
PArallel, Robust, Interface Simulator (PARIS)

W. Aniszewskia, T. Arrufata, M. Crialesi-Espositob, S. Dabiric, D. Fustera, Y. Linga,d, J. Luf, L. Malana,e, S. Pala, R. Scardovellig,
G. Tryggvasonf, P. Yeckoh, S. Zaleskia

aSorbonne Université & CNRS, UMR 7190,
Institut Jean Le Rond d’Alembert, F-75005, Paris, France

bCMT-Motores Térmicos, Universitat Politécnica de Valéncia, Camino de Vera, s/n, Edificio 6D, Valencia, Spain
cMechanical Engineering, Purdue University, West Lafayette, IN, USA

dMechanical Engineering, Baylor University, Waco, TX 76706, USA
eMechanical Engineering, University of Cape Town, South Africa

fMechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
gDIN - Lab. di Montecuccolino, Università di Bologna, I-40136 Bologna, Italy

hCooper Union, New York City, USA

Abstract

Paris (PArallel, Robust, Interface Simulator) is a finite volume code for simulations of immiscible multi fluid or multiphase
flows. It is based on the “one-fluid” formulation of the Navier-Stokes equations where different fluids are treated as one material
with variable properties, and surface tension is added as a singular interface force. The fluid equations are solved on a regular
structured staggered grid using a second-order explicit projection method. The interface separating the different fluids is tracked
either using a Front-Tracking (FT) method where the interface is represented by connected marker points, or by a volume of fluid
(VOF) method where the marker function is advected directly on the fixed grid. Paris is written in Fortran95/2002 and parallelized
using MPI and domain decomposition. It is based on several earlier FT or VOF codes such as FTC3D, Surfer or Gerris. These
codes and similar ones, as well as PARIS, have been used to simulate a wide range of multifluid and multiphase flows.

Keywords: Multiphase Flows, Multi Fluid Flows, Navier-Stokes equations, Front Tracking, Volume of Fluid, Surface Tension

PROGRAM SUMMARY
Program Title: PArallel Robust Interface Simulator — Paris
Licensing provisions: GPLv3.
Programming language: Fortran95/2002. Parallelized using MPI and
domain decomposition.
Nature of problem:
Paris is a free code, or software, for the computational fluid dynam-
ics (CFD) of multiphase flows, or computational multiphase fluid dy-
namics (CMFD), typically simulations of interfacial fluid flow, such
as droplets, bubbles or waves as described in the book by Tryggva-
son, Scardovelli and Zaleski [1]. It solves the Euler or Navier-Stokes
equations in the one-fluid formulation of two-phase flow, with constant
surface tension. It computes complex flows such as fast atomizing jets
or droplets, expanding cavitation bubble clusters and multiphase flow
through porous media
Solution method:
The code mostly implements the methods described in the book by
Tryggvason, Scardovelli and Zaleski [1]. Time stepping is performed
using a simple second order in time predictor corrector method with
an explicit projection for the pressure. Spatial discretisation is by fi-
nite volumes on a regular cuboid grid. Interface tracking is performed
with either the Volume-Of-Fluid (VOF) or the Front-Tracking method.
In the VOF version Paris uses either the Lagrangian Explicit advection
method or the exactly mass conserving method of Weymouth and Yue
[2]. The normal computation is performed using the Mixed Youngs
Centered (MYC). A momentum-conserving advection method is im-
plemented that is exactly consistent with Volume-Of-Fluid advection
[3]. Curvature is computed with the Height-Function (HF) method.
This is combined with the Balanced Continuous Surface Force (CSF)

method to compute surface tension forces. Paris has a Lagrangian
Point Particle and a Free Surface option.
Additional comments
Paris is extended from or inspired by the following codes:

• FTC3D2011 (Front Tracking Code for 3D simulations) by Gretar
Tryggvason and Sadegh Dabiri

• Surfer VOF code by Stephane Zaleski, Jie Li, Ruben Scardovelli
and others.

• Gerris Flow Solver by Stephane Popinet

[1] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct Numerical Simula-
tions of Gas-Liquid Multiphase Flows. Cambridge University Press, 2011.

[2] G. D. Weymouth and Dick K. P. Yue. Conservative Volume-of-Fluid
method for free-surface simulations on Cartesian-grids. Journal of Com-
putational Physics, 229(8):2853–2865, April 2010.

[3] D. Fuster, T. Arrufat, M. Crialesi-Esposito, Y. Ling, L. Malan, S. Pal,
R. Scardovelli, G. Tryggvason and S. Zaleski, A momentum-conserving,
consistent, volume-of-fluid method for incompressible flow on staggered
grids, arXiv preprint arXiv:1811.12327.

1. Introduction

Computations of the unsteady motion of multi fluid flows,
where two or more immiscible fluids or thermodynamic phases
flow while separated by sharp interfaces, date back to the ear-
liest days of computational fluid dynamics (see [1, 2] for re-
views). However, early simulations were restricted to relatively

Preprint submitted to Computer Physics Communications April 26, 2019

small and idealized problems. As computer power has contin-
ued to grow, it has been increasingly possible to conduct Di-
rect Numerical Simulations (DNS), defined as fully resolved
and verified simulation of a validated system of equations that
include non-trivial length and time scales. While such simula-
tions are becoming increasingly common, most research groups
need to devote considerable time to code development. For new
groups, the need to develop a suitable simulation tool can be a
significant barrier to entry. As a result, several of the authors
have been involved in the development of several free codes
such as Surfer [3], Gerris [4], Basilisk [5] and Paris [6]. In
particular Paris is a free code that is intended to be relatively
simple to use and modify, yet have sufficient capabilities so that
it allows state-of-the-art studies of typical problems. Moroever
it illustrates most of the methods described in [2]. (The latter
book will be denoted “TSZ” in what follows to simplify cita-
tions.) In what follows we will often refer to “TSZ” for devel-
opments about the numerical methods.

