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Abstract. We consider a poro-elastic region embedded into an elastic non-porous region. The elastic displace-
ment equations are discretized by a continuous Galerkin scheme, while the flow equations for the pressure in the
poro-elastic medium are discretized by either a continuous Galerkin scheme or a mixed scheme. Since the over-
all system of equations is very large, a fixed-stress algorithm is used at each time step to decouple the displace-
ment from the flow equations in the poro-elastic region. We prove a priori error estimates for the resulting
Galerkin scheme as well as the mixed scheme, with the expected order of accuracy, provided the algorithm
is sufficiently iterated at each time step. These theoretical results are confirmed by a numerical experiment per-
formed with the mixed scheme. A complete analysis including a posteriori estimates for both the Galerkin and
the mixed scheme has been done but is too long to appear here.

1 Introduction

Starting from the pioneering work of von Terzaghi [1] and
Biot [2, 3], a growing demand for assessing fluid structure
interactions has driven the development of numerical mod-
els coupling flow and geomechanics. Here important appli-
cations include subsidence events, carbon sequestration,
ground water remediation, hydrocarbon production and
hydraulic fracturing, enhanced geothermal systems, solid
waste disposal, and biomedical heart modeling. In this
paper we consider the Biot model that consists of a geome-
chanics equation coupled to a flow model with the displace-
ment, pressure, and flow velocity as unknowns. In contrast
to solving the Biot system fully implicitly, we focus on iter-
ative schemes that allow the decoupling of the flow and
mechanics equations and offer several attractive features
(such as use of existing flow and mechanics codes, use of
appropriate pre-conditioners and solvers for the two
models, and ease of implementation). The design of itera-
tive schemes however is an important consideration for an
efficient, convergent, and robust algorithm.

Four main iterative coupling schemes for coupling flow
with mechanics were introduced by Settari and Mourits
[4, 5] and implemented and studied by Gai et al. [6, 7], Gai
[8], Dean et al. [9], Girault et al. [10], Almani et al. [11–14].
They are known as the fixed-stress split, fixed-strain split,

undrained-split, and drained split schemes (Mikelić and
Wheeler [15], Mikelić et al. [16] and Kim et al. [17, 18]).
In the fixed-stress and fixed-strain split schemes, the flow
problem is solved first, followed by the mechanics problem,
and a constant mean total stress or constant strain is
assumed during the flow solve respectively. In contrast, in
the drained and undrained split coupling schemes, the
mechanics problem is solved first, followed by the flow
problem, and a constant fluid pressure and a constant fluid
mass (i.e., fluid content of the medium) is assumed during
the mechanics solve respectively. Both the fixed-stress split
and undrained split schemes are shown to be contractive
(Mikelić and Wheeler [15], Mikelić et al. [16]]), whereas the
fixed-strain split and drained split schemes are only condi-
tionally stable (Kim et al. [17, 18]). In addition, we note here
that these iterative coupling schemes can be interpreted as
pre-conditioner techniques for solving the fully coupled
system. For instance, the work of Gai et al. [7, 19] involves
interpreting the fixed-stress split scheme as a physics-based
preconditioning strategy applied to a Richardson fixed
point iteration. The same preconditioning technique was
applied to the fully coupled system in the work of Castelletto
et al. [20, 21].

Extensions of the fixed-stress split and undrained
split iterative schemes to the multirate case, in which flow
takes multiple fine time steps within one coarse mechan-
ics time step, can be found in the work of Almani et al.
[11] and Kumar et al. [22]. In addition, extensions to a
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nonlinear case can be found in the work of White et al. [23],
Borregales et al. [24], and da Silva et al. [25], and a multi-
scale extension of the fixed-stress split scheme is illustrated
in the work of Dana et al. [26]. Moreover, the work of Bause
et al. [27] and Borregales et al. [28] explored space-time
methods of the corresponding iterative coupling schemes,
and work of Rodrigo et al. [29] considered the stability anal-
ysis of the discretization schemes.

Here we restrict our attention to fixed-stress iterative
coupling, analyze both Galerkin and mixed finite element
for flow and Galerkin for elasticity. We derive a contraction
mapping, stability estimates and a priori error estimates for
the discretized problem that incorporates convergence of
the iteration at each time step. This result appears to be
the first that treats the entire spatial-time system. A priori
optimal rates of convergence are obtained when conver-
gence of the iteration is achieved at each time step. Due
to preference of mass conservation for flow, mixed finite
elements are chosen for implementation. Galerkin approxi-
mation can be modified by either post processing, see
Odsaeter et al. [30], or selecting Enriched Galerkin, see
Lee et al. [31], to obtain mass conservation.

While the results presented here apply to the poro-
elastic system, a novel feature of this work involves the
discretized poro-elastic–elastic system. Such systems arise
in coupled flow and poromechanics phenomena representing
hydrocarbon production or CO2 sequestration in deep
subsurface reservoirs. Here the spatial domain in which fluid
flow occurs is generally much smaller than the spatial domain
over which significant deformation occurs. The typical
approach is to either impose an overburden pressure directly
on the reservoir thus treating it as a coupled problem domain
or to model flow on a huge domain with zero permeability
cells to mimic the no flow boundary condition on the inter-
face of the reservoir and the surrounding rock. The former
approach precludes a study of land subsidence or uplift and
further does not mimic the true effect of the overburden on
stress sensitive reservoirs whereas the latter approach has
huge computational costs. A field example that has moti-
vated this work on poro-elastic–elastic sytems is the In Salah
Gas Joint Venture in Algeria, a CO2 storage project opera-
tional from 2004 to 2011, see Iding and Ringrose [32]. The
Krechba field was part of the In Salah gas field development
and was the largest onshore CO2 storage site in the world.
At Krechba, CO2 from several gas fields was removed from
the production stream and injected into the deep saline car-
boniferous formation away from the producers. The large
volume of injected CO2 caused ground upheaval. Surface
deflection was recorded using remote sensing sensors on
board of an INSAR (Interferometric Synthetic Aperture
Radar) satellite. Here applying a compositional flow and
geomechanics simulator up to the surface is extremely
computationally costly due to the depth of the aquifer.

To address flow and mechanics modeling in deep
subsurface reservoirs, a rigorous derivation of the interface
conditions between a poro-elastic medium (the pay-zone)
and an elastic body (the non-pay zone) was derived in
Mikelić & Wheeler [33]. Here effective equations represent
a two-scale system for three displacements and two pres-
sures, coupled through the interface conditions with the

Navier equations for the elastic displacement in the non-
pay zone. The following appropriate interface conditions
at the interface between an elastic and a poro-elastic
medium were determined: (i) the displacement continuity,
(ii) the effective normal stress continuity and (iii) the
normal Darcy velocity zero from the poro-elastic side. This
theoretically supports our computational approach for
treating the poro-elasticity–elasticity domains in this paper.

This work is organized as follows. In the subsection
below we establish notation. In Section 2, a continuous time
model involving the decoupling of the model into elastic and
poro-elastic domains with interface conditions is formulated
both in primal and mixed form. The primal formulation,
complete with the fixed-stress splitting algorithm, is fully
discretized in Section 3. Convergence of the algorithm,
which invokes stability of the scheme, is also established
in Section 3. The a priori error equalities, inequalities,
and error estimates are derived in Section 4. Section 5 is
devoted to the discretization of the mixed formulation
and a short survey of its convergence and numerical analy-
sis. Computational results for the mixed scheme that con-
firm these error bounds are presented in Section 6.

1.1 Notation

In the sequel, we shall use the following functional notation;
for the sake of simplicity, we define the spaces in three
dimensions. In a region X, C0 X

� �
denotes the space of con-

tinuous functions in X. The scalar product of L2(X) is
denoted by ð�; �ÞX

8f ; g 2 L2ðXÞ; ðf ; gÞX ¼
Z

X
f xð Þg xð Þdx;

and if the domain of integration is clear from the context,
we suppress the index X. Let (k1, k2, k3) denote a triple of
non-negative integers, set |k| = k1 + k2 + k3 and define
the partial derivative ok by

o
kv ¼ ojkjv

oxk1
1 oxk2

2 oxk3
3

�

Then, for any non-negative integer m, recall the classical
Sobolev space (cf. Adams [34] or Nečas [35])

Hm Xð Þ ¼ v 2 L2 Xð Þ; okv 2 L2 Xð Þ 8 kj j � m
� �

;

equipped with the following seminorm and norm (for
which it is a Hilbert space)

jvjHm Xð Þ ¼
X

kj j¼m

Z

X
jokvðxÞj2 dx

" #1
2

;

j vj jjHm Xð Þ ¼
X

0�jkj�m

jvj2HkðXÞ

" #1
2

:

This definition is extended to any real number s ¼ mþ s0

for an integer m � 0 and 0 < s0 < 1 by defining in dimen-
sion d the fractional semi-norm and norm:
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jvjHsðXÞ ¼
X

jkj¼m

Z

X

Z

X

jokvðxÞ � o
kvðyÞj2

jx � yjdþ2 s0 dxdy

 !1
2

;

j vj jjHs Xð Þ ¼ jjvjj2HmðXÞ þ jvj
2
HsðXÞ

� �1
2
:

The reader can refer to Lions and Magenes [36] and
Grisvard [37] for properties of these spaces. In particular,
we have the following trace property in a domain X with
Lipschitz continuous boundary oX: If v belongs to Hs(X)
for some s 2� 12 ; 1�, then its trace on oX belongs to
H s�1

2ðoXÞ and there exists a constant C such that

8v 2 Hs Xð Þ; j vj jj
Hs�1

2 oXð Þ
� Cj vj jjHs Xð Þ:

Finally, if C is a subset of oX with positive measure,
|C| > 0, we say that a function g in H

1
2ðCÞ belongs

to H
1
2
00ðCÞ if its extension by zero to oX belongs to

H
1
2ðoXÞ. It is a proper subspace of H

1
2ðCÞ, and is normed by

j vj jj
H

1
2
00 Cð Þ
¼
�
jvj2

H
1
2 Cð Þ
þ
Z

C
jvðxÞj2 dx

d x;Cð Þ

	1
2

; ð1Þ

where

jvj
H

1
2ðCÞ
¼

Z

C

Z

C

jvðxÞ � vðyÞj2

jx � yjd
dx dy

 !1
2

;

and d(x, C) denotes the distance to C.
All the above definitions are directly extended to vector

functions, with the same notation. The space H(div, X) is
the Hilbert space

Hðdiv;XÞ ¼ fv 2 L2ðXÞd ; div v 2 L2 Xð Þg; ð2Þ

equipped with the graph norm. The normal trace v � n of a
function v of H(div, X) on oX belongs to H�

1
2ðoXÞ, the

dual space of H
1
2ðoXÞ, see for instance Girault and Raviart

[38]. The same result holds when C is a part of oX and is a
closed surface. But if C is not a closed surface, then v � n
belongs to the dual of H

1
2
00ðCÞ. We also recall Korn’s

inequality, valid for all functions v in H 1ðXÞd that vanish
on C,

jvjH1 Xð Þ � C1 X;Cð Þjje vð ÞjjL2 Xð Þ; ð3Þ

for a constant C1(X, C) depending only on X and C.
Here e(v) denotes the strain tensor. When combined with
Poincaré’s inequality, also valid for all functions v in
H1(X) that vanish on C, with another constant C2(X, C)
depending only on X and C,

jjvjjL2 Xð Þ � C2ðX;CÞjvjH1 Xð Þ; ð4Þ

we recover the full H1 norm in the left-hand side of (3):

jjvjjH1 Xð Þ � C1ðX;CÞð1þ C2
2 X;Cð ÞÞ

1
2 e vð Þj jj jL2 Xð Þ: ð5Þ

We also have the interpolation inequality

8v 2 H 1ðXÞ; jjvjjL2ðCÞ � CðXÞjjvjj
1
2

L2ðXÞjjvjj
1
2

H1ðXÞ:

Thus by combining this with (4), (3), and (5), we derive
the trace inequality for all functions v in H1(X)d that vanish
on C

j vj jjL2 Cð Þ � CðXÞC1ðX;CÞC2ðX;CÞ
1
2

� ð1þ C2
2ðX;CÞÞ

1
4jjeðvÞjjL2 Xð Þ:

ð6Þ

As usual, for handling time-dependent problems, it is
convenient to consider measurable functions defined on a
time interval ]a, b[ with values in a functional space, say
X (cf. [36]). More precisely, let ||Æ||X denote the norm of
X ; then for any number r, 1 � r � 1, we define

Lrða; b; X Þ ¼ ff measurable in �a; b½ ;

Z b

a
jjf ðtÞjjrX dt <1g;

equipped with the norm

jjf jjLrða;b;X Þ ¼
Z b

a
jjf ðtÞjjrX dt

� 	1
r

;

with the usual modification if r = 1. It is a Banach space
if X is a Banach space, and for r = 2, it is a Hilbert space
if X is a Hilbert space. We denote derivatives with respect
to time by ot and we define for instance

H 1ða; b; X Þ ¼ ff 2 L2ða; b; X Þ; ot f 2 L2ða; b; X Þg:

Similarly, C0ð½a; b�; X Þ is the space of continuous functions
in [a, b] with values in X and

jjf jjC0ð½a;b�;X Þ ¼ sup
t2 a;b½ �
j f tð Þj jjX :

2 Domain and model formulations

Let X be a bounded, connected, Lipschitz domain in Rd ,
d = 2, 3, and let X1 be a connected proper subset of X with
a Lipschitz boundary that does not intersect the boundary
of X, as in Figure 1. We set

X2 ¼ XnX1:

We are interested in the situation where a poro-elastic
model holds in X1 (the pay-zone) while an elastic model
holds in X2 (the non-pay zone) which is a non-porous
region, see Figure 1. This work extends readily to more
general configurations, but for simplicity, we focus on this
situation. In reference [33], the model was derived from first
principles:

1. In X1, the quasi-static Biot’s system from consolida-
tion theory.
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2. On the boundary of X1, the interface conditions
between a poro-elastic medium and an elastic med-
ium, i.e., the boundary conditions at a closed outer
boundary for the quasi-static Biot system.

