the rest of the network and a forget gate
(figure 4).

cell hyinput output

...

LSTM memory blocks

f t

it

x t

c t

o t

mt y t

Fig. 4: LSTM architecture
The forget gate scales the internal state of the cell before

adding it back to the cell as input through self recurrent
connection, therefore adaptively forgetting or resetting the
cell’s memory. The modern LSTM architecture also contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [4].

B. LSTM Equations

An LSTM network maps an input sequence x = (x1, ..., xT )
to an output sequence y = (y1, ..., yT ) by computing the net-
work unit activations using the following equations iteratively
from t = 1 to T.

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (7)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (8)

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (9)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (10)

mt = ot � h(ct) (11)

yt = ϕ(Wymmt + by) (12)

Where i, f, o and c are respectively the input gate, forget
gate, output gate and cell activation vectors. m is the output
activation vector. � is the element-wise product of the vectors.
g and h are the cell input and cell output activation functions.
tanh and ϕ are the network output activation function. The
b terms denote bias vectors and the W terms denote weight
matrices. and σ is the logistic sigmoid function [11].

IV. TRAFFIC MATRIX PREDICTION USING LSTM RNN

We train a deep LSTM architecture with a deep learning
method (backpropagation through time algorithm) to learn the
traffic characteristics from historical traffic data and predict
the future TM.

A. Problem Statement

Let N be the number of nodes in the network. The N -
by-N traffic matrix is denoted by Y such as an entry yij
represents the traffic volume flowing from node i to node j. We
add the time dimension to obtain a structure of N-by-N-by-T
tensor (vector of matrices) S such as an entry stij represents
the volume of traffic flowing from node i to node j at time
t, and T is the total number of time-slots. The traffic matrix
prediction problem is defined as solving the predictor of Y t

(denoted by Ŷ t) via a series of historical and measured traffic
data set (Y t−1, Y t−2, Y t−3, ..., Y t−T ). The main challenge
here is how to model the inherent relationships among the
traffic data set so that one can exactly predict Y t.

B. Feeding The LSTM RNN

To effectively feed the LSTM RNN, we transform each
matrix Y t to a vector Xt (of size N×N ) by concatenating its
N rows from top to bottom. Xt is called traffic vector (TV).
Note that xn entries can be mapped to the original yij using
the relation n = i×N + j. Now the traffic matrix prediction
problem is defined as solving the predictor of Xt (denoted by
X̂t) via a series of historical measured traffic vectors (Xt−1,
Xt−2, Xt−3, ..., Xt−T ).

One possible way to predict the traffic vector Xt is to
predict one component xtn at a time by feeding the LSTM
RNN one vector (xt0, x

t
1, ..., x

t
N2) at a time. This is based on



Fig. 5: MSE over number of hidden
layers (500 nodes each)

Fig. 6: Training time over network depth
(20 epochs)

Fig. 7: Comparison of prediction meth-
ods

the assumption that each OD traffic is independent from all
other ODs which was shown to be wrong by [24]. Hence, con-
sidering the previous traffic of all ODs is necessary to obtain
a more correct and accurate prediction of the traffic vector.
Continuous Prediction Over Time: Real-time prediction of

Fig. 8: Sliding learning window
traffic matrix requires continuous feeding and learning. Over
time, the total number of time-slots become too big resulting
in high computational complexity. To cope with this problem,
we introduce the notion of learning window (denoted by W )
which indicates a fixed number of previous time-slots to learn
from in order to predict the current traffic vector Xt (Fig. 8).
We construct the W -by-N2 traffic-over-time matrix (that we
denote by M ) by putting together W vectors (Xt−1, Xt−2,
Xt−3, ..., Xt−W ) ordered in time. Note that T ≥W (T being
the total number of historical matrices) and the number of
matrices M is equal to T/W .

C. Performance Metric

To quantitatively assess the overall performance of our
LSTM model, Mean Square Error (MSE) is used to estimate
the prediction accuracy. MSE is a scale dependent metric
which quantifies the difference between the forecasted values
and the actual values of the quantity being predicted by
computing the average sum of squared errors:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (13)

where yi is the observed value, ŷi is the predicted value and
N represents the total number of predictions.

V. EXPERIMENTS AND EVALUATION

We implemented NeuTM as a traffic matrix prediction
application on top of POX controller [19]. NeuTM’s LSTM
model is implemented using Keras library [20] on top of
Googles TensorFlow machine learning framework [21]. We
evaluate the prediction accuracy of our method using real

traffic data from the GÉANT backbone networks [17] made up
of 23 peer nodes interconnected using 38 links (as of 2004).
2004-timeslot traffic matrix data is sampled from the GÉANT
network by 15-min interval [18] for several months.

To evaluate our method on short term traffic matrix pre-
diction, we consider a set of 309 traffic matrices. As detailed
in section IV-B, we transform the matrices to vectors of size
529 each and we concatenate the vectors to obtain the traffic-
over-time matrix M of size 309× 529. We split M into two
matrices, training matrix Mtrain and validation matrix Mtest

of sizes 263 × 529 and 46 × 529 consecutively. Mtrain is
used to train the LSTM model and Mtest is used to evaluate
and validate its accuracy. Finally, We normalize the data by
dividing by the maximum value.

Figure 5 depicts the MSE obtained over different numbers
of hidden layers (depths). The prediction accuracy is better
with deeper networks. Figure 6 depicts the variation of the
training time over different depths. Note that it takes less
than 5 minutes to train a 6 layers network on 20 epochs.
Finally, figure 7 compares the prediction error of the different
prediction methods presented in this paper and shows the
superiority of LSTM.

VI. RELATED WORK

Various methods have been proposed to predict traffic ma-
trix. [14] evaluates and compares traditional linear prediction
models (ARMA, ARAR, HW) and neural network based
prediction with multi-resolution learning. The results show
that NNs outperform traditional linear prediction methods
which cannot meet the accuracy requirements. [24] proposes
a FARIMA predictor based on an α-stable non-Gaussian self-
similar traffic model. [22] compares three prediction methods:
Independent Node Prediction (INP), Total Matrix Prediction
with Key Element Correction (TMP-KEC) and Principle Com-
ponent Prediction with Fluctuation Component Correction
(PCP-FCC). INP method does not consider the correlations
among the nodes, resulting in unsatisfying prediction error.
TMP-KEC method reduces the forecasting error of key ele-
ments as well as that of the total matrix. PCP-FCC method
improves the overall prediction error for most of the OD flows.

VII. CONCLUSION

In this work, we have shown that LSTM architectures are
well suited for traffic matrix prediction. We have proposed a
data pre-processing and RNN feeding technique that achieves
high prediction accuracy in a very short training time. The



results of our evaluations show that LSTMs outperforms
traditional linear methods and feed forward neural networks
by many orders of magnitude.
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