2. Navier–Stokes equations with interfaces

2.1. Basic equations
In three-dimensional space, the locus of the interface is a

smooth surface S which separates the two fluid phases. Ac-
cordingly, we consider that the interface is an object of zero
thickness. This latter assumption constitutes the “sharp inter-
face” approximation. In this approximation, the phases are im-
plicitly located by a Heaviside function χ(x, t) defined such that
fluid 1 corresponds to χ = 1 and fluid 2 to χ = 0. Viscosity and
density µ and ρ are space and time dependent and given by

µ = µ1χ + µ2(1 − χ) , ρ = ρ1χ + ρ2(1 − χ) . (1)

In the case with no phase change, mass conservation implies
that the interface advances at the speed of the flow, that is

VS = u(x, t) · n (2)

where u(x, t) is the local fluid velocity and n a unit normal vec-
tor perpendicular to the interface. Equivalently this condition
on the interface motion can be expressed, in weak form, as

∂tχ + u · ∇χ = 0 , (3)

which expresses the fact that the singularity of χ, located on
S , moves at velocity VS = u · n. We refer the reader to the
litterature, in particular TSZ, for additional developments on
interface geometry.

For incompressible flows, which we will consider in what
follows, we have

∇ · u = 0 . (4)

The Navier–Stokes equations for incompressible, Newtonian
flow with surface tension may conveniently be written in ei-
ther conservative form, expressing the momentum balance, or
in a non conservative form. The first form, using operators for
notational simplicity is

∂t(ρu) = L1(ρ,u) − ∇p (5)

where L1 = Lcons + Ldiff + Lcap + Lext so that the operator
L1 is the sum of a conservative momentum transport term, and
diffusive, capillary force and external force terms. The first two
terms are

Lcons = −∇ · (ρuu) , Ldiff = ∇ · D , (6)

where D is a stress tensor whose expression for incompressible
flow is

D = µ
[
∇u + (∇u)T

]
, (7)

where µ is computed from χ using (1). The capillary term is

Lcap = σκδS n + ∇SσδS , κ = 1/R1 + 1/R2 , (8)

where σ is the (possibly non-constant) surface tension, n is the
unit normal perpendicular to the interface, κ is the sum of the
principal curvatures and δS is a Dirac distribution concentrated
on the interface. We assume a constant surface tension value σ.
Finally Lext represents external forces. When the external force
is gravity Lext = ρg.

The second, non-conservative form, is

∂tu = L2(ρ,u) −
1
ρ
∇p (9)

where L2 = Ladv + 1
ρ
(Ldiff +Lcap +Lext). The first term is

Ladv(u) = −∇ · (uu) = −(u · ∇)u, (10)

and the other terms are already defined above.

2.2. Boundary conditions

A major difficulty with numerical simulations of fluid flow is
the correct implementation of the boundary conditions. In prin-
ciple the conditions at boundaries are well defined. For viscous,
incompressible fluids we require that the fluid sticks to the wall
so the fluid velocity there is equal to the wall velocity

u = Uwall.

In a numerical setup, we can also impose periodic boundary
conditions, as well as inflow or outflow conditions (see TSZ).

2.3. Free-surface flow

Free-surface flow is a limiting case of flow with interfaces,
in which the treatment of one of the phases is simplified. For
instance, for some cases of air-water flow, we may consider the
pressure p in the air to depend only on time and not on space
(through, say, some function pair(t)) and the viscous stresses in
the air to be negligible. The jump conditions become boundary
conditions on the border of the liquid domain:

(−p + 2µn · D · n)|S = pair + σκ (11)

and
µ t(k) · D · n

∣∣∣
S = t(k) · ∇Sσ. (12)

for k = 1, 2, where t(1,2) are two independent tangent vectors.

2

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

fig1.pdf

Figure 1: Representation of the staggered spatial discretisation. The pressure
p is assumed to be known at the center of the control volume outlined by a
thick solid line. The horizontal velocity component u1 = u is stored in the
middle of the left and right edges of this control volume and the vertical velocity
component u2 = v in the middle of the top and bottom edges.

3. Numerical methods implemented in the code

3.1. Spatial discretization

We assume a regular cuboid grid. A cuboid grid can be de-
fined as a cubic grid stretched independently in the x, y and z
directions, so that the centers of the cells Ωi, j,k are given by the
interesection set of planes x = xi, y = y j, z = zk and the cell
boundaries are contained in the set of planes x = xi+1/2, y =

y j+1/2, z = zk+1/2. However in multiphase flow only the Front
part of Paris can use stretched coordinates, and the VOF part
uses cubic grids. We also use staggered velocity and pressure
grids.

The staggered grid is represented in Figure 1. We use a fi-
nite volume discretisation of the advection equation. The cor-
responding control volumes of the velocity components um in
direction m are shifted with respect to the control volume Ωi, j,k

surrounding the pressure p. The use of staggered control vol-
umes has the advantage of suppressing neutral modes often ob-
served in collocated methods but leads to more complex dis-
cretizations (see [2] for a more detailed discussion.) The con-
trol volumes for u1 and u2 are shown on Figure 2. This type of
staggered representation is easily generalized to three dimen-
sions. In what follows we shall use these control volumes for
the velocity or momentum components.