3. In X2, the elasticity equations.

Let C12 denote the boundary of X1 and let n12 be the
unit normal on C12 exterior to X1. Let the boundary of X,
oX be partitioned into two disjoint open regions, not neces-
sarily connected, but with a finite number of connected
components,

oX ¼ CD [ CN ;

when d = 3, we suppose that the boundaries of CD and CN
are both Lipschitz-continuous. We denote by nX the unit
outward normal vector to oX. To simplify, we assume
that the measure of CD is positive: |CD| > 0. For the sake
of brevity, we present the problem in the three-
dimensional case. Let f be the body force in X. In the
non-pay zone X2, the governing equations are those of
linear elasticity. Recalling the Cauchy stress tensor for
linear elasticity,

r uð Þ ¼ k r � uð ÞI þ 2Ge uð Þ; ð7Þ

we have a.e. in X2 · ]0, T[

�r � k r � uð ÞI þ 2Ge uð Þð Þ ¼ f : ð8Þ

In the pay-zone X1, we use Biot’s consolidation model
for a linear elastic, homogeneous, isotropic, porous solid
saturated with a slightly compressible fluid. The unknowns
are the solid’s displacement u and the fluid’s pressure p.
This model is based on a quasi-static assumption, namely
it assumes that the material deformation is much slower
than the flow rate, and hence the second time derivative
of the displacement (i.e., the acceleration) is zero. We refer
to [39] for the full derivation of the system of equations, but
as an example, let us make precise the fluid’s density. The
fluid’s density qf is related to the pressure by

qf ¼ qf ;rð1þ cf ðp � prÞÞ;

where pr is a reference pressure, qf,r > 0 a constant refer-
ence density relative to pr, and cf the fluid compressibility.
But the fluid compressibility cf is assumed to be small
(e.g. of the order of 10�8 or 10�9), and cf(p � pr) is also
small. Therefore this term is neglected and we replace qf
by the constant qf,r. With this simplification, similar lin-
earization, and arguing as in [39], we obtain the following
system of equations a.e. in X1 · ]0,T [

ot
1
M

p þ ar � u
� 	

� 1
lf
r � Kr p � qf ;rgg

� �� �
¼ q; ð9Þ

�r � k r � uð ÞI þ 2Ge uð Þ � apIð Þ ¼ f : ð10Þ

This system is complemented by an initial condition

p 0ð Þ ¼ p0 in X1: ð11Þ

Here k > 0 and G > 0 are the Lamé coefficients, which for
simplicity are assumed to be constant, a > 0 is the Biot-
Willis constant, which is usually around one, lf is the fluid’s
viscosity assumed to be constant, u0 is the initial porosity,
M > 0 is the Biot modulus satisfying, see Coussy [40],

1
M
¼ ða� u0Þð1� aÞ

Kb
þ cf u0;

where Kb is the drained bulk modulus, g is the gravitation
constant, g is the signed distance in the vertical direction,
q is a volumetric fluid source term, and K is the perme-
ability tensor, assumed to be symmetric, uniformly
bounded, and uniformly positive definite, i.e., each eigen-
value ki of K is real and there exist two constants kmin > 0
and kmax > 0 such that

a:e: x 2 X1; kmin � ki xð Þ � kmax: ð12Þ

Strictly speaking, the initial condition should be given as

1
M

p þ ar � u
� 	

ðt ¼ 0Þ ¼ 1
M

p0 þ ar � u0:

However, in practice, the pressure is either measured or
computed through a hydrostatic assumption and the initial
displacement is computed satisfying (10). When the data
are sufficiently smooth, as stated below, initializing the
pressure is sufficient to determine the solution.

As the boundary of X1 is reduced to C12, that is entirely
contained in X, the only boundary conditions on C12 are in
fact transmission conditions between the two regions. The
equations themselves are steady, but the unknowns depend
on time through the transmission conditions that are pro-
posed below. On the boundary oX, we prescribe mixed
boundary conditions:

u ¼ 0 on CD; r uð ÞnX ¼ tN on CN : ð13Þ

For the transmission conditions on the interface, we
recall the definition of jump through C12 in the direction
of the normal, for any smooth enough function v,

½v� ¼ ðvjX1
� vjX2

ÞjC12
: ð14Þ

Fig. 1. Pay-zone with surrounding rock.
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Then, we prescribe the following transmission conditions,
see [33, 41]:

the medium is continuous u½ � ¼ 0; ð15Þ

the normal stresses are continuous r uð Þ½ �n12 ¼ a p n12; ð16Þ

there is no flow at the interface

1
lf

Kr p � qf ;rgg
� �� �

� n12 ¼ 0: ð17Þ

Concerning data regularity, we assume that f belongs
to H1(0, T; L2(X)d), q belongs to L2(X1 · ]0, T[), tN is in
H1(0, T; L2(CN)d), and p0 belongs to H1(X). These are not
the most general data assumptions, but they are a conve-
nient simplification for the applications we have in mind.
Note that both f and tN are continuous in time and there-
fore f(0) and tN(0) are well-defined.

Finally, the mean stress �r which will be used in the algo-
rithm is defined by

�r ¼ kr � u � ap: ð18Þ

It is the hydrostatic stress borne by the composite. More
precisely, the product of k and the divergence of the dis-
placement is borne by the skeletal solid, and the product
of the Biot-Willis constant and the pore pressure is borne
by the pore fluid. The negative sign in front of the pore
pressure is due to the sign convention where tensile stresses
are considered positive.

2.1 Primal variational formulation

Let us introduce the space

H 1
0DðXÞ ¼ fv 2 H 1ðXÞ; vjCD

¼ 0g; V ¼ H 1
0DðXÞ

d
: ð19Þ

As shown in reference [42], problem (9)–(13), (15)–(17)
has the equivalent variational formulation: Find u in
L1(0, T; V) and p in L1(0,T; L2(X1)) \ L2(0, T; H1(X1))
solving

8v 2 V ; 2GðeðuÞ; eðvÞÞX þ kðr � u;r � vÞX
� aðp;r � vÞX1

¼ ðf ; vÞX þ ðtN ; vÞCN
; ð20Þ

8h 2 H 1ðX1Þ;
�

ot

�
1
M

p þ ar � u
	
; h

	

X1

þ 1
lf
ðK rðp � qf ;rggÞ;r hÞX1

¼ ðq; hÞX1
;

ð21Þ

pð0Þ ¼ p0 in X1:

We observe that the transmission conditions are such that
no jump appears in the variational formulation.

2.2 Mixed variational formulation

We retain the displacement equation but use a mixed for-
mulation for the flow because it leads to locally conservative

discrete schemes. Although p is continuous, the mixed for-
mulation relaxes its regularity and allows us to take p in
L1ð0; T ; L2ðX1ÞÞ. We associate with the pressure in X1 an
auxiliary Darcy velocity z defined by

z ¼ �K
lf
r p � qf ;rgg
� �

; ð22Þ

and the space for the reservoir velocity is

Z ¼ q 2 H div;X1ð Þ; q � n12 ¼ 0 on C12f g
¼ H 0 div; X1ð Þ;

ð23Þ

normed by

jjqjjZ ¼ j qj jjH div;X1ð Þ: ð24Þ

With the same data regularity, the mixed variational formu-
lation reads: Find u 2 L1ð0; T ;VÞ, p 2 L1ð0; T ; L2ðX1ÞÞ,
and z 2 L2ð0; T ;ZÞ, such that

8v 2 V ; 2GðeðuÞ; eðvÞÞX þ kðr � u;r � vÞX
� aðp;r � vÞX1

¼ ðf ; vÞX þ ðtN ; vÞCN
;

ð25Þ

8h 2 L2ðXÞ;
�

ot
1
M

p þ ar � u
� 	

; h

	

X1

þ ðr � z; hÞX1
¼ ðq; hÞX1

;

ð26Þ

8f 2 Z ; ðlf K
�1z; fÞX1

¼ ðp;r � fÞX1
þ ðrðqf ;rggÞ; fÞX1

;

ð27Þ

subject to the initial condition (11):

pð0Þ ¼ p0 in X1:

3 Continuous Galerkin approximation
and algorithm

In this and the next sections, the theory is developed for the
primal formulation. To simplify the presentation, we
describe here the case d ¼ 3, but everything carries over
to d ¼ 2. Let Pk denote the space of polynomials of total
degree less than or equal to k in d variables. From now
on, we assume that X is a Lipschitz polyhedron and that
the boundaries of CD and CN are polygonal. Let T h be a
regular family of conforming triangulations of X consisting
of tetrahedra, E, of maximum diameter h, and such that no
element adjacent to oX intersects both CD and CN and the
interior of no element intersects C12. We denote by T h;1 the
restriction of T h to X1. The restriction to simplicial
elements is only a matter of convenience; the analysis below
extends readily to other shapes such as hexahedra or
prisms. As usual, we assume that these triangulations are
regular in the sense of Ciarlet [43]: There exists a constant
j > 0, independent of h, such that
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8E 2 T h;
hE

qE
:¼ uE � j; ð28Þ

where hE � h denotes the diameter of E and qE denotes
the diameter of the ball inscribed in E. On this triangula-
tion, we introduce the standard finite element spaces

Xh ¼ fvh 2 H 1ðXÞ3; 8E 2 T h; vhjE 2 PkðEÞ3g; k � 1;

Mh ¼ fhh 2 H 1ðX1Þ; 8E 2 T h;1; hhjE 2 PmðEÞg; m � 1;

and we set

V h ¼ V \Xh:

As the exact solution may possibly be not very smooth, it is
approximated by Scott & Zhang interpolants (see [44]), say

Rh 2 ‘ðH 1ðXÞ3;XhÞ; Ph 2 ‘ðH 1ðX1Þ;MhÞ:

Considering the degree of the polynomial functions in Xh

and Mh, these interpolants have the following quasi-local
approximation errors:

8E 2 T h; 8v 2 H sðEÞ; jv� RhðvÞjHjðEÞ � C hs�j
E jvjHsð�EÞ;

ð29Þ
1 � s � k þ 1; 0 � j � s;

8E 2 T h;1; 8q 2 Hs Eð Þ;


q�Ph qð Þ




Hj Eð Þ � C hs�j

E jqjHs �Eð Þ;

ð30Þ
1 � s � mþ 1; 0 � j � s;

with constants C independent of E and h, where �E is a
small patch of elements including E containing the values
used in computing the approximation.

