J. A. Finegold, P. Asaria, and D. P. Francis, Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations, Int. J. Cardiol, vol.168, pp.934-945, 2013.

H. C. Stary, A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, vol.92, pp.1355-1374, 1995.

K. H. Herrmann, S. Schmidt, A. Kretz, R. Haenold, I. Krumbein et al., Possibilities and limitations for high resolution small animal MRI on a clinical whole-body 3T scanner, Magn. Reson. Mater. Phys. Boil. Med, vol.25, pp.233-244, 2012.

D. Stucht, K. A. Danishad, P. Schulze, F. Godenschweger, M. Zaitsev et al., Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction, PLoS ONE, vol.10, 2015.

K. Hikishima, Y. Komaki, F. Seki, Y. Ohnishi, H. J. Okano et al., In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain

P. Eghbali, H. Fattahi, S. Laurent, R. N. Muller, and Y. M. Oskoei, Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging, J. Iran. Chem. Soc, vol.13, pp.87-93, 2016.

N. T. Nghia, E. Tinet, D. Ettori, A. Beilvert, G. Pavon-djavid et al., Gadolinium/terbium hybrid macromolecular complexes for bimodal imaging of atherothrombosis, J. Biomed. Opt, p.76004, 2017.

F. Benyettou, Y. Lalatonne, I. Chebbi, M. Di-benedetto, J. M. Serfaty et al., A multimodal magnetic resonance imaging nanoplatform for cancer theranostics, Phys. Chem. Chem. Phys, vol.13, pp.10020-10027, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00704918

A. Moezzi, A. M. Mcdonagh, and M. B. Cortie, Zinc oxide particles: Synthesis, properties and applications, Chem. Eng. J, pp.185-186, 2012.

I. Balti, A. Mezni, A. Dakhlaoui-omrani, P. Leone, B. Viana et al., Comparative Study of Ni-and Co-Substituted ZnO Nanoparticles: Synthesis, Optical, and Magnetic Properties, J. Phys. Chem. C, vol.115, pp.15758-15766, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849399

Z. Y. Zhang and H. M. Xiong, Photoluminescent ZnO Nanoparticles and Their Biological Applications. Materials, vol.8, pp.3101-3127, 2015.

T. K. Hong, N. Tripathy, H. J. Son, K. T. Ha, H. S. Jeong et al., A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity, J. Mater. Chem. B, vol.1, pp.2985-2992, 2013.

V. G. Il'ves, S. Y. Sokovnin, and A. M. Murzakaev, Influence of Fe-Doping on the Structural and Magnetic Properties of ZnO Nanopowders, Produced by the Method of Pulsed Electron Beam Evaporation, J. Nanotechnol, 2016.

H. M. Xiong, ZnO nanoparticles applied to bioimaging and drug delivery, Adv. Mater, vol.25, pp.5329-5335, 2013.

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev, vol.108, pp.2064-2110, 2008.

J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang et al., Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe 3 O 4 nanocomposites, Mater. Sci. Eng. B, vol.175, pp.56-59, 2010.

H. L. Liu, J. H. Wu, J. H. Min, X. Y. Zhang, and Y. K. Kim, Tunable synthesis and multifunctionalities of Fe 3 O 4 -ZnO hybrid core-shell nanocrystals, Mater. Res. Bull, vol.48, pp.551-558, 2013.

J. Wan, H. Li, and K. Chen, Synthesis and characterization of Fe 3 O 4 @ZnO core-shell structured nanoparticles, Mater. Chem. Phys, vol.114, pp.30-32, 2009.

I. Balti, L. S. Smiri, P. Rabu, E. Gautron, B. Viana et al., Synthesis and characterization of rod-like ZnO decorated with Î 3 -Fe 2 O 3 nanoparticles monolayer, J. Alloy. Compd, vol.586, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00988785

I. Balti, P. Chevallier, C. Menager, A. Michel, N. Jouini et al., Nanocrystals of Zn(Fe)O-based diluted magnetic semi-conductor as potential luminescent and magnetic bimodal bioimaging probes, RSC Adv, vol.4, pp.58145-58150, 2014.