Using the staggered grid leads to a compact expression for
the continuity equation (4)

u1;i+1/2, j,k − u1;i−1/2, j,k

∆x
+

u2;i, j+1/2,k − u2;i, j−1/2,k

∆y

+
u3;i, j,k+1/2 − u3;i, j,k−1/2

∆z
= 0, (13)

In what follows, we shall use the notation f = m±, with the
integer index m = 1, 2, 3, to note the face of any control volume
located in the positive or negative Cartesian direction m, and n f

for the normal vector of face f pointing outwards of the control
volume. On a cubic grid the spatial step is ∆x = ∆y = ∆z = h

u-velocity

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

fig2a.pdf

(a)

v-velocity

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

fig2b.pdf

(b)

Figure 2: The control volumes for the u1 = u and the u2 = v velocity com-
ponents are displaced half a grid cell to the right (horizontal velocities) and to
the top (vertical velocities). Here the indices show the location of the stored
quantities. Thus, half indices indicate those variables stored at the edges of the
pressure control volumes.

3

so the continuity equation becomes

∇h · u =

3∑
m=1

(um+ + um−)/h = 0 , (14)

where u f = um± = u · n f is the velocity normal to face f .
The discretization of the interface location is performed using a
VOF method. VOF methods typically attempt to solve approx-
imately equation (3) which involves the Heaviside function χ,
whose integral in the cell Ωi, j,k defines the volume fraction Ci, j,k

from the relation

h3 Ci, j,k =

∫
Ωi, j,k

χdx . (15)

Ci, j,k represents the fraction of the cell labelled by i, j, k filled
with fluid 1, taken to be the reference fluid. It is worth noting
that in the staggered grid setup, the control volume for p is also
the control volume for other scalar quantities, such as ρ and χ.

3.2. Time Marching

Time marching can be performed in a first-order or second-
order manner using a small, possibliy variable time step τ so
that tn+1 = tn + τ. We first consider the first order time step-
ping. The interface is advanced in time as follows. In the Front-
Tracking case, we implement eq. (2). The front points xk are
moved as

xn+1
k = xn

k + τui(xn
k , tn) (16)

where ui(x, tn) is an interpolation of the velocity field at the
location x (see Section 3.3 for the definition of the front points).
In the Volume-Of-Fluid (VOF) case the fraction field is updated
as

Cn+1 = LVOF(Cn,unτ/h) , (17)

where LVOF represents the operator that updates the Volume of
Fluid data given the velocity field, described in detail in Sec-
tion 3.4. Once volume fraction is updated, the velocity field is
updated in several steps. A projection method is first used, in
which a provisional velocity field u∗ is computed. Two differ-
ent versions are used. One is the “non-momentum conserving”
version

u∗ = un + τLh
adv(un) (18)

+
τ

ρn+1

[
Lh

diff(µn+1,un) +Lh
cap(Cn+1) +Lh

ext(C
n+1)

]
,

the other is a “momentum-conserving” version

ρn+1u∗ = ρnun + τLh
cons(ρ

n,un) (19)

+ τ
[
Lh

diff(µn+1,un) +Lh
cap(Cn+1) +Lh

ext(C
n+1)

]
.

Clearly the above operators depend on the discretization steps
τ and h as well as the fluid parameters. The “momentum-
conserving” Lh

cons operator is described in detail in [7]. In a
second step the pressure gradient corrects the velocity

un+1 = u∗ −
τ

ρn+1∇
h p . (20)

This constitutes the so-called projection method. The pressure
is determined by the requirement that the velocity at the end of
the time step must have zero divergence

∇h · un+1 = 0 , (21)

which leads to an elliptic equation for the pressure

∇h ·
τ

ρn+1∇
h p = ∇h · u∗ . (22)

The whole set of operations above constitutes a first-order in
time approximation, which can be written

(fn+1,un+1) = L(fn,un) (23)

where fn is the interface data at tn (either the front points x or
the VOF fraction C) and L is the operator consisting in the steps
described above. A second-order time scheme can be obtained
as a first prediction

(f∗∗,u∗∗) = L(fn,un) (24)

followed by the average

(fn+1,un+1) =
1
2

[
L(f∗∗,u∗∗) + (f∗∗,u∗∗)

]
(25)

The Paris code implements both the first-order time scheme
and the second-order one above, controlled by the parameter
ITIME SCHEME.

3.2.1. Simple, non-conservative momentum advection
The non-conservative momentum advection (9) amounts to

integrate over one time step the PDE

∂tuk = Ladv,k(u) (26)

where
Ladv,k = u j∂ juk (27)

for each value of the index k. Because of incompressiblity (4)
it is equivalent to solve for a scalar field φ = uk in the manner

∂tφ + ∇ · (φu) = 0 (28)

Integrating the advection equation over a control volume cen-
tered on a node of the scalar φ and integrating in time one ob-
tains

φn+1
i, j,k − φ

n
i, j,k = −

∑
faces f

F(φ)
f . (29)

We use F(φ)
f = φ f u f · n f τ/h as an approximation of the flux on

face f . Let u f = u f · n f . At first order u f is obtained by simple
averaging. For example if we consider the first component of
velocity φ = u1 = u, whose control volume is centered on i +

1/2, j, k (see Figure 2) and the normal to the face is oriented in
the x direction, the face is located at index i + 1, j, k. We have
u f = u1,i, j,k = 1

2 (u1,i−1/2, j,k + u1,i+1/2, j,k). If on the other hand
the normal to the face is oriented in the y direction, the face is
located at index i + 1/2, j + 1/2, k we have u f = u2,i+1/2, j+1/2,k =
1
2 (u2,i, j+1/2,k + u2,i+1, j+1/2,k).