Regarding approximation in time, we divide the interval
½0; T � into N equal subintervals with length �t and set
tn ¼ n�t. The choice of equal time steps is also a simplifica-
tion; the material below extends readily to variable time
steps. For the data, we set

f n xð Þ ¼ f x; tnð Þ; qn xð Þ ¼ q x; tnð Þ; tn
N xð Þ ¼ tN x; tnð Þ: ð31Þ

With these spaces, the fully discrete split problem is:

Initialization. Set

p0
h ¼ Ph p0

� �
: ð32Þ

Compute u0
h 2 V h and �r0

h by solving

8vh 2 V h; 2Gðeðu0
hÞ; eðvhÞÞX þ kðr � u0

h;r � vhÞX
¼ a ðp0

h;r � vhÞX1
þ ðf ; vhÞX þ ðt0

N ; vhÞCN
; ð33Þ

and setting
�r0

h ¼ kr � u0
h � ap0

h: ð34Þ

Time step. n � 1.

1. Set pn;0
h ¼ pn�1

h , un;0
h ¼ un�1

h , and �rn;0
h ¼ �rn�1

h .
2. For ‘ � 1, compute

(a) pn;‘
h 2 Mh by solving

8hh 2 Mh; ð
1
M
þ a2

k
Þ 1

� t
ðpn;‘

h � pn�1
h ; hhÞX1

þ 1
lf
ðKrðpn;‘

h � qf ;rggÞ;r hhÞX1

¼ a2

k
1

� t
ðpn;‘�1

h � pn�1
h ; hhÞX1

� a
� t
ðr � ðun;‘�1

h � un�1
h Þ; hhÞX1

þ ðqn; hhÞX1
;

ð35Þ

(b) compute the predictor of the difference in fluid
content dp

u by

dp
u :¼ ð 1

M þ a2

k Þðp
n;‘
h � pn;‘�1

h Þ; ð36Þ

(c) �rn;‘
h by

�rn;‘
h ¼ kr � un;‘

h � apn;‘
h ; ð37Þ

(d) compute the corrector to difference in fluid content
dc

u by

dc
u :¼ ar � ðun;‘

h � un;‘�1
h Þ þ 1

M
ðpn;‘

h � pn;‘�1
h Þ:

If dc
u � dp

u :¼ ar � ðun;‘
h � un;‘�1

h Þ � a2

k ðp
n;‘
h � pn;‘�1

h Þ >
threshold, increment ‘ and return to (a);

if du � threshold, set

‘n :¼ ‘; pn
h :¼ pn;‘n

h ; un
h :¼ un;‘n

h ; �rn
h :¼ �rn;‘n

h ; ð38Þ

and march in time, set n :¼ n + 1 and return to step (1).
Considering the uniform positive definiteness of the per-

meability tensor K and the unique solvability of (20) and
(21) for given p, it is clear that this algorithm generates a
unique sequence.

3.1 Stability of the scheme and convergence
of the algorithm

From the work of Mikelić and Wheeler in [45], see also
(Girault et al. [10]), it can be shown that the fixed-stress
algorithm (32)–(37) produces a contracting sequence. More
precisely, let

b ¼ 1
a2M

þ 1
k
: ð39Þ

Then, we have for all n � 1 and all ‘ � 2,

jj�rn;‘
h � �rn;‘�1

h jjL2 X1ð Þ �
1

b kð Þ jj�r
n;‘�1
h � �rn;‘�2

h jjL2 X1ð Þ; ð40Þ

and since bk > 1 and is independent of n and h, (40)
implies that the sequence of the differences between two
consecutive iterates of �rn;‘

h is contracting, uniformly in n
and h. As a consequence, we have

jj�rn;‘
h � �rn;‘�1

h jjL2 X1ð Þ �
1

ðbkÞ‘�1 jj�r
n;1
h � �rn�1

h jjL2 X1ð Þ; ð41Þ

which implies convergence for fixed h, � t, and n.
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3.1.1 Initial mean stress difference at each time step

It follows from (41) that convergence of the algorithm,
uniform in time and space, depends on suitable bounds
for �rn;1

h � �rn�1
h . We shall see below that this relies on the

stability of the scheme, i.e., the uniform boundedness of
the sequence of discrete solutions. Recall that

�rn;1
h � �rn�1

h ¼ �aðpn;1
h � pn�1

h Þ þ kr � ðun;1
h � un�1

h Þ:

Let us start with the second term. The following
proposition shows that a bound for the second term reduces
to a bound for the first term.

Proposition 3.1. We have for all n, 1 � n � N,

kjjr � un;1
h � un�1

h

� �
jj2

L2 X1ð Þ �
a2

k
jjpn;1

h � pn�1
h jj

2

L2 X1ð Þ

þ 1
2G

C2jjf n � f n�1jj2L2 Xð Þ þ ~C2jjtn
N � tn�1

N jj
2
L2 CNð Þ

� �
;

ð42Þ

where C = C1(X, C)C2(X, C) is the product of the
constants of (3) and (4), and ~C is the constant of (6).

Proof. The equation satisfied by un;1
h � un�1

h is

ðrðun;1
h � un�1

h Þ; eðvhÞÞX ¼ aðpn;1
h � pn�1

h ;r � vhÞX1

þðf n � f n�1; vhÞX þ ðtn
N � tn�1

N ; vhÞCN
;

where r is defined in (7). By testing this equation with
un;1

h � un�1
h and applying (3), (4), and (6), we derive

2Gjjeðun;1
h � un�1

h Þjj
2

L2ðXÞ þ kjjr � ðun;1
h � un�1

h Þjj
2

L2ðXÞ

� ajjpn;1
h � pn�1

h jjL2ðX1Þjjr � ðu
n;1
h � un�1

h ÞjjL2ðX1Þ

þ ðCjjf n � f n�1jjL2ðXÞ þ ~Cjjtn
N � tn�1

N jjL2ðCN ÞÞ
� jjeðun;1

h � un�1
h ÞjjL2ðXÞ:

Then (42) follows by suitable applications of Young’s
inequality.

The next proposition treats the first term. The result is
easily derived by testing (35) when ‘ ¼ 1 with
hh ¼ pn;1

h � pn�1
h , adding and subtracting the term

ðKr pn�1
h ;r hhÞX1

and suitably applying Young’s
inequality.

Proposition 3.2. We have for all n, 1 � n � N ,

a2b
�t
jjpn;1

h � pn�1
h jj

2

L2 X1ð Þ þ
1
lf
jjK 1

2r pn;1
h � pn�1

h

� �
jj

2

L2 X1ð Þ

� �t
a2b
jjqnjj2L2 X1ð Þ þ

1
lf
jjK 1

2r pn�1
h � qf ;rgg

� �
jj

2

L2 X1ð Þ;

ð43Þ

where b is defined by (39).
Hence a bound for �rn;1

h � �rn�1
h readily follows by combin-

ing Propositions 3.1 and 3.2.

Lemma 3.1. We have for all n, 1 � n � N, with the con-
stants C and ~C of Proposition 3.1,

jj�rn;1
h � �rn�1

h jj
2

L2ðX1Þ � 4
�t
b

 
1
lf
jjK 1

2rðpn�1
h � qf ;rggÞjj

2

L2ðX1Þ

þ �t
a2b
jjqnjj2L2ðX1Þ

!

þ k
G
ðC2jjf n � f n�1jj2L2ðXÞ ð44Þ

þ ~C2jjtn
N � tn�1

N jj
2
L2ðCN ÞÞ:

In view of the assumptions on the data, it follows
that jj�rn;1

h � �rn�1
h jj

2

L2ðX1Þ is bounded provided

� tjjK 1
2rðpn�1

h � qf ;rggÞjj2L2ðX1Þ is also bounded. This raises
the issue of stability.

3.1.2 Stability of the scheme

Here we investigate the uniform boundedness of the
sequences ðun

h; p
n
hÞ generated by the algorithm in (11),

i.e., when the threshold is met. Thus the displacement
equation (36) is written (without the superscript ‘),

8vh 2 V h; 2Gðeðun
hÞ; eðvhÞÞX þ kðr � un

h;r � vhÞX
¼ aðpn

h;r � vhÞX1
þ ðf n; vhÞX þ ðtn

N ; vhÞCN
;

ð45Þ

while the flow equation (35) written at level ‘ ¼ ‘n can be
reformulated as

8hh 2 Mh;
1
M

1
� t
ðpn

h � pn�1
h ; hhÞX1

þ a
� t
ðr � ðun

h � un�1
h Þ; hhÞX1

þ 1
lf
ðKrðpn

h � qf ;rggÞ;r hhÞX1
ð46Þ

¼ a
k

1
� t
ð�rn

h � �rn;‘n�1
h ; hhÞX1

þ ðqn; hhÞX1
:

The following proposition is written under the assump-
tion that the time step satisfies �t � 1

2, but the choice 1
2 is

purely a matter of convenience. Indeed, as the asymptotic
analysis must be written for Dt < 1, otherwise the order
of the scheme is meaningless, then 1

2 can be replaced by
any number strictly smaller than one.

Proposition 3.3. Let f belong to C0ð0; T ; L2ðXÞdÞ, q to
C0ð0; T ; L2ðX1ÞÞ, and tN to C0ð0; T ; L2ðCN ÞdÞ. Assume that
Dt � 1

2. For any m, let �pm
h ¼ pm

h � qgg. The following bound
holds for all n, 1 � n � N ,

1
M
jj�pn

hjj
2
L2 X1ð Þ þ

Xn�1

m¼1

jjpm
h � pm�1

h jj2L2 X1ð Þ

 !

þG jje un
h

� �
jj2

L2 Xð Þ þ 2
Xn

m¼1

jje um
h � um�1

h

� �
jj2

L2 Xð Þ

 !

þ k
Xn

m¼1

jjr � um
h � um�1

h

� �
jj2

L2 Xð Þ

 !

ð47Þ

þ 2
lf

Xn

m¼1

�tjjK 1
2r �pm

h jj
2

L2 X1ð Þ �
1
M

Xn�1

m¼1

�tjj�pm
h jj

2
L2 X1ð Þ

þG
Xn�1

m¼1

�tjje um
h

� �
jj2

L2 Xð Þ þ 5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2 X1ð Þ

þ I 0
h þDn

h;
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where I 0
h and Dn

h are respectively contributions of the
initial terms and data,

I 0
h ¼

1
M
jj�p0

hjj
2
L2 X1ð Þ þ 3Gjje u0

h

� �
jj2

L2 Xð Þ þ 2kjjr � u0
hjj

2
L2 Xð Þ;

ð48Þ

Dn
h ¼

2C2

G
jjf 1jj2L2 Xð Þ þ jjf

njj2L2 Xð Þ þ
Xn�1

m¼1

1
�t
jjf mþ1 � f mjj2L2 Xð Þ

 !

þ 2~C2

G
jjt1

N jj
2
L2 CNð Þ þ jjt

n
N jj

2
L2 CNð Þ þ

Xn�1

m¼1

1
�t
jjtmþ1

N �tm
N jj

2
L2 CNð Þ

 !

þ 5M
Xn

m¼1

� tjjqmjj2L2 X1ð Þ þ
2
k
a2jjqggjj2L2 X1ð Þ;

ð49Þ

with the constants C and ~C of Proposition 3.1.