M. L. Dinesha, G. D. Prasanna, C. S. Naveen, and H. S. Jayanna, Structural and dielectric properties of Fe doped ZnO nanoparticles, Indian J. Phys, vol.87, pp.147-153, 2013.

T. A. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel et al., Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos, ACS Nano, vol.5, pp.1223-1235, 2011.

D. Vestweber and J. E. Blanks, Mechanisms that regulate the function of the selectins and their ligands, Physiol. Rev, vol.79, pp.181-213, 1999.

L. Bachelet, I. Bertholon, D. Lavigne, R. Vassy, M. Jandrot-perrus et al., Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets, Biochim. Biophys. Acta, vol.1790, pp.141-146, 2009.

F. Rouzet, L. Bachelet-violette, J. M. Alsac, M. Suzuki, A. Meulemans et al., Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation, J. Nucl. Med, vol.52, pp.1433-1440, 2011.

M. Suzuki, L. Bachelet-violette, F. Rouzet, A. Beilvert, G. Autret et al., Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus, Nanomedicine, vol.10, pp.73-87, 2015.

P. Saboural, F. Chaubet, F. Rouzet, F. Al-shoukr, R. B. Azzouna et al., Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction, Mar. Drugs, vol.12, pp.4851-4867, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01866736

L. Bachelet-violette, A. K. Silva, M. Maire, A. Michel, O. Brinza et al., Strong and specific interaction of ultra small superparamagnetic iron oxide nanoparticles and human activated platelets mediated by fucoidan coating, vol.4, pp.4864-4871, 2014.

B. Li, M. Juenet, R. Aid-launais, M. Maire, V. Ollivier et al., Development of Polymer Microcapsules Functionalized with Fucoidan to Target P-Selectin Overexpressed in Cardiovascular Diseases, Adv. Healthc. Mater, vol.6, 2017.

L. Lutterotti, S. Matthies, H. R. Wenk, and . Maud, A friendly java program for material analysis using diffraction. CPD Newsletters, vol.21, pp.14-15, 1999.

M. A. Ciciliati, M. F. Silva, D. M. Fernandes, M. A. De-melo, A. Adelin et al., Fe-doped ZnO nanoparticles: Synthesis by a modified sol-gel method and characterization, Mater. Lett, vol.159, pp.84-86, 2015.

P. A. Arciniegas-grijalba, M. C. Patiño-portela, L. P. Mosquera-sánchez, J. A. Guerrero-vargas, and J. E. Rodríguez-páez, ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor, Appl. Nanosci, vol.7, pp.225-241, 2017.

E. A. Meulenkamp, Size dependence of the dissolution of ZnO nanoparticles, J. Phys. Chem. B, vol.102, pp.7764-7769, 1998.

A. Dakhlaoui, M. Jendoubi, L. S. Smiri, A. Kanaev, and N. Jouini, Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology, J. Cryst. Growth, vol.311, pp.3989-3996, 2009.

L. Poul, S. Ammar, N. Jouini, F. Fievet, and F. Villain, Metastable solid solutions in the system ZnO-CoO: Synthesis by hydrolysis in polyol medium and study of the morphological characteristics, Solid State Sci, vol.3, pp.31-42, 2001.

F. Geinguenaud, I. Souissi, R. Fagard, Y. Lalatonne, and L. Motte, Easily Controlled Grafting of Oligonucleotides on gamma Fe 2 O 3 Nanoparticles: Physicochemical Characterization of DNA Organization and Biological Activity Studies, J. Phys. Chem. B, vol.118, pp.1535-1544, 2014.

P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang et al., Facile Synthesis of ZnFe 2 O 4 Nanoparticles with Tunable Magnetic and Sensing Properties, Langmuir, vol.29, pp.8997-9003, 2013.