4

Contrary to the estimates of u f above, the estimation of φ f

may involve more complex and higher-order schemes. Indeed
one-dimensional interpolation schemes incorporating flux lim-
iters are typically used. Most of these schemes are described
in TSZ together with their usage in computing the face fluxes
in the bulk. We describe their general properties here shortly.
Since the schemes are one-dimensional we can consider a vari-
able φ defined on a regular one-dimensional grid. Specializ-
ing further the example consider that the variable φ, akin to the
component u, takes values φi+1/2 at half-integer grid point in-
dexes. We need to estimate the flux at integer index points xi

and we thus need to predict φi = φ f . An interpolation function
is defined that predicts this value as a function of the four near-
est points, and in an upwind manner based on the sign of u f ,
given by centered interpolations. The face value φi is approxi-
mately given by

φi = f (φi−3/2, φi−1/2, φi+1/2, φi+3/2, ui) (30)

where the function f is both of sufficiently high order and limits
the flux. To express the function f , Paris offers a choice of the
ENO, QUICK, Superbee, WENO, first-order upwind, Verstap-
pen, or BCG schemes.

When momentum is advected in the “simple” method, φ in
equation (29) is taken equal to one of the velocity components
uk. This method is available whether one uses the VOF method
or the Front-Tracking method.

3.2.2. Conservative, VOF-consistent momentum advection
When using VOF, another momentum advection method is

available that is consistent with VOF advection and which im-
plements a conservative scheme of the form (20). This means
that the same advection method is used near the interface for the
VOF color function C and for the velocity u. In other words,
when there is a density jump on the interface, the discontinu-
ity of ρu is advected exactly at the same velocity as the dis-
continuity of u. This can be expressed by saying that the mo-
mentum advection and the VOF advection are consistent. An
explicitly formulated criterion for consistency is the following:
if the velocity u is uniform, then ρu remains exactly propor-
tional to ρ. This should happen even while ρ is obtained from
the VOF- advection of C using (1) and (17) and ρu is obtained
from the operator Lh

cons. Such a “VOF-consistent” method is
used since it has been empirically found by several authors that
the simple advection in the previous section was often unstable
at large density ratios, while consistent methods are more stable
[8, 9, 10, 11, 12, 13, 14, 15].

The Paris code implements a modification of the classical
momentum-preserving scheme proposed by [16] for the case
of a staggered grid and Volume of Fluid (VOF) method. It
is described in detail in [7]. The scheme needs to be modi-
fied from the one in the previous section only near the inter-
face. Away from the interface, the density is constant and the
scheme in (29) is already conservative. The scheme in the code
comes with a set of choices for the flux limiters away from the
interface which is the same as in the previous section (ENO,
QUICK, Superbee, WENO, first-order upwind, Verstappen, or

BCG schemes) and a different set of flux limiters near the in-
terface which are chosen among ENO, Superbee, WENO and
first-order upwind. It was found (see ref. [7]) that the most sta-
ble scheme is the combination of the CIAM method with the
superbee flux limiter.

3.2.3. Implicitation of the viscous terms
The operator Lh

diff(µn+1,un) may be treated in part implicitly.
We have

Ldiff,j(µ,u) = (∂iµ)(∂iu j + ∂ jui) + µ∇2u j (31)

The first term on the RHS is left explicit but the second term
can be made implicit by solving the linear problem

u∗j = un
j + τµn+1∇h,2u∗j . (32)

Then the discrete operator is defined as

τLh
diff,j(µ

n+1,un) = (∂iµ
n+1)(∂iun

j + ∂ jun
i) + u∗j − un

j (33)

where u∗j is the solution of the linear problem (32). The implic-
itation of the viscous terms is optional and controlled by a code
parameter.

3.3. Front-Tracking
Interface tracking in the code can be performed either by

Front Tracking or by the Volume-Of-Fluid method. We de-
scribe the former in this Section. Front-Tracking, in the con-
text of simulations of two or more immiscible fluids, refers to
tracking the interface separating the different fluids using mov-
ing connected marker points that represent the interface. In our
implementation the marker points are connected by triangular
elements, where the points are ordered in the same way for all
elements, allowing us to define an “inside” and an “outside” for
each element. The coordinates of the points are stored in ar-
rays, in arbitrary order, with separate integer arrays providing
pointers to the previous and next points. Thus, the points form
a linked list where the location in the array provides each point
with a unique ID. The elements are stored in the same way, with
arrays containing pointers to the corner or node points. The co-
ordinates of the marker points are the main quantities stored for
the points, but the points also have arrays for various tempo-
rary quantities, such as velocities and the surface force. The
marker points and the elements connecting the points together
form the “front.” In addition to pointers to their corner points,
the elements also have pointers to the elements that share edges
with them. These are mostly used for modifications, or recon-
struction, of the front. Notice that generally only one front is
needed, irrespectively of the number of distinct interfaces, and
that distinct interfaces, such as in a simulations containing sev-
eral bubbles and drops, for example, can have different material
properties, such as surface tension. Figure 3 shows the layout
of a triangulated front separating two different fluids.

As the front is deformed, stretched and compressed by the
flow, the size of the elements change as points move away from,
or closer to, each other. We keep the length of the edges of each
elements within about a quarter to a half of the grid spacings

5

Figure 3: An interface separating two immiscible fluids represented by marker
points connected by triangular elements.

of the fluid grid, and to maintain that resolution, points and el-
ements are dynamically added and deleted. While many strate-
gies are possible, we add points by splitting the longest edge of
an element by adding one point and two elements, and delete
points by collapsing the shortest edge of an element, removing
one point and two elements. The grid quality can sometimes
also be improved by changing the connectivity of the elements
but we generally find that doing so is not necessary. The addi-
tion and deletion of front points and elements is shown in Figure
4.