Proof. Since qf ;rgg is a polynomial of degree one (indepen-
dent of time), �pm

h belongs to Mh and (46) can be tested at
time tm with hh ¼ �pm

h . Then by testing (45) with
vh ¼ 1

�t ðum
h � um�1

h Þ, adding the resulting equations and
multiplying by 2Dt, we derive,
1
M
jj�pm

h jj
2
L2ðX1Þ � jj�p

m�1
h jj2L2ðX1Þ þ jjp

m
h � pm�1

h jj2L2ðX1Þ

� �

þ 2G jjeðum
h Þjj

2
L2ðXÞ � jjeðu

m�1
h Þjj2L2ðXÞ þ jjeðu

m
h � um�1

h Þjj2L2ðXÞ

� �

þ k jjr � um
h jj

2
L2ðXÞ�jjr � u

m�1
h jj2L2ðXÞþjjr � ðu

m
h �um�1

h Þjj2L2ðXÞ

� �

þ 2
lf

� tjjK 1
2r �pm

h jj
2

L2ðX1Þ ¼ 2� tðqm; �pm
h ÞX1

ð50Þ

þ 2
a
k
ð�rm

h � �rm;‘m�1
h ; �pm

h ÞX1
þ 2ðf m;um

h � um�1
h ÞX

þ 2ðtm
N ;u

m
h �um�1

h ÞCN
þ2aðqf ;rgg;r � ðum

h � um�1
h ÞÞX1

:

To apply Gronwall’s Lemma, it is convenient to write at
level n, �pn

h ¼ pn
h � pn�1

h þ �pn�1
h . For any c > 0, we have

2� tjðqn; pn
h � pn�1

h ÞX1
j � c

1
M

�tjjpn
h � pn�1

h jj
2
L2 X1ð Þ

þ 1
c

M�tjjqnjj2L2 X1ð Þ:
ð51Þ

Similarly,

2
a
k
jð�rn

h � �rn;‘n�1
h ; pn

h � pn�1
h ÞX1

j � c
1
M

� tjjpn
h � pn�1

h jj
2
L2ðX1Þ
ð52Þ

þ 1
c

M
1

� t
a2

k2 jj�r
n
h � �rn;‘n�1

h jj2L2ðX1Þ:

Choose c = 1. Since �t � 1
2, the term involving pn

h � pn�1
h is

balanced by the same term in the left-hand side of (23).
With another c > 0, we obtain

2� tjðqn; �pn�1
h ÞX1

j � c
1
M

� tjj�pn�1
h jj

2
L2ðX1Þ þ

1
c

M� tjjqnjj2L2ðX1Þ;

2
a
k
jð�rn

h � �rn;‘n�1
h ; �pn�1

h ÞX1
j � c

1
M

� tjj�pn�1
h jj

2
L2ðX1Þ

þ 1
c

M
1

� t
a2

k2 jj�r
n
h � �rn;‘n�1

h jj2L2ðX1Þ:

At level m = n � 1, this splitting is not necessary and we
simply write for any c0 > 0,

2� tjðqm; �pm
h ÞX1
j � c

0 1
M

� tjj�pm
h jj

2
L2ðX1Þ þ

1
c0

M�tjjqmjj2L2ðX1Þ;

2
a
k
jð�rm

h � �rm;‘m�1
h ; �pm

h ÞX1
j � c

0 1
M

� tjj�pm
h jj

2
L2ðX1Þ

þ 1
c0

M
1

� t
a2

k2 jj�r
m
h � �rm;‘m�1

h jj2L2ðX1Þ:

By choosing c ¼ c
0 ¼ 1

4, the total contribution of �pn�1
h from

levels n and n � 1 is
1
M

� tjj�pn�1
h jj

2
L2ðX1Þ:

The levels m � n � 2 are treated as level n � 1; a more
favorable value of c0 can be chosen, but for the sake of
simplicity, it is not used here. These inequalities are
summed over m from 1 to n, but the three terms in the last
line of (50) are summed by parts because we have no
control on 1

� t ðum
h � um�1

h Þ. Thus, we write in view of
(3), (4), and considering (6),
Xn

m¼1

ðf m;um
h � um�1

h ÞX















� C

 
Xn�1

m¼1

jjf mþ1 � f mjjL2 Xð Þjjeðum
h ÞjjL2 Xð Þ ð53Þ

þ jjf njjL2 Xð Þjjeðun
hÞjjL2 Xð Þ þ jjf

1jjL2 Xð Þjje u0
h

� �
jj

L2 Xð Þ

!

;

Xn

m¼1

ðtm
N ;u

m
h � um�1

h ÞCN















� ~C

 
Xn�1

m¼1

jjtmþ1
N � tm

N jjL2ðCN Þjjeðu
m
h ÞjjL2ðXÞ

þ jjtn
N jjL2ðCN Þjjeðu

n
hÞjjL2ðXÞ þ jjt

1
N jjL2ðCN Þjjeðu

0
hÞjjL2ðXÞ

!

:

Finally,

2a
Xn

m¼1

ðqf ;rgg;r � ðum
h � um�1

h ÞÞX1
¼ 2aðqf ;rgg;r � ðun

hÞÞX1

� 2aðqf ;rgg;r � ðu0
hÞÞX1

:

The desired result follows by applying Young’s inequality to
the above terms.

In view of (32) and (33), the initial terms of (48) are
easily bounded independently of h. If, in addition to the
assumptions of Proposition 3.3, f and tN are H 1 in time
then the terms of (49) are bounded independently of n, h,
and � t. Therefore, it remains to control the term
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�rm
h � �rm;‘m�1

h . This is done by combining the contraction
property (41) with Lemma 3.1 and it yields

a2

k2 5M
1

� t
jj�rm

h � �rm;‘m�1
h jj2L2ðX1Þ �

a2

k2 5M
1

ðb2k2Þ‘m�1

� 4
b

1
lf
jjK 1

2rðpm�1
h � qf ;rggÞjj

2

L2ðX1Þ
þ �t

a2b
jjqmjj2L2ðX1Þ

 ! 

þ k
G

1
� t

C2jjf m � f m�1jj2L2ðXÞ þ ~C2jjtm
N � tm�1

N jj2L2ðCN Þ

� �
!

:

ð54Þ
All terms above are easily bounded except for the one
involving K

1
2rðpm�1

h � qf ;rggÞ because it lacks a factor Dt
in order to be controlled by the left-hand side of (47). To
recover a factor Dt, we use the contraction and assume that
the number of iterations is sufficiently large. This implies
stability of the scheme.

Theorem 3.1. Let f belong to H 1ð0; T ; L2ðXÞdÞ, q to
C0ð0; T ; L2ðX1ÞÞ, and tN to H 1ð0; T ; L2ðCN ÞdÞ. Assume that
Dt � 1

2. If for each m, 1 � m � N, the number of iterations
‘m satisfies

1

ðbkÞ2‘m
� 1

M
� t

10a2b
; ð55Þ

then there exists a constant C independent of n, h, and Dt,
such that

1
M
jjpn

hjj
2
L2ðX1Þ þ Gjjeðun

hÞjj
2
L2ðXÞ þ kjjr � un

hjj
2
L2ðXÞ

þ 1
lf

Xn

m¼1

� tjjK 1
2r pm

h jj
2

L2ðX1Þ � C expðtnÞ: ð56Þ

Proof. The assumption (55) implies that the factor of
K

1
2r �pm�1

h satisfies
a2

k2

20
b

M
1

ðb2k2Þ‘m�1 � 2� t: ð57Þ

Therefore this term is controlled by the same term in the
left-hand side of (47). With the above regularity of the data,
an application of Gronwall’s Lemma yields a uniform bound
for pn

h and eðun
hÞ. In turn, this bound permits to estimate

r � ðun
hÞ and

1
lf

Xn

m¼1
�tjjK 1

2r pm
h jj

2

L2ðX1Þ, uniformly with

respect to h, n, and �t. Finally, the regularity of qgg implies
a similar bound for pn

h.

Remark 3.1. The exponential factor in the right-hand side
of (56) can be avoided by using L1 � L1 bounds in time
such as





Xn

m¼1

� tðqm; �pm
h ÞX1





 � sup
1�m�n

jj�pm
h jjL2ðX1Þ

Xn

m¼1

� tjjqmjjL2ðX1Þ:

This is sound, as long as it is done with data, but the same
strategy applied to






Xn

m¼1

ð�rm
h � �rm;‘m�1

h ; �pm
h ÞX1







leads to a relation between ‘m and Dt that is less favorable
than that given by (55).

4 A priori error estimates

As expected, the above stability proof will be extended to
derive a priori error estimates. As the main ingredient is
the contribution of the algorithmic error, we begin by revis-
iting this error. Throughout this section, we use the nota-
tion (31) and for convenience we denote by d the finite
difference in time for any function f,

df ¼ f n � f n�1: ð58Þ

4.1 The algorithmic error

Let us start with an arbitrary value of ‘. Recall that the
contraction property yields (41),

jj�rn;‘
h � �rn;‘�1

h jjL2ðX1Þ �
1

ðb kÞ‘�1 jj�r
n;1
h � �rn�1

h jjL2ðX1Þ;

where

�rn;1
h � �rn�1

h ¼ kr � ðun;1
h � un�1

h Þ � aðpn;1
h � pn�1

h Þ:

We have seen in Proposition 3.1 that

k2jjr � un;1
h � un�1

h

� �
jj2

L2 X1ð Þ � a2jjpn;1
h � pn�1

h jj
2

L2 X1ð Þ

þ k
2G

C2jjf n � f n�1jj2L2 Xð Þ þ ~C2jjtn
N � tn�1

N jj
2
L2 CNð Þ

� �
;
ð59Þ

with the constants C and ~C of (42). The next proposition
sharpens the bound for the pressure in Proposition 3.2.
Below, we use the notation for any function q,

�qm ¼ qm � qf ;rgg; ð60Þ

Ph denotes an arbitrary space approximation operator that
takes its values in Mh and for any function q in L1(0, T),
m(q) is the average of q in time,

m qð Þ ¼ 1
�t

Z tn

tn�1

q sð Þds: ð61Þ

Proposition 4.1. Assuming that the solution is sufficiently
smooth in time, we have for all n, 1 � n � N,

a2jj�pn;1
h � �pn�1

h jj
2

L2ðX1Þ �
�t
blf
ðjjK 1

2rð�pn�1
h �Phð�pn�1ÞÞjj

2

L2ðX1Þ

þ jjK 1
2rðPhð�pn�1Þ � mð�pÞÞjj

2

L2ðX1ÞÞ þ 2
ð�tÞ2

a2b2 jjq
n � mðqÞjj2L2ðX1Þ

þ 2
�t

a2b2 jjotð
1
M

p þ ar � uÞjj2L2ðX1��tn�1;tn½Þ;

ð62Þ

where b is defined by (39).
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Proof. By proceeding as in Proposition 3.2, subtracting
KrPhð�pn�1Þ, and Krmð�pÞ, and recalling that qf,rgg is
independent of time, we first write

a2b
�t
jj�pn;1

h � �pn�1
h jj

2

L2ðX1Þ þ
1
lf
jjK 1

2rð�pn;1
h � �pn�1

h Þjj
2

L2ðX1Þ

¼ � 1
lf
ðKrð�pn�1

h �Phð�pn�1ÞÞ;rð�pn;1
h � �pn�1

h ÞÞX1

� 1
lf
ðKrðPhð�pn�1Þ � mð�pÞÞ;rð�pn;1

h � �pn�1
h ÞÞX1

� 1
lf
ðKrmð�pÞ;rð�pn;1

h � �pn�1
h ÞÞX1

þ ðqn; �pn;1
h � �pn�1

h ÞX1
:

By integrating the flow equation (21) over]tn � 1, tn[, the end
of the last line above can be written as
�

qn � mðqÞ þ 1
�t

�
Z tn

tn�1

ot
1
M

pðsÞ þ ar � uðsÞ
	
; �pn;1

h � �pn�1
h

	

X1

ds:

 

Then (62) follows by suitable applications of Young’s
inequality.

Thus, by combining (59), (62), and (41), we derive an
upper bound for jj�rn;‘

h � �rn;‘�1
h jj2L2ðX1Þ,

jj�rn;‘
h � �rn;‘�1

h jj2L2 X1ð Þ

� 1

ðb kÞ2‘�2

�
k
G

�
C2jjf n � f n�1jj2L2 Xð Þ þ ~C2jjtn

N � tn�1
N jj

2
L2 CNð Þ

	

þ 4
�

�t
lf b

�
jjK 1

2rð�pn�1
h �Phð�pn�1ÞÞjj

2

L2 X1ð Þ

ð63Þ

þ jjK 1
2rðPhð�pn�1Þ � mð�pÞÞjj

2

L2ðX1Þ

	

þ 2
ð�tÞ2

a2b2 jjq
n � mðqÞjj2L2 X1ð Þ

þ 2
�t

a2b2 jjot

�
1
M

p þ ar � u
	
jj2L2 X1�ð �tn�1;tn½Þ

	�
:

4.2 Error equation

In addition to Ph, we shall apply to the displacement an
arbitrary approximation operator Rh that takes its values
in Vh.