C. Yao, Q. Zeng, G. F. Goya, T. Torres, J. Liu et al., ZnFe 2 O 4 nanocrystals: Synthesis and magnetic properties, J. Phys. Chem. C, vol.111, pp.12274-12278, 2007.

S. Richard, M. Boucher, A. Saric, A. Herbet, Y. Lalatonne et al., Optimization of pegylated iron oxide nanoplatforms for antibody coupling and bio-targeting, J. Mater. Chem. B, vol.5, pp.2896-2907, 2017.

D. L. Thorek, A. K. Chen, J. Czupryna, and A. Tsourkas, Superparamagnetic iron oxide nanoparticle probes for molecular imaging, Ann. Biomed. Eng, vol.34, pp.23-38, 2006.

N. Chan, M. Laprise-pelletier, P. Chevallier, A. Bianchi, M. A. Fortin et al., Multidentate block-copolymer-stabilized ultrasmall superparamagnetic iron oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging, Biomacromolecules, vol.15, pp.2146-2156, 2014.

M. F. Casula, P. Floris, C. Innocenti, A. Lascialfari, M. Marinone et al., Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids, Chem. Mater, vol.22, pp.1739-1748, 2010.

B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park et al., Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents, J. Am. Chem. Soc, vol.133, pp.12624-12631, 2011.

U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, and H. Weller, A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles, Nano Lett, vol.9, pp.4434-4440, 2009.

G. Wang, X. Zhang, A. Skallberg, Y. Liu, Z. Hu et al., One-step synthesis of water-dispersible ultra-small Fe 3 O 4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging, Nanoscale, vol.6, pp.2953-2963, 2014.

S. M. Hoque, M. S. Hossain, S. Choudhury, S. Akhter, and F. Hyder, Synthesis and characterization of ZnFe 2 O 4 nanoparticles and its biomedical applications, Mater. Lett, vol.162, pp.60-63, 2016.

J. Wan, X. Jiang, H. Li, and K. Chen, Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents, J. Mater. Chem, vol.22, pp.13500-13505, 2012.

A. Banerjee, B. Blasiak, E. Pasquier, B. Tomanek, and S. Trudel, Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T2 contrast agents for high-field MRI, vol.7, pp.38125-38134, 2017.

S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara et al., Optical Properties of ZnO Nanoparticles Capped with Polymers, Materials, vol.4, pp.1132-1143, 2011.

A. K. Srivastava, M. Deepa, N. Bahadur, and M. S. Goyat, Influence of Fe doping on nanostructures and photoluminescence of sol-gel derived ZnO, Mater. Chem. Phys, vol.114, pp.194-198, 2009.

E. G. Bylander, Surface effects on the low-energy cathodoluminescence of zinc oxide, J. Appl. Phys, vol.49, pp.1188-1196, 1978.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., A comprehensive review of ZnO materials and devices, J. Appl. Phys, vol.98, pp.41301-041403, 2005.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt et al., Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys, vol.79, pp.7983-7990, 1996.

S. Tachikawa, A. Noguchi, M. Hara, O. Odawara, and H. Wada, Structures and optical properties of ZnO nanoparticiles capped with polyethylene glycol, J. Ceram. Process. Res, vol.12, pp.215-219, 2011.

T. Pandiyarajan and B. Karthikeyan, Optical properties of annealing induced post growth ZnO:ZnFe 2 O 4 nanocomposites, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.106, pp.247-252, 2013.

E. Oh, S. H. Jung, K. H. Lee, S. H. Jeong, S. Yu et al., Vertically aligned Fe-doped ZnO nanorod arrays by ultrasonic irradiation and their photoluminescence properties, Mater. Lett, vol.62, pp.3456-3458, 2008.

B. J. Jin, S. Im, and S. Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films, vol.366, pp.107-110, 2000.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Sample Availability: Samples of the compounds are not available. © 2019 by the authors. Licensee MDPI