3.3.1. Connecting the front and the fluid grid

Since the Navier-Stokes equations are solved on a fixed grid,
we have two grids: the front/interface grid and the fixed grid.
Since the motion of the interface depends on the flow and the
flow depends on where the interface is, information must be
passed back and forth between the front and the fixed fluid
grid. To do so we need to identify what front point is close to
which fixed grid point and vice versa. For a regular structured
grid, where the grid lines are straight and evenly spaced, it is
straightforward to locate a point on the fixed grid that is closest
to a given front point (using an INT or a MOD function), but
finding the front point closest to a given grid point generally re-
quires us to examine the distance to all the front points. Thus,
it is more efficient to do all communications between the front
and the fixed volume grid by looping over the front points. For
periodic domains we allow the front to move out of the domain
resolved by the fixed fluid grid, and use a MOD function to find
the fixed grid point that would be closest to a given front point
if we moved the front back into the original domain.

To transfer information between the fixed fluid grid and the
moving front, we need to interpolate information from the grid
and spread, or “smooth,” information from the front to the fixed
grid. To move the front we need the velocity at the front points
and those are interpolated from the fixed grid. On a staggered
grid each velocity component is interpolated separately. In gen-

Figure 4: Restructuring of a triangulated grid by adding and deleting points and
elements.

eral, we have:
φl

f =
∑
i jk

wl
i, j,kφ(i, j, k). (34)

Here, φl
f is a quantity, such as the velocity, on the front at point

l, φ(i, j, k) is the same quantity on the fluid grid, wl
i, j,k is the

weight of each grid point with respect to front point l and the
sum is over grid points “close” to the front points. Generally
the same time integration method is used for the advection of
the points as is used for updating the fluid velocities.

The transfer of information, such as surface tension, from the
front to the fluid grid is usually referred to as smoothing, since
doing so replaces a quantity defined on a sharp interface, at a
front point, with a distribution on the fixed grid, where each
fixed grid point receives a value according to how close it is
to the front point. Unlike the interpolation of a quantity such
as the velocity from the fixed grid to a front point, smoothing
usually involves quantities like a force, that are given in terms of
force per unit interface area on the front but must be converted
to force per unit volume on the fixed grid, so that the total force
is conserved. Thus, the quantity smoothed must be scaled by
the ratio of the area associated with each front point divided by
the volume of a fixed grid cell :

φ(i, j, k) =
∑

l

φl
f w

l
i, j,k

∆sl

∆x∆y∆z
, (35)

where ∆s is a surface area of a front element and ∆x, ∆y and ∆z
are the grid spacings.

Several interpolation/smoothing functions can be used, but
in the PARIS code we use a smoother interpolation function
originally introduced in [17] which involves four grid points in
each coordinate direction, or 64 points total. The weights are
given by

wl
i, j,k = d(rx)d(ry)d(rz), (36)

where rx is the scaled distance (by the grid spacing) between xl
f

and the grid line located at xi. ry and rz are defined in the same
way. In our case, r is given by

d(r) =

{
(1/4)(1 + cos(πr/2)), |r| < 2,
0, |r| ≥ 2. (37)

6

Using fewer points gives a sharper transition zone but some-
times leads to wiggles, particularly for stiff problems. The in-
terpolation function is bounded with weights that sum to one in
addition to having various desirable symmetry properties. For
a discussion see the reference above.

3.3.2. Constructing the marker function
Once the front has been moved, a marker function must be

constructed on the fixed grid to assign the different material
properties to each grid point. This can be done in many differ-
ent ways, but one of the consideration is that fronts that are so
close to each other that the flow between them is not resolved,
must be handled in a plausible way. Usually this means that
the marker function must retain its correct value on both sides
of the double front. In the PARIS code we do this by working
with the gradient of the marker function, which in the limit of
a sharp interface should be a delta function defined only on the
interface. The delta function is then treated in the same way
as the surface tension and smoothed onto the fixed grid. Once
the gradient has been smoothed onto the fixed grid, we can in-
tegrate to recover the marker function. For a staggered grid, for
example

Ii, j,k = Ii−1, j,k +
(∂I
∂x

)
i−1/2, j,k

∆x. (38)

To maintain symmetry, the marker at a given point is con-
structed as the average of the integration from all the neighbor-
ing points, leading to a linear system that is solved iteratively.
Using standard second order centered finite difference approxi-
mations, the linear system is an approximation to

∇2I = ∇ · (∇I) f , (39)

where the subscript on the gradient of I on the right hand side
means that it comes from the front. Since the right hand side is
known (it is deduced from the position of the front through (38)
this equation amounts to the Poisson equation

∇2I = ∇ ·G f . (40)

which must be solved to find I for a given G f . In the current
version this equation is solved for the entire grid, but this can
easily be changed to involve only grid points next to the in-
terface, where the value of the marker function changes as the
front moves. Integrating the gradient of the marker function on
the fixed grid is, of course, only one way to construct it. We
have, however, found that doing so generally leads to a smooth
but compact transition from one fluid to the other. In addition,
since the gradients of two interfaces bounding a very thin film
cancel each other when transferred to the fixed grid, the marker
there will “disappear.” This seems like the proper way to treat
films too thin to be resolved on the fixed grid.