Let us integrate the flow equation (21) over ]tn � 1, tn[,
tested with hh, and divide both sides by Dt; with the nota-
tion (58), (60), and (61), this gives

1
M

1
�t
ðd�pn; hhÞX1

þ a
�t
ðr � dun; hhÞX1

þ 1
lf

1
�t

Z tn

tn�1

ðKrð�pðsÞ;r hhÞX1
ds ¼ ðmðqÞ; hhÞX1

:

By subtracting (35) at level ‘ ¼ ‘n from this equation
(see (46)), we obtain for all hh 2 Mh,

1
M

1
�t
ðdð�pn � �pn

hÞ; hhÞX1
þ a

� t
ðr � ðdðun � un

hÞÞ; hhÞX1

þ 1
lf

1
�t

Z tn

tn�1

ðKrð�pðsÞ � �pn
hÞ;r hhÞX1

ds

¼ 1
�t

Z tn

tn�1

ðqðsÞ � qn; hhÞX1
ds� a

k
1

�t
ð�rn

h � �rn;‘n�1
h ; hhÞX1

:

The final error equation for flow is derived by adding and
subtracting approximations of p and u, and multiplying
all terms by Dt. This yields
1
M
ðdðPhð�pnÞ � �pn

hÞ; hhÞX1
þ aðr � ðdðRhðunÞ � un

hÞÞ; hhÞX1

þ � t
lf
ðKrðPhð�pnÞ � �pn

hÞ;r hhÞX1

¼ 1
M
ðdð�hð�pnÞ � �pnÞ; hhÞX1

þ aðr � ðdðRhðunÞ � unÞÞ; hhÞX1

þ � t
lf
ðKrð�hð�pnÞ � �pnÞ;r hhÞX1

ð64Þ

þ 1
lf

Z tn

tn�1

ðKrð�pn � �pðsÞÞ;r hhÞX1
ds

þ
Z tn

tn�1

ðqðsÞ � qn; hhÞX1
ds� a

k
ð�rn

h � �rn;‘n�1
h ; hhÞX1

:

Now, we turn to the displacement and write (20) tested
with vh at time tn. We obtain

2GðeðunÞ; eðvhÞÞX þ kðr � un;r � vhÞX � aðpn;r � vhÞX1

¼ ðf n; vhÞX þ ðtn
N ; vhÞCN

:

By observing that pn � pn
h ¼ �pn � �pn

h , the difference
between this equation and (36) again with ‘ ¼ ‘n reads

2Gðeðun � un
hÞ; eðvhÞÞX þ kðr � ðun � un

hÞ;r � vhÞX
� að�pn � �pn

h;r � vhÞX1
¼ 0:

It remains to add and subtract approximations of p and u,
to derive the final error displacement equation for all
vh 2 V h,

2GðeðRhðunÞ � un
hÞ; eðvhÞÞX

þ kðr � ðRhðunÞ � un
hÞ;r � vhÞX � að�hð�pnÞ � �pn

h;r � vhÞX1

¼ 2GðeðRhðunÞ � unÞ; eðvhÞÞX þ kðr � ðRhðunÞ � unÞ;r � vhÞX

�að�hð�pnÞ � �pn;r � vhÞX1
:

ð65Þ
Let us set

en
p ¼ PhðpnÞ � pn

h; en
u ¼ RhðunÞ � un

h;

an
p ¼ PhðpnÞ � pn; an

u ¼ RhðunÞ � un:
ð66Þ
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The final error equality is obtained by testing (64) with
hh ¼ �en

p ¼ Phð�pnÞ � �pn
h and (65) by vh ¼ dðen

uÞ, for
1 � n � N, and multiplying both sides by 2

1
M
jj�en

pjj
2

L2 X1ð Þ � jj�e
n�1
p jj

2

L2 X1ð Þ þ jjd en
p

� �
jj

2

L2 X1ð Þ

� 	

þ 2G jje en
u

� �
jj2

L2 Xð Þ � jje en�1
u

� �
jj2

L2 Xð Þ þ jje d en
u

� �� �
jj2

L2 Xð Þ

� �

þ k jjr � en
u

� �
jj2

L2 Xð Þ � jjr � en�1
u

� �
jj2

L2 Xð Þ

�

þ jjr � d en
u

� �� �
jj2

L2 Xð Þ

�
þ 2�t

lf

jjK 1
2r�en

pjj
2

L2 X1ð Þ

¼ 2
�

1
M
ðdð�an

pÞ;�en
pÞX1
þ aðr � ðdðan

uÞ;�en
pÞÞX1

ð67Þ

þ 2Gðeðan
uÞ; eðdðen

uÞÞÞX þ kðr � ðan
uÞ;r � dðen

uÞÞX

þ � t
lf
ðKr�an

p;r�en
pÞX1
� að�an

p;r � ðdðen
uÞÞÞX1

� a
k
ð�rn

h � �rn;‘n�1
h ;�en

pÞX1
þ 1

lf

Z tn

tn�1

ðKrð�pn � �pðsÞÞ;r�en
pÞX1

ds

þ
Z tn

tn�1

ðqðsÞ � qn;�en
pÞX1

ds
�
:

4.3 Error inequality

To simplify, set

En qð Þ ¼ m qð Þ � qn ¼ 1
�t

Z tn

tn�1

q sð Þds� qn: ð68Þ

By comparing (67) at level m with (50), we see that their
left-hand sides have much the same structure. Therefore,
to deduce an error inequality from (67), it suffices to suit-
ably group the terms in its right-hand side so as to associate
them with corresponding terms in the right-hand side of
(50). First, the term

2
a
k
ð�rm

h � �rm;‘m�1
h ;�em

p ÞX1

can be treated as

2
a
k
ð�rm

h � �rm;‘m�1
h ; �pm

h ÞX1
:

Next, we can write

2
�

1
M

dð�am
p Þ þ ar � ðdðam

u ÞÞ þ�tEmðqÞ;�em
p

	

X1

¼ 2� t
�

1
M

1
�t

dð�am
p Þ þ

a
�t
r � ðdðam

u ÞÞ þ EmðqÞ;�em
p

	

X1

:

Thus, this term can be treated as

2�tðqm; �pm
h ÞX1

:

Hence, proceeding as in the proof of Proposition 3.3, assum-
ing again that �t � 1

2, and summing over m, from 1 to n,
the part of the right-hand side of (67) corresponding to
these two terms is bounded by

R1 :¼ 1
M

Xn�1

m¼1

�tjj�em
p jj

2

L2 X1ð Þ þ 5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2 X1ð Þ

þ 5M
Xn

m¼1

�tjj 1
M

1
�t

d �am
p

� �
þ a

�t
r � d am

u

� �� �
þ Em qð Þjj

2

L2 X1ð Þ
:

ð69Þ

The corresponding first group of terms in the left-hand
side is

L1 :¼ 1
M
jj�en

pjj
2

L2 X1ð Þ � jj�e
0
pjj

2

L2 X1ð Þ þ
Xn�1

m¼1

jjd �em
p

� �
jj2L2 X1ð Þ

 !

:

ð70Þ

Next, we consider the terms involving eðdðen
uÞÞ and

r � dðen
uÞ that must be summed by parts. For the first term,

we write

4G






Pn

m¼1
ðeðam

u Þ; eðdðem
u ÞÞÞX







� 4G
Xn�1

m¼1

jjeðdðamþ1
u ÞÞjjL2ðXÞjjeðe

m
u ÞjjL2ðXÞ

"

þ jjeðan
uÞjjL2ðXÞjjeðe

n
uÞjjL2ðXÞ þ jjeða

1
uÞjjL2ðXÞjjeðe

0
uÞjjL2ðXÞ

�
:

Young’s inequality gives

4G
Pn

m¼1
ðeðam

u Þ; eðdðem
u ÞÞÞX













� 2G
1
2

Xn�1

m¼1

�tjjeðem
u Þjj

2
L2ðXÞ þ 2

Xn�1

m¼1

�tjj 1
�t

eðdðamþ1
u ÞÞjj2

L2ðXÞ

"

þ 1
2
jjeðen

uÞjj
2
L2ðXÞ þ 2jjeðan

uÞjj
2
L2ðXÞ þ

1
2
jjeðe0

uÞjj
2
L2ðXÞ

þ 2jjeða1
uÞjj

2
L2ðXÞ

�
:

The contribution of this term to the right-hand side is

R2 :¼ G
Xn�1

m¼1

� tjje em
u

� �
jj2

L2 Xð Þ þ 4
Xn�1

m¼1

� tjj 1
� t

e d amþ1
u

� �� �
jj

2

L2 Xð Þ

"

þ 4jje an
u

� �
jj2

L2 Xð Þ þ 2jje e0
u

� �
jj2

L2 Xð Þ þ 2jje a1
u

� �
jj2

L2 Xð Þ

�
;

ð71Þ

and the corresponding group of terms that remain in the
left-hand side is
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L2 :¼ G
�
jje en

u

� �
jj2

L2 Xð Þ � 2jje e0
u

� �
jj2

L2 Xð Þ;

ð72Þ
þ 2

Xn

m¼1

jje d em
u

� �� �
jj2

L2 Xð Þ

�
:

To simplify the treatment of the terms involving r � dðen
uÞ,

it is convenient to extend a by zero outside X1. With this
convention, we write

2kðr � ðan
uÞ;r � dðen

uÞÞX � 2að�an
p;r � ðdðen

uÞÞÞX1

¼ 2ðkr � ðan
uÞ � a�an

p;r � ðdðen
uÞÞÞX:

Then we deduce by the above argument

2






Xn

m¼1

ðkr � ðan
uÞ � a�an

p;r � ðdðen
uÞÞÞX







� k
2

Xn�1

m¼1

�tjjr � ðem
u Þjj

2
L2ðXÞ

þ 2
k

Xn�1

m¼1

�tjj 1
� t
ðkr � ðdðamþ1

u ÞÞ � adð�amþ1
p ÞÞjj2

L2ðXÞ

þ k
2
jjr � ðen

uÞjj
2
L2ðXÞ þ

2
k
jjkr � ðan

uÞ � a�an
pjj

2

L2ðXÞ

þ k
2
jjr � ðe0

uÞjj
2
L2ðXÞ þ

2
k
jjkr � ða1

uÞ � a�a1
pjj

2

L2ðXÞ:

The contribution of this term to the right-hand side is

R3 :¼ k
2

Xn�1

m¼1

� tjjr � em
u

� �
jj2

L2 Xð Þ

þ 2
k

Xn�1

m¼1

� tjj 1
� t

kr � d amþ1
u

� �� �
� ad �amþ1

p

� �� �
jj

2

L2 Xð Þ

þ 2
k
jjkr � an

u

� �
� a�an

pjj
2

L2 Xð Þ þ
k
2
jjr � e0

u

� �
jj2

L2 Xð Þ

ð73Þ

þ 2
k
jjkr � a1

u

� �
� a�a1

pjj
2

L2 Xð Þ;

and the corresponding group of terms that remain in the
left-hand side is

L3 :¼ k
2

�
jjr � en

u

� �
jj2

L2 Xð Þ � 2jjr � e0
u

� �
jj2

L2 Xð Þ
ð74Þ

þ 2
Xn

m¼1

jjr � d em
u

� �� �
jj2

L2 Xð Þ

�
:

There remain the two terms involving the gradient of �en
p;

with the notation (68), they can be written as

2
lf
½�tðKr�an

p;r�en
pÞX1
þ
Z tn

tn�1

ðKrð�pn � �pðsÞÞ;r�en
pÞX1

ds�

¼ 2�t
lf
ðKrð�an

p � Enð�pÞÞ;r�en
pÞX1

:

By Young’s inequality, when summed over m, this term has
the bound for any c > 0,

2�t
lf

Xn

m¼1




ðKrð�am
p � Emð�pÞÞ;r�em

p ÞX1






� 1
lf

�
c
Xn

m¼1

� tjjK 1
2r�em

p jj
2

L2ðX1Þ

þ 1
c

Xn

m¼1

�tjjK 1
2rð�am

p � Emð�pÞÞjj
2

L2ðX1Þ

�
:

Thus the contribution of this term to the right-hand side is

R4 :¼ 1
c

1
lf

Xn

m¼1

�tjjK 1
2r �am

p � Em �pð Þ
� �

jj
2

L2 X1ð Þ
; ð75Þ

and the corresponding term that remain in the left-hand
side is

L4 :¼ 2� cð Þ 1
lf

Xn

m¼1

� tjjK 1
2r�em

p jj
2

L2 X1ð Þ: ð76Þ

By collecting the terms Li in the left-hand side and Ri in the
right-hand side, for 1 � i � 4, we deduce the following
error inequality (compare with Proposition 3.3):

Proposition 4.2. Let q belong to C0ð0; T ; L2ðX1ÞÞ, u to
C0ð0; T ;VÞ, and p to C0ð0; T ; H 1ðX1ÞÞ. Assume that
D t � 1

2 and that a is extended by zero outside X1. With the
notation (60), (66), and (68), the following bound holds for
all n, 1 � n � N, and any c 2 ]0, 2[,

1
M

�
jj�en

pjj
2

L2 X1ð Þ þ
Xn�1

m¼1

jjdð�em
p Þjj

2

L2 X1ð Þ

	
þ G

�
jjeðen

uÞjj
2
L2 Xð Þ

þ 2
Xn

m¼1

jjeðdðem
u ÞÞjj

2
L2 Xð Þ

	

þ k
2

�
jjr � en

u

� �
jj2

L2 Xð Þ þ 2
Xn

m¼1

jjr � d em
u

� �� �
jj2

L2 Xð Þ

	

ð77Þ

þ 2� c
lf

Xn

m¼1

�tjjK 1
2r�em

p jj
2

L2 X1ð Þ �
1
M

Xn�1

m¼1

� tjj�em
p jj

2

L2 X1ð Þ

þG
Xn�1

m¼1

�tjje em
u

� �
jj2

L2 Xð Þ þ
k
2

Xn�1

m¼1

� tjjr � em
u

� �
jj2

L2 Xð Þ

þ 5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2 X1ð Þ þ E0
h þAn

h;

where E0
h and An

h are respectively contributions of the
initial errors and interpolation errors in space and time,

E0
h ¼

1
M
jj�e0

pjj
2

L2 X1ð Þ þ 4Gjje e0
u

� �
jj2

L2 Xð Þ þ
3
2
kjjr � e0

ujj
2
L2 Xð Þ;

ð78Þ
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An
h ¼ 5M

Xn

m¼1

�tjj 1
M

1
�t

dð�am
p Þ þ

a
�t
r � ðdam

u Þ þ EmðqÞjj
2

L2ðX1Þ

þ 4G
Xn�1

m¼1

�tjj 1
�t

eðdðamþ1
u ÞÞjj2

L2ðXÞ

þ 2
k

Xn�1

m¼1

�tjj k
�t
r � ðdðamþ1

u ÞÞ � a
�t

dð�amþ1
p Þjj

2

L2ðXÞ

ð79Þ
þ 1

c
1
lf

Xn

m¼1

� tjjK 1
2rð�am

p � Emð�pÞÞjj
2

L2ðX1Þ

þ 4Gjjeðan
uÞjj

2
L2ðXÞ þ

2
k
jjkr � ðan

uÞ � a�an
pjj

2

L2ðXÞ

þ 4Gjjeða1
uÞjj

2
L2ðXÞ þ

2
k
jjkr � ða1

uÞ � a�a1
pjj

2

L2ðXÞ:

4.4 Error estimate

With the notation (66) and (68), (63) reads

5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2ðX1Þ

� 5M
a2

k2

1
�t

Xn

m¼1

1

ðb kÞ2‘m�2

k
G

�
C2jjf m � f m�1jj2L2ðXÞ

�

þ ~C2jjtm
N � tm�1

N jj2L2ðCN Þ

	
þ 4
�

� t
lf b

�
jjK 1

2rð�em�1
p Þjj

2

L2ðX1Þ

þ 2jjK 1
2r �am�1

p jj
2

L2ðX1Þ
þ 2jjK 1

2rEm�1ð�pÞjj
2

L2ðX1Þ

	

þ 2
ð� tÞ2

a2b2 jjE
mðqÞjj2L2ðX1Þ

þ 2
�t

a2b2 jjot

�
1
M

p þ ar � u
	
jj2L2ðX1��tm�1;tm½Þ

	�
:

ð80Þ

The factor of the term involving K
1
2rð�em�1

p Þ is

20M
a2

k2

1
lf b

1

ðb kÞ2‘m�2 ;

and this factor must be controlled in the left-hand side
of (77) by

1
lf
ð2� cÞ�t;

with a parameter c 2 ]0,2[ to be chosen. If we choose for
instance c ¼ 1

2, a sufficient condition for this control is

20M
a2

k2

1
lf b

1

ðb kÞ2‘m�2 �
3
2

1
lf

�t;

which resembles formula (57) that guarantees stability.
However, in contrast to the situation of Theorem 3.1, this

assumption does not guarantee a satisfactory error bound.
Indeed, with this assumption, the first term in the right-
hand side of (80) is bounded by

3
8
b

kC2

G

Xn

m¼1

jjf m � f m�1jj2L2ðXÞ:

Considering that

jjf m � f m�1jj2L2ðXÞ � � t jjotf jj2L2ðX��tm�1;tm½Þ;

this assumption implies

3
8
b

kC2

G

Xn

m¼1

jjf m � f m�1jj2L2ðXÞ �
3
8

b
kC2

G
�t jjotf jj2L2ðX��0;tn½Þ;

which is not sufficient to guarantee a first order in time
that requires a factor (Dt)2. The second and last terms
of (80) are plagued by the same shortcoming. Note that
they reflect the inconsistency of the first iteration of the
algorithm at each time step.

These considerations suggest to replace the above vari-
ant of (57) by the stronger condition,

8m; 1 � m � n; ‘m � L;

where
1

ðb kÞL
� min

3
40

1
M

�t
a2b

� 	
1
2;�t

� 	
:

ð81Þ

With this assumption, the following error estimate holds:

Theorem 4.1. In addition to the assumptions and notation
of Proposition 4.2, we suppose that the data satisfy
otf 2 L2(X · ]0, T[ )d, ottN 2 L2(CN · ]0, T[ )d, and otq 2
L2(X1 · ]0, T[ ), that the solution satisfies ot

p 2
L2(0, T; H

1
(X1 )) and otu 2 L2(0, T; H1(X )d ), and that

the assumption (81) on the number of iterations holds.
Then, we have the following error estimate for all n,
1 � n � N,

1
M
jj�en

pjj
2

L2 X1ð Þ þ
Xn�1

m¼1

jjdð�em
p Þjj

2

L2 X1ð Þ

 !

þG
�
jjeðen

uÞjj
2
L2 Xð Þ þ 2

Xn

m¼1

jjeðdðem
u ÞÞjj

2
L2 Xð Þ

	

ð82Þ

þ k
2
jjr � en

u

� �
jj2

L2 Xð Þ þ 2
Xn

m¼1

jjr � d em
u

� �� �
jj2

L2 Xð Þ

 !

� ðEn
time þ En

space þ E initialÞ expðtnÞ;

where

E initial ¼
1
M
jj�e0

pjj
2

L2 X1ð Þ þ
3� t
2lf
jjK 1

2r�e0
pjj

2

L2 X1ð Þ

þ 4Gjje e0
u

� �
jj2

L2 Xð Þ þ
3
2
kjjr � e0

ujj
2
L2 Xð Þ;

ð83Þ
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En
time ¼ ð�tÞ2

�
5M



a2b2k
G
ðC2jjotf jj2L2 X�ð �0;tn½Þ

þ ~C2jjottN jj2L2 CN�ð �0;tn½ÞÞ þ 8jjot

�
1
M

p þ ar � u
	
jj2

L2 X1�ð �0;tn½Þ

�

þ
7

3lf
jjK 1

2r otpjj
2

L2 X1�ð �0;tn½Þ þ
�

� t
a2b
þ 5M

	
jjotqjj2L2 X1�ð �0;tn½Þ

�
;

ð84Þ

En
space ¼ 15

1
M
þ 4

a2

k

� 	
jjot�apjj2L2 X1�ð �0;tn�1½Þ

þ 15a2M þ 4k
� �

jjr � ot auð Þjj2L2 X1�ð �0;tn�1½Þ

þ 4Gjje ot auð Þð Þjj2L2 X�ð �0;tn½Þ

þ 7
lf

Xn

m¼1

�tjjK 1
2r �am�1

p jj
2

L2 X1ð Þ þ 4Gjje an
u

� �
jj2

L2 Xð Þ

þ 4kjjr � an
ujj

2
L2 Xð Þ þ

4a2

k
jj�an

pjj
2

L2 X1ð Þ þ 4Gjje a1
u

� �
jj2

L2 Xð Þ

þ 4kjjr � a1
ujj

2
L2 Xð Þ þ

4a2

k
jj�a1

pjj
2

L2 X1ð Þ:

ð85Þ

Proof. By applying the second part of (81) to the first,
second, and last terms of the right-hand side of (80) and the
first part to the remaining terms, we derive

5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2ðX1Þ

� 5Ma2b2ð�tÞ2 k
G

�
C2jjotf jj2L2ðX��0;tn½Þ

þ ~C2jjottN jj2L2ðCN��0;tn½Þ

�
þ 3

2
1
lf

Xn

m¼1

�tðjjK 1
2r�em�1

p jj
2

L2ðX1Þ

þ 2jjK 1
2r �am�1

p jj
2

L2ðX1Þ
þ 2jjK 1

2rEm�1ð�pÞjj
2

L2ðX1ÞÞ
ð86Þ

þ 3
a2b
ð�tÞ2

Xn

m¼1

jjEmðqÞjj2L2ðX1Þ

þ 40Mð�tÞ2jjot

�
1
M

p þ ar � u
	
jj2L2ðX1��0;tn½Þ:

Now, we substitute (86) into (77) with the choice c ¼ 1
2. The

first sum in the second line of the above right-hand side can-
cels with the corresponding sum in the left-hand side of (77)
with the exception of the first and last terms. More pre-
cisely, there remains a term (that is neglected for the
moment) in the left-hand side

3
2lf

� tjjK 1
2r�en

pjj
2

L2 X1ð Þ

and a term in the right-hand side that is included in the
initial error,

3
2lf

� tjjK 1
2r�e0

pjj
2

L2ðX1Þ
:

All other remaining terms, apart from the approximation
errors, contain time errors and interpolation errors. The lat-
ter are left as such since they depend on the degree of the
finite element functions and the regularity of the solution.
For the time errors, we observe that for any function f in
L1(0, T),

jEmðf Þj ¼ 1
� t
j
Z tm

tm�1

ð
Z tm

s
otf ðsÞdsÞdsj

�
�

� t
3

	1
2

jjotf jjL2ð�tm�1;tm½Þ:

ð87Þ

Hence, grouping terms and applying (87) for the time errors
we deduce the following intermediate result:

1
M

�
�en

p


















2

L2 X1ð Þ
þ
Xn�1

m¼1

jjdð�em
p Þjj

2

L2 X1ð Þ

	
þ G

�
jjeðen

uÞjj
2
L2 Xð Þ

þ 2
Xn

m¼1

jjðeðdðem
u ÞÞjj

2
L2 Xð Þ

	
þ k

2

�
jjr � ðen

uÞjj
2
L2 Xð Þ

þ 2
Xn

m¼1

jjr � ðdðem
u Þjj

2
L2 Xð Þ

	
þ 3

2lf
� tjjK 1

2r�en
pjj

2

L2 X1ð Þ ð88Þ

� 1
M

Xn�1

m¼1

� tjj�em
p jj

2

L2 X1ð Þ þ G
Xn�1

m¼1

� tjje em
u

� �
jj2

L2 Xð Þ

þ k
2

Xn�1

m¼1

� tjjr � em
u

� �
jj2

L2 Xð Þ þ En
time þ En

space þ E initial:

Then (82) follows from Gronwall’s lemma.