3.3.3. Surface Tension
In simulations of flows with sharp interfaces the front serves

two main functions. The first is the advection of the marker
function, as described above, and the second is the computation
of the surface tension described below. As with most of the

fronttracking

x0

x1
x2

x01 x02Δs1 Δs2

xc

ne

p1 p2

Figure 5: Computation of the surface force on a triangulated grid by integrating
over the edges of an element.

other operations for the front, finding the surface force can be
done in several different ways. In the PARIS code we compute
the force on the front and transfer it to the fixed fluid grid, where
it is added to the discrete Navier-Stokes equations.

To ensure that the force is conserved as we transfer it from
the front and onto the fixed volume grid, we work with the to-
tal force on a small area. The total force on a small region
surrounding a front point is computed by dividing each front
element into three equal parts, each connected to one nodal
point, and computing the pull on their side as described below.
The force from each part is then added to the appropriate nodal
point. When the surface force on all the elements has been
computed, it is transferred to the fixed grid and converted into a
force per unit volume by (35). Working with the total force on
a surface element, rather than the force per area, makes it eas-
ier to ensure the total force is conserved when it is transferred
between the front and the fixed volume grid.

To find the surface force we use the fact that the total force
on a surface element can be found by integrating the “pull” on
its edges.

fσ =

∮
δA
σmdl. (41)

Here m is a unit vector that is tangent to the interface and
perpendicular to the boundary of the interface element and by
keeping the surface tension coefficient σ under the integral sign
we allow for variable surface tension. The benefit of using this
expression is that we only need to approximate tangents on the
surface—not the curvature—and that the pull on the side of one
surface element is equal and opposite to the pull on the adjacent
element. Thus, the surface force is conserved in the sense that
an integral over a surface patch consisting of several surface el-
ements is guarantied to give the same results as an integral over
the boundaries of the whole patch. For constant surface tension
coefficient, the integral over a closed surface is, in particular,
guaranteed to be zero.

Figure 5 shows schematically how the integration is done.

7

We assume that the elements are flat and that surface tension,
given at the front points, can be non-constant. It therefore has
to be interpolated when approximating the integral. The force
at point x0 is computed as the “pull” on the edges of the gray
patch, surrounding it. The contribution from the element con-
necting points x0, x1 and x2 is found by first splitting it in three
by connecting the centroid xc = (1/3)(x0 + x1 + x2) to the mid
points of the edges x01 = (1/2)(x0 +x1) and x02 = (1/2)(x0 +x2)
and then finding the force on those edges by approximating the
integral using a mid-point rule

∆fσ ≈ σ1p1∆s1 + σ2p2∆s2. (42)

Here, the pull on each element is the cross product of the out-
ward unit normal, ne and tangent vector to the edge: ∆s1p1 =

ne × (x01 − xc) and ∆s2p2 = ne × (xc − x02), where ∆s1 and ∆s2
are the lengths of the edges, and σ1 and σ2 are the surface ten-
sions at the midpoint of the edges. The normal is found by the
normalized cross product of two of the tangent vectors to the
edges of the element. After straightforward algebra, we have

∆fσ ≈
ne

3
×

{
σ1

[
x2 −

1
2

(x1 + x0)
]
− σ2

[
x1 −

1
2

(x2 + x0)
]}
(43)

where the interpolated surface tension at the midpoint of the
edges is:

σ1 =
1
2

{
1
2

[σ(x0) + σ(x1)] +
1
3

[σ(x0) + σ(x1) + σ(x2)]
}

=
1

12
[5σ(x0) + 5σ(x1) + 2σ(x2)] (44)

and σ2 is given by a similar expression. The forces from the
other elements connected to point x0 are found in the same
way and added to give the total force on the point, that is then
“smoothed” onto the fixed grid.

3.4. Volume-Of-Fluid

When the interface location is tracked by the Volume-Of-
Fluid (VOF) method, a variable Ci, j,k is initialized. It is equal
to the fraction filled with fluid 1 of the cell Ωi, j,k. Thus fluid
1 is taken to be the reference fluid. Moreover we will use in
the section a rescaling of the space and time variables so that
the cell size is 1, and the time step is also 1. All velocities are
then rescaled to u′ = uτ/h. Because of this space rescaling and
in these new units, Ci, j,k is also the measure of the volume of
reference fluid in cell i, j, k.

3.4.1. Normal vector determination
The VOF method proceeds by a sequence of reconstructions

and advections of C. In the reconstruction step, one attempts
to find the interface geometry from Volume of Fluid data Ci, j,k.
In the Paris code we use already-published methods (see for
example TSZ) that have been experienced to work satisfacto-
rily. One first determines the interface normal vector n, then
one solves the problem of finding a plane perpendicular to n
under which one finds exactly the volume Ci, j,k. In Paris , two

methods exist for normal vector determination. The most fre-
quently used is the Mixed-Youngs-Centered Scheme (MYCS)
described in TSZ. However, when a quick determination of the
normal is needed and accuracy is not needed, the finite differ-
ence method n = ∇hC, (the Youngs scheme) is also used.

3.4.2. Plane constant determination
Once the the interface normal vector n is determined, a new,

colinear normal vector noted m and having unit “box” norm is
deduced from n, that is ||m||1 = |mx| + |my| + |mz| = 1. Consid-
ering the volume V = Ci, j,k in cell i, j, k the plane constant α is
defined so that the plane

m · x = α (45)

cuts exactly a volume V of the plane. The origin of the coor-
dinate system is taken at the corner of cubic cell i, j, k with the
smallest coordinate values. The reader is reminded that we used
rescaled units of space, so that 0 ≤ V ≤ 1 and 0 ≤ α ≤ 1.
Then α is determined by the resolution of a cubic equation.
This resolution and similar one often used in VOF are imple-
mented in a kind of small library contained in the single file
vof functions.f90.

3.4.3. Volume initialisation
Before any VOF interface tracking is performed, the field of

Ci, j,k values must be initialized. The Paris code avoids inaccu-
rate initializations that for example initialize a sphere as a set
of Ci, j,k values which are all 0 or 1, a so called “staircase” or
“lego” initialization. There are two ways in which initialization
can be improved over the lego one. In the “subgrid” initiali-
sation, the mesh cells are subdvivided into n3

I subcells (where
nI is a tunable parameter, called REFINEMENT in the code).
Then a “lego” initialization is performed trivially in the sub-
cells. For example, if the initial interface is defined implicitly
by the equation φ(x) = 0 where φ is a smooth implicit function
(akin to a level-set function) then the trivial “lego” initializa-
tion is cI = χ[φ(x)] in the subcells where χ is the Heaviside
function. The standard cell value Ci, j,k is then determined by a
summation over the subcells. In tests it was found that nI = 8
was sufficient. However nI ≥ 8 leads to a very large number of
evaluations of the function φ and a slow initialization. In order
to avoid this, the Paris code may be linked to the Vofi library
described in [18] and [19]. Then the initialization is performed
using high accuracy numerical integration of the measure of the
fluid volumes implicitly defined by the equation φ(x) < 0. The
code needs to be linked to the VOFi library [19] with the shell
variable HAVE VOFI set before compilation.

3.4.4. General split-direction advection
Once the reconstruction has been performed at time tn, it

is used to obtain the approximate position of the interface,
and the volumes Ci, j,k at time tn+1. The Paris code contains
two advection methods, which can be selected by the user:
Lagrangian Explicit (LE) with the keyword VOF ADVECT =
LE or Weymouth and Yue (WY) advection with the keyword

8

VOF ADVECT = WY. The LE advection is also called “Cal-
cul d’Interface Affine par Morceaux” (CIAM) which is french
for “Piecewise Linear Interface Calculation” (PLIC) but PLIC
refers to generic VOF methods with a piecewise linear recon-
struction step, while CIAM refers to a specific type of advec-
tion method first described in the archival literature in [20] and
classified as the “LE” method in [21]. The main advantage of
both LE and WY is that they avoid overshoots (Ci, j,k > 1) and
undershoots (Ci, j,k < 0). Moreover WY conserves mass to ma-
chine accuracy. These methods are described in detail in TSZ
for LE/CIAM and in [22] for WY. The reader may also refer to
[7] for a condensed description of both methods.

An important operation in Volume-Of-Fluid advection is
“clipping”. A small parameter εc is defeind for the purpose of
clipping. After advection, all cells that have Ci, j,k < ε are set to
0 and all cells that have Ci, j,k > 1 − ε are set to 1. This removes
some, but not all, of the wisps, floatsam and jetsam of the VOF
method. In the current version of the code the default value is
εc = 10−8. This is a rather high value and the code has been
observed to function well with εc = 10−8 (see also [7]).

3.5. Surface Tension in Volume-Of-Fluid
3.5.1. CSF method

For simplicity, we consider only the case whereσ is constant.
In the Continuous Surface Force (CSF) method the capillary
force σκnδS given in (8) is

−σκ∇χ = −σκh∇hC. (46)

where we have used the properties of the Heaviside function χ.
One of the advantages of this formulation is that it is a “well-
balanced” method (see TSZ, Chapter 7 or reference [23]).

An approximation for κ needs to be found to use the CSF
method. A good estimate is obtained using so-called height
functions.

3.5.2. Height Functions
We give some details about height functions since it is a rel-

atively novel aspect of the code. Height functions were intro-
duced in [24] and further discussed, tested and improved in sev-
eral papers [25, 26]. A height function is a function on the dis-
crete grid that gives the vertical elevation of the interface. The
use of height functions greatly improves the accuracy of VOF
methods since it allows us to neglect small inconsistencies in
the VOF representation. On one hand a small VOF floatsam
in a cell has only a very small influence on the height-function
calculation. On the other hand if taken as an indication of the
presence of this interface in the given cell it would create a large
error on the interface location (Figure 6a). With high resolution
height functions can also yield the position of the interface to
fourth-order accuracy [25]. We consider for simplicity the case
of an approximately horizontal interface (aligned with the x, y
plane). A simple height function, rescaled by the grid size h,
may be defined as

H =

p=k0+nc∑
p=k0

Ci, j,p. (47)

Figure 6: (a) A small floatsam F in a cell away from the interface is negligible
when height functions are used to determine the location of the interface. On
the other hand requiring the interface to pass near each centroid Ci has a large
effect. A small inconsistency such as near point I is also ignored by the height
function. (b) Two cases where the height function expression (47) is appropriate
with four cells (nc = 3, see text). For more vertical lines or larger curvatures the
line exits the 4×1 stencil through the top and bottom and the HF method cannot
be used.(c) To check the validity of a the HF calculation one needs to have one
full cell (C = 1) below and one empty cell (C = 0) above, or the converse.

and is illustrated on Figure 6b. Such a height function is de-
fined for “vertical” heights and with reference to a base at point
O at the base of the bottom cell on Figure 6b. More general
cases, with arbitrary orientation of the interface, are considered
in Appendix A.