Note that (82) does not address the error on the gradi-
ent of the pressure; it has been eliminated to decrease the
restriction on the number of iterations. But this error is
an easy consequence of the error equality (67) and the
bounds resulting from (82). Thus we obtain with a constant
D that is independent of n, Dt and h,

1
lf

Xn

m¼1

� tjjK 1
2r�em

p jj
2

L2ðX1Þ
� DðEn

time þ En
space

þ E initialÞ expðtnÞ:
ð89Þ

There remains to take into account the interpolation
error in space and the initial errors. Suppose that otp belongs
to L2ð0; T ; Hs1ðX1ÞÞ and otu belongs to L2ð0; T ; H s2

�
X1ÞdÞ;

s1; s2 � 1. Recall that k � 1, respectively m � 1, is
the degree of the finite element polynomials of the displace-
ment, respectively the pressure. By taking into account
the approximation properties (30) of Ph and (29) of Rh and
the regularity (28) of the triangulation, we deduce, with
various constants C independent of n, Dt, and h,
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jjotapjj2L2ðX1��0;T ½Þ � Ch2 minðs1;mÞjjotpjj2L2ð0;T ;Hs1 ðX1ÞÞ;

jjeðotauÞjj2L2ðX��0;T ½Þ þ jjr � ðotauÞjj2L2ðX��0;T ½Þ

� Ch2ðminðs2;kÞ�1Þjjotujj2L2ð0;T ;Hs2 ðXÞÞ;

jj�an
pjj

2

L2ðX1Þ
¼ jjPhð�pnÞ � �pnjj2L2ðX1Þ ¼ jjPhðpnÞ � pnjj2L2ðX1Þ

� Ch2ðminðs1;mÞÞ sup
t2�0;T ½

jpj2Hs1 ðX1Þ;

jjeðan
uÞjj

2
L2ðXÞ þ jjr � ða

n
uÞjj

2
L2ðXÞ

� Ch2ðminðs2;kÞ�1Þ sup
t2�0;T ½

juj2Hs2 ðXÞ;

Xn

m¼1

� tjjK 1
2r �am�1

p jj
2

L2ðX1Þ

¼
Xn

m¼1

�tjjK 1
2rðPhðpm�1Þ � pm�1Þjj

2

L2ðX1Þ ð90Þ

� Tkmaxh2ðminðs1;kÞ�1Þ sup
t2�0;T ½

jpj2Hs1 ðX1Þ:

Finally, we turn to the initial errors. By (32), the initial
pressure error vanishes,

�e0
p ¼ Phðp0Þ �Phðp0Þ ¼ 0:

The initial displacement errors follow from (65) at n = 0,

2GðeðRhðu0Þ � u0
hÞ; eðvhÞÞX þ kðr � ðRhðu0Þ � u0

hÞ;r � vhÞX

¼ 2GðeðRhðu0Þ � u0Þ; eðvhÞÞX

þ kðr � ðRhðu0Þ � u0Þ;r � vhÞX � að�p0
h � �p0;r � vhÞX1

:

By testing this equation with vh ¼ Rhðu0Þ � u0
h, standard

applications of Young’s inequality yield

GjjeðRhðu0Þ � u0
hÞjj

2
L2ðXÞ � GjjeðRhðu0Þ � u0Þjj2L2ðXÞ

þ k
2
jjr � ðRhðu0Þ � u0Þjj2L2ðXÞ þ

a2

2k
jjPhðp0Þ � p0jj2L2ðX1Þ;

kjjr � Rh u0
� �

� u0
h

� �
jj2

L2 Xð Þ �
G
2
jje Rh u0

� �
� u0

� �
jj2

L2 Xð Þ

þ 2kjjr � Rh u0
� �

� u0
� �

jj2
L2 Xð Þ þ

2a2

k
jjPh p0

� �
� p0jj2

L2 X1ð Þ:

Hence the initial error has the same order of convergence as
the other errors in space. The next theorem collects these
results.

Theorem 4.2. In addition to the assumptions and notation
of Proposition 4.2, we suppose that the data
satisfy @tf 2 L2ðX��0; T ½Þd , @ttN 2 L2ðCN��0; T ½Þd , and
@tq 2 L2ðX1��0; T ½Þ, that the solution satisfies

p 2 H 1ð0; T ; Hs1ðX1ÞÞ and u 2 H 1ð0; T ; H s2ðXÞdÞ, and that
the assumption (81) on the number of iterations holds.
Then, the solution of the fully discrete scheme (32)–(37)
satisfies the error bounds for all n, 1 � n � N,

sup
0�n�N

jjpn
h � pnjjL2 X1ð Þþ sup

0�n�N
jjeðun

h � unÞjjL2 Xð Þ

þ
XN

m¼1

� tjjK 1
2rðpm

h � pmÞjj
2

L2 X1ð Þ

 !1
2

ð91Þ

� C hminðs1;mÞ�1 þ hminðs2;kÞ�1 þ�t
� �

;

with a constant C independent of h and Dt.

5 Mixed approximation and algorithm

The material of Sections 3 and 4 is easily adapted to the
mixed formulation (25)–(27), with initial condition (11),
and to avoid repetitions, we sketch here the main ideas.
The displacement is discretized in the same spaces Xh and
Vh, but the velocity and pressure spaces are discretized by
a standard mixed pair, (Zh, Qh), where Zh is a finite element
subspace of Z with interpolation operator Ph and Qh a finite
element subspace of L2(X1), with interpolation operator qh,
(Zh, Qh) being compatible in the sense that they satisfy a
uniform discrete inf-sup condition. In particular, we make
the assumption, commonly used in mixed methods,

8q 2 L2ðX1Þ; 8fh 2 Zh; ð.hðqÞ � q;r � fhÞX1
¼ 0: ð92Þ

As previously, we denote �pm
h ¼ pm

h � qf ;rgg. Starting from

p0
h ¼ .h p0ð Þ; ð93Þ

the fixed-stress splitting algorithm computes u0
h 2 V h by

solving (33),

8vh 2 V h; 2Gðeðu0
hÞ; eðvhÞÞX þ kðr � u0

h;r � vhÞX
¼ a ðp0

h;r � vhÞX1
þ ðf ; vhÞX þ ðt0

N ; vhÞCN
;

z0
h 2 Zh by solving

8fh 2 Zh; lf ðK�1z0
h; fhÞX1

¼ ð�p0
h;r � fhÞX1

ð94Þ

and �r0
h by (34),

�r0
h ¼ kr � u0

h � ap0
h:

Then for n � 1,

1. Set pn;0
h ¼ pn�1

h , un;0
h ¼ un�1

h , zn;0
h ¼ zn�1

h ,
and �rn;0

h ¼ �rn�1
h .

2. For ‘ � 1, compute

(a) the pair ðpn;‘
h ; z

n;‘
h Þ in Qh � Zh by solving

8hh 2 Qh;
1
M
þ a2

k

� 	
1

� t
ðpn;‘

h � pn�1
h ; hhÞX1

þ ðr � zn;‘
h ; hhÞX1

ð95Þ
¼ � a

k
1

� t
ð�rn;‘�1

h � �rn�1
h ; hhÞX1

þ ðqn; hhÞX1
;
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8fh 2 Zh; lf ðK�1zn;‘
h ; fhÞX1

¼ ð�pn;‘
h ;r � fhÞX1

; ð96Þ

(b) compute the predictor of the difference in fluid
content dp

u by

dp
u :¼ ð 1

M
þ a2

k
Þðpn;‘

h � pn;‘�1
h Þ:

(c) �rn;‘
h by (37)

�rn;‘
h ¼ kr � un;‘

h � apn;‘
h ;

(d) compute the corrector to difference in fluid content
dc

u by

dc
u :¼ ar � ðun;‘

h � un;‘�1
h Þ þ 1

M
ðpn;‘

h � pn;‘�1
h Þ:

If dc
u � dp

u :¼ ar � ðun;‘
h � un;‘�1

h Þ � a2

k ðp
n;‘
h � pn;‘�1

h Þ >
threshold, increment ‘ and return to (a);

if du � threshold, set

‘n :¼ ‘; pn
h :¼ pn;‘n

h ; un
h :¼ un;‘n

h ; �rn
h :¼ �rn;‘n

h ; ð97Þ

and march in time, set n :¼ n + 1 and return to step (1).
It is easy to check that this algorithm generates a unique

sequence of discrete functions.

5.1 Contraction of the algorithm and stability
of the mixed scheme

The contraction proof for the mixed scheme is very similar
to that for (32)–(38). With the notation (39) for b and

dvn;‘ ¼ vn;‘ � vn;‘�1;

we derive by the same argument

jjd�rn;‘
h jj

2

L2ðX1Þ þ k2jjr � ðdun;‘
h Þjj

2

L2ðX1Þ þ 2k2jjr � ðdun;‘
h Þjj

2

L2ðX2Þ

þ 2�t
lf

b
jjK�1

2dzn;‘
h jj

2

L2ðX1Þ þ 4Gkjjeðdun;‘
h Þjj

2

L2ðXÞ

� 1

ðbkÞ2
jjd�rn;‘�1

h jj2L2ðX1Þ:

Therefore

jjd�rn;‘
h jjL2 X1ð Þ �

1

ðbkÞ‘�1 jjd�rn;1
h jjL2 X1ð Þ;

jjr � dun;‘
h

� �
jj

L2 Xð Þ �
1
k

1

ðbkÞ‘�1 jjd�rn;1
h jjL2 X1ð Þ;

ð98Þ

jjK�1
2dzn;‘

h jjL2 X1ð Þ �
�

b
2�tlf

	1
2 1

ðbkÞ‘�1 jjd�rn;1
h jjL2 X1ð Þ;

jje dun;‘
h

� �
jj

L2 Xð Þ �
1

2
ffiffiffiffiffiffi
kG
p 1

ðbkÞ‘�1 jjd�rn;1
h jjL2 X1ð Þ;

and again we must estimate jjd�rn;1
h jjL2ðX1Þ. As the discrete

displacement equation (36) is unchanged, formula (42)
is also valid here and we must derive the analogue of

(43). This is readily done by testing (95) at level ‘ ¼ 1
with hh ¼ �pn;1

h � �pn�1
h , splitting

ðr � zn;1
h ; �pn;1

h � �pn�1
h ÞX1

¼ ðr � ðzn;1
h � zn�1

h Þ; �p
n;1
h � �pn�1

h ÞX1

þ ðr � zn�1
h ; �pn;1

h � �pn�1
h ÞX1

;

and using the velocity-pressure equation to eliminate the
divergence in both terms of the above right-hand side.
This gives

ðr � zn;1
h ; �pn;1

h � �pn�1
h ÞX1

¼ lf jjK�1
2ðzn;1

h � zn�1
h Þjj

2

L2ðX1Þ

þ lf ðK�1ðzn;1
h � zn�1

h Þ; zn�1
h ÞX1

:

Thus, we have the analogue of Proposition 3.2, with the
same notation.

Proposition 5.1. We have for all n, 1 � n � N,

a2b
�t
jjpn;1

h � pn�1
h jj

2

L2 X1ð Þ þ lf jjK�1
2 zn;1

h � zn�1
h

� �
jj

2

L2 X1ð Þ

� �t
a2b
jjqnjj2L2 X1ð Þ þ lf jjK�1

2zn�1
h jj

2

L2 X1ð Þ:

ð99Þ

Then a combination of (42) and (99) yields the analogue
of (44),

jj�rn;1
h � �rn�1

h jj
2

L2 X1ð Þ � 4
�t

b
lf jjK�1

2zn�1
h jj

2

L2 X1ð Þ þ
�t

a2b
jjqnjj2L2 X1ð Þ

� 	

(100)
þ k

G
C2jjf n � f n�1jj2L2 Xð Þ þ ~C2jjtn

N � tn�1
N jj

2
L2 CNð Þ

� �
;

which again relies on the stability of the scheme.

Now, by using again the velocity-pressure equation, so
that

ðr � zn
h; �p

n
hÞX1
¼ lf jjK�1

2zn
hjj

2

L2 X1ð Þ;

it is easy to check that all steps of the proof of the stability
Proposition 3.3 carry over to the mixed scheme without
modification, and we have the following proposition.

Proposition 5.2. Under the assumptions and notation of
Proposition 3.3, the following bound holds for all n,
1 � n � N,

1
M

�
jj�pn

hjj
2
L2ðX1Þ þ

Xn�1

m¼1

jjpm
h � pm�1

h jj2L2ðX1Þ

	
þ G

�
jjeðun

hÞjj
2
L2ðXÞ

þ 2
Xn

m¼1

jjeðum
h � um�1

h Þjj2L2ðXÞ

	
þ k

�Xn

m¼1

jjr � ðum
h � um�1

h Þjj2L2ðXÞ

	

þ 2lf

Xn

m¼1

�tjjK�1
2zm

h jj
2

L2ðX1Þ �
1
M

Xn�1

m¼1

�tjj�pm
h jj

2
L2ðX1Þ ð101Þ

þG
Xn�1

m¼1

� tjjeðum
h Þjj

2
L2ðXÞ

þ 5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2ðX1Þ þ I 0
h þDn

h:
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With this result, by reproducing the argument at the
end of Section 3.1, we derive stability of the mixed scheme.

Theorem 5.1. Under the assumptions on the data and the
number of iterations (55) of Theorem 3.1, there exists a
constant C independent of n, h, and Dt, such that

1
M
jjpn

hjj
2
L2ðX1Þ þ Gjjeðun

hÞjj
2
L2ðXÞ þ kjjr � un

hjj
2
L2ðXÞ

ð102Þ
þ lf

Xn

m¼1

�tjjK�1
2zm

h jj
2

L2ðX1Þ � C expðtnÞ:

5.2 A priori error estimates for the mixed scheme

Let us start with the algorithmic error. We retain the
notation of Section 4.1, but we replace the approximation
operator Ph by the operator Ph that takes its values in
Zh. Proposition 4.1 is replaced by a slightly more complex
result. Indeed, by proceeding as in Proposition 3.2, we intro-
duce the term ðr � zn�1

h ; pn;1
h � pn�1

h ÞX1
that we write as

ðr � zn�1
h ; pn;1

h � pn�1
h ÞX1

¼ ðr � ðzn�1
h � P hðzn�1ÞÞ; pn;1

h � pn�1
h ÞX1

þðr � ðP hðzn�1Þ � mðzÞÞ; pn;1
h � pn�1

h ÞX1

þðr � mðzÞ; pn;1
h � pn�1

h ÞX1
:

For the first term, since zn�1
h � P hðzn�1Þ 2 Zh, we apply the

discrete velocity-pressure relation, whereas the other two
terms are left unchanged in order to be combined with qn.
Thus, we obtain the next proposition.

Proposition 5.3. Assuming that the solution is sufficiently
smooth in space and time, we have for all n, 1 � n � N,

a2jj�pn;1
h � �pn�1

h jj
2

L2ðX1Þ � lf
�t
2b
jjK�1

2ðzn�1
h � P hðzn�1ÞÞjj

2

L2ðX1Þ

þ 3

a2b2 ð�tÞ2jjr � ðP hðzn�1Þ � mðzÞÞjj2L2ðX1Þ

ð103Þ

þ 3
ð�tÞ2

a2b2 jjq
n � mðqÞjj2L2ðX1Þ

þ 3
�t

a2b2 jjotð
1
M

p þ ar � uÞjj
2

L2ðX1��tn�1;tn½Þ
:

Then (63) is replaced by

jj�rn;‘
h � �rn;‘�1

h jj2L2ðX1Þ �
1

ðb kÞ2‘�2

�
k
G

�
C2jjf n � f n�1jj2L2ðXÞ

þ ~C2jjtn
N � tn�1

N jj
2
L2ðCN Þ

	

þ 4
�

lf
�t
2b
jjK�1

2ðzn�1
h � P hðzn�1ÞÞjj

2

L2ðX1Þ

ð104Þ

þ 3

a2b2 ð�tÞ2jjr � ðP hðzn�1Þ � mðzÞÞjj2L2ðX1Þ

þ 3
ð�tÞ2

a2b2 jjq
n � mðqÞjj2L2ðX1Þ

þ 3
�t

a2b2 jjotð
1
M

p þ ar � uÞjj2
L2ðX1��tn�1;tn½Þ

	�
:

Note that the factor of K�1
2ðzn�1

h � P hðzn�1ÞÞ in the right-
hand side of (104) is smaller than its counter part in (36)
by a factor of 1

2. In contrast, the factors of the other terms
in the right-hand side involving the interpolation errors
are slightly larger, but this does not change their order of
convergence.

Next, we turn to the error equation. Its derivation fol-
lows the lines of Section 4.2, up to the error of the veloc-
ity-pressure relation in which we make use of the
assumption (92). Thus, we write

lf ðK�1zn; fhÞX1
¼ ð�pn;r � fhÞX1

¼ ðqhð�pnÞ;r � fhÞX1
;

and hence the difference between the exact and discrete
velocity-pressure equations reads

lf ðK�1ðP hðznÞ � zn
hÞ; fhÞX1

þ lf ðK�1ðzn � P hðznÞÞ; fhÞX1

ð105Þ
¼ ðqhð�pnÞ � �pn

h;r � fhÞX1
:

This is an important simplification because it will eliminate
the factor r � fh from the error equation. In addition to the
notation en

u and an
u of (66), we set

en
p ¼ qh pnð Þ � pn

h; en
z ¼ P h znð Þ � zn

h;

an
p ¼ qh pnð Þ � pn; an

z ¼ P h znð Þ � zn:
ð106Þ

Then (67) is replaced by
1
M
ðjj�en

pjj
2

L2ðX1Þ
� jj�en�1

p jj
2

L2ðX1Þ
þ jjdðen

pÞjj
2

L2ðX1Þ
Þ

þ 2Gðjjeðen
uÞjj

2
L2ðXÞ � jjeðe

n�1
u Þjj

2
L2ðXÞ þ jjeðdðe

n
uÞÞjj

2
L2ðXÞÞ

þ kðjjr � ðen
uÞjj

2
L2ðXÞ � jjr � ðe

n�1
u Þjj

2
L2ðXÞ þ jjr � ðdðe

n
uÞÞjj

2
L2ðXÞÞ

þ 2lf � tjjK�1
2en

zjj
2
L2ðX1Þ ¼ 2

�
1
M
ðdðan

pÞ;�en
pÞX1 ð107Þ

þ aðr � ðdðan
uÞÞ;�en

pÞX1
þ 2Gðeðan

uÞ; eðdðen
uÞÞÞX

þ kðr � ðan
uÞ;r � dðen

uÞÞX � lf � tðK�1an
z ; e

n
zÞX1

� að�an
p;r � ðdðen

uÞÞÞX1
� a

k
ð�rn

h � �rn;‘n�1
h ;�en

pÞX1

þ
Z tn

tn�1

ðqðsÞ � qn þr � ðzn � zðsÞÞ;�en
pÞX1

ds
�
:

A comparison with (67) immediately shows that the conclu-
sion of Proposition 4.2 holds with the same initial error E0

h
and slightly different interpolation error ~An

h, of the same
order, and provided the solution and data are sufficiently
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smooth. For the sake of brevity the details are skipped, and
(77) is replaced by

1
M

�
jj�en

pjj
2

L2 X1ð Þ þ
Xn�1

m¼1

jjdð�em
p Þjj

2

L2 X1ð Þ

	

þG
�
jjeðen

uÞjj
2
L2 Xð Þ þ 2

Xn

m¼1

jjeðdðem
u ÞÞjj

2
L2 Xð Þ

	

þ k
2
jjr � en

u

� �
jj2

L2 Xð Þ þ 2
Xn

m¼1

jjr � d em
u

� �� �
jj2

L2 Xð Þ

 !

þ 2� cð Þlf

Xn

m¼1

� tjjK�1
2em

z jj
2

L2 X1ð Þ �
1
M

Xn�1

m¼1

�tjj�em
p jj

2

L2 X1ð Þ

þG
Xn�1

m¼1

�tjje em
u

� �
jj2

L2 Xð Þ þ
k
2

Xn�1

m¼1

�tjjr � em
u

� �
jj2

L2 Xð Þ

þ 5M
a2

k2

1
�t

Xn

m¼1

jj�rm
h � �rm;‘m�1

h jj2L2 X1ð Þ þ E0
h þ ~An

h:

ð108Þ
From here, by comparing with the material of

Section 4.4, we easily verify that the error of the mixed
scheme has the same order as that of the continuous
Galerkin scheme, provided the solution, including the
Darcy velocity, is smooth enough. The sufficient condition
on the number of iterations (81) is slightly improved. Owing
to the gain of the 1

2 factor mentioned above, it becomes
8m; 1 � m � n; ‘m � L;

where
1

ðb kÞL
� min

3
20

1
M

� t
a2b

� 	1
2

;�t

 !

: ð109Þ

6 A numerical result

The problem considered here is that of flow to a rate spec-
ified injection well in a confined compressible aquifer of
thickness H as shown in Figure 2. The analytical solution
for the pore pressure in the pay-zone (or aquifer or flow
domain) is given as (Verruijt [46])

p ¼
Qlf

4pkH
E1ðr2=4ctÞ; ð110Þ

where k is the permeability, Q is the injection rate, H is
the aquifer thickness, r is the radial coordinate measured
from the center of the well, t is the time, E1(x) is the
exponential integral given by

E1 xð Þ ¼
Z 1

x

expð�tÞ
t

dt; ð111Þ

and c is the diffusivity coefficient given by

c ¼

k
lf

Kb þ
4G
3

� 	

a2 þ u0cf þ
ða� u0Þð1� aÞ

Kb

� 	
Kb þ

4G
3

� 	 ;

where Kb ¼ E
3ð1�2mÞ is the drained bulk modulus and

G ¼ E
2ð1þmÞ is the shear modulus. The underlying assump-

tions in the development of (110) are that there are no
horizontal deformations in the aquifer and that the total
vertical stress remains constant during the development
of the hydrological process. We employ the parameters
given in Table 1. The flow domain (aquifer) is at a depth
of 244 m with the mechanics domain extending all the
way to the traction free surface. The aquifer thickness is
61 m. The lateral extents of both the flow and mechanics
domains are 915 m. An underburden with a thickness of
61 m is also provided. No flow boundary conditions are
imposed on the pay-zone. Gravity is ignored. Denoting
the top surface of the mechanics domain as CT , the
boundary conditions for the mechanics subproblem are

t ¼ 0 on CT ;

u � n ¼ 0 on oX=CT :

The Biot parameter is non-zero only inside the pay-zone
and zero outside the pay-zone and formally given as

a ¼
0:8 in X1

0 in X2:




Since for this computational example the term q represents
a well and is not in L1ðL2ðXÞÞ, we compute estimates in
L1ðL2ðX�ÞÞ where X� ¼ X� BR. Here BR is a cylinder of
radius 92 m (which is 1=10 times the areal size of the
domain) and height of the pay-zone. The error norm for
the pore pressure in the pay-zone is computed using the
midpoint quadrature rule:

jjp � phjjL2 X�ð Þ

jjpjjL2 X�ð Þ




























L1

	 max
0<s�T

P

E2T h\X�
jEjðpðs;meÞ � phðs;meÞÞ2

P

E2T h\X�
jEjðpðs;meÞÞ2

0

B@

1

CA

1
2

; ð112Þ

Fig. 2. Schematic for single well in an infinite confined aquifer
problem.
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where me is the center of mass of element E, s is time,
p(s,me) is the analytical solution for pore pressure at
time s and position me, ph(s, me) is the numerical solution
for pore pressure at me and T is the total time. As shown
in Tables 2 and 3, we observe first order convergence for
the pore pressure. The simulation was performed using
the in-house reservoir simulator IPARS (http://csm.ices.
utexas.edu/IparsWeb/index.html) on the bevo3 super-
computer at the Institute for Computational Engineering
and Sciences at the University of Texas at Austin. The
flow system is solved using a multipoint flux mixed finite
element method (Ingram et al. [47]) and the poromechan-
ics system is solved using a conforming Galerkin method.
The solver for both the flow and poromechanics systems is
the parallel high performance preconditioners library
called Hypre (Falgout and Yang [48]). The convergence
tolerance is 1 · 10�8. The code takes 1–3 coupling itera-
tions to convergence at every time step.
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45 Mikelić A., Wheeler M.F. (2013) Convergence of iterative
coupling for coupled flow and mechanics, Comput. Geosci.
17, 3, 455–461.

46 Verruijt A. (2013) Theory and problems of poroelasticity,
Delft University of Technology.

47 Ingram R., Wheeler M.F., Yotov I. (2010) A multipoint flux
mixed finite element method on hexahedra, SIAM J. Numer.
Anal. 48, 4, 1281–1312.

48 Falgout R.D., Yang U.M. (2002) hypre: A library of
high performance preconditioners, in: Sloot P.M.A., Hoekstra
A.G., Tan C.J.K., Dongarra J.J. (eds), Computational
Science – ICCS 2002, Springer, Berlin, Heidelberg, pp.
632–641.

V. Girault et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 24 (2019)20


	Introduction
	Notation

	Domain and model formulations
	Primal variational formulation
	Mixed variational formulation

	Continuous Galerkin approximation �and algorithm
	Stability of the scheme and convergence �of the algorithm
	3.1.1 Initial mean stress difference at each time step

	head9
	head10
	 
	3.1.2 Stability of the scheme

	head13
	 


	A priori error estimates
	The algorithmic error
	 

	Error equation
	Error inequality
	 

	Error estimate
	 
	 


	Mixed approximation and algorithm
	Contraction of the algorithm and stability �of the mixed scheme
	 

	head27
	head28
	A\,\, priori error estimates for the mixed scheme
	 


	A numerical result
	References