With height functions, the computation of the curvature may
be performed by reconstructing a polynomial approximation for
the height. To illustrate we take again the case of an approxi-
mately horizontal interface. Then we fit the height by

H(x, y) =
a1

2
x2 +

a2

2
y2 + a3xy + a4x + a5y + a6 (48)

where the coefficients are computed using finite differences
from the heights given in eq. (A.3). The curvature is then

κ = ε
a1(1 + a2

5) + a2(1 + a2
4) − 2a3a4a5

(1 + a2
4 + a2

5)3/2
(49)

where ε = 1 if the interface is in the “canonical” position (nor-
mal pointing upwards). The above method is possible only if, in
the x, y plane, all nine heights are available. If they are not, fall-
back methods are used, details of which are given in Appendix
A.

The performance of our method for the computation of cur-
vature is shown in Figures 7 and 8. The error was computed for
a collection of diameter-to-cell-size ratios D/h. For each value
of D/h the error computation was repeated for an ensemble of
N sphere centers located randomly. The L∞ norm for a given
sphere center is the maximum difference between the sphere
curvature and the numerically obtained curvature. The error re-
ported on the Figures is the maximum L∞ error for the whole
ensemble of N spheres. We checked that the error varies little
when N is increased above 16, and the standard test case for
curvature distributed with the code uses this value of N. The
differences between the error norms obtained for Basilisk and
Paris are discussed in Appendix A.

9

 0.001

 0.01

 0.1

 1

 10

 1 10 100

C
ur
va
tu
re

 m
ax

 r
el
at
iv
e
L
in
f e
rr
or

 in
 2
D

Grid points per Diameter

4 x-2
Basilisk

ParisSimulator

Figure 7: Maximum L∞ error norm in two dimensions for the curvature esti-
mated for a cylinder using the height function method in Paris and Basilisk .
The mixed-height option is set in both codes.

 0.001

 0.01

 0.1

 1

 10

 1 10 100

C
ur
va
tu
re

 m
ax

 r
el
at
iv
e
Li
nf

 e
rr
or

 in
 3
D

Grid points per Diameter

4/(x*x)
Basilisk

ParisSimulator

Figure 8: Maximum L∞ error norm in three dimensions for the curvature esti-
mated for a sphere using the height function method in Paris and Basilisk . The
mixed-height option is set in both codes.

3.6. Pressure solver

3.6.1. In-code Gauss-Seidel solver
The default Poisson solver used to invert the elliptic operators

appearing in eqs. (22) and (32) is a red-black Gauss-Seidel (GS)
solver with overrelaxation [27]. The coefficients are arbitrary
for a discrete operator of the form

A1,i, j,k pi−1, j,k + A2,i, j,k pi+1, j,k + A3,i, j,k pi, j−1,k

+A4,i, j,k pi, j+1,k + A5,i, j,k pi, j,k−1 + A6,i, j,k pi, j,k+1

−A7,i, j,k pi, j,k = A8,i, j,k (50)

The coefficients verify

A7,i, j,k =

6∑
p=1

Ap,i, j,k (51)

A2,i, j,k = A1,i+1, j,k (52)
A4,i, j,k = A3,i, j+1,k (53)
A6,i, j,k = A5,i, j,k+1 (54)

(55)

and are constructed by interpolations of 1/ρ (for 22) or µ (for
the implicitation of the momentum diffusion). The GS solver
iterates the assignment

pi, j,k ← (1 − β) pi, j,k +
β

A7,i, j,k

(
A1,i, j,k pi−1, j,k

+ A2,i, j,k pi+1, j,k + A3,i, j,k pi, j−1,k + A4,i, j,k pi, j+1,k

+ A5,i, j,k pi, j,k+1 + A6,i, j,k pi, j,k−1 − A8,i, j,k

)
(56)

where β is an overrelaxation parameter that can be set by the
user. A value of β = 1.3 is typically used.

3.6.2. HYPRE Library Multigrid solver
The HYPRE library, developed by the Lawrence Livermore

National Laboratory (LLNL), is also an option to solve the el-
liptic equations with multigrid iterative methods. Since a struc-
tured grid is used in Paris , multiple solvers in the HYPRE li-
brary can be used. The SMG and PFMG multigrid solvers have
been implemented in the code and used for large-scale simula-
tions using up to 64,536 cores. Both SMG and PFMG are paral-
lel semicoarsening multigrid solvers. The difference lies in that
the SMG solver uses plane smoothing while the PFMG solver
uses pointwise smoothing. The plane-smoothing feature makes
the SMG solver more robust but less efficient. Furthermore, the
scaling performance of the PFMG solver is much better than
the SMG solver, since the smoothing step only involves a local
stencil.

In order to take advantage of the higher efficiency of PFMG
and the robustness of SMG, a solution strategy has been imple-
mented in the code. The PFMG solver is used by default, if
the iteration diverges or fails to converge within the maximum
iteration number, then the code will switch to the SMG solver
and redo the iteration. If the iteration converges, then the code
will switch back to PFMG for the next time step. For a large-
scale simulation that runs for a long time, this strategy has been
shown to achieve a good performance, balancing robustness and
efficiency.

The HYPRE library, at least in the versions we use, appears
to control the tolerance on the residual using the L1 norm. The
code thus recomputes the residual norms and controls the accu-
racy using a norm of the residual chosen by the user among L1,
L2 and L∞.

3.6.3. In-code Multigrid solver
The code has also a native implementation of a multigrid

solver for structured grids with 2n number of points per direc-
tion. In particular the V-Cycle scheme is implemented and fully

10

parallelized [27]. Relaxation operations are applied starting
from the finest to the coarsest first, and then from the coars-
est to the finest, the number of relaxation operation being a
user-adjustable parameter. One advantage of having a native
multigrid solver is that it allows for an efficient solution of the
Poisson equation without the necessity of having external li-
braries (HYPRE) installed in the system. Especially when run-
ning heavy three dimensional simulations in parallel the use of
this native solver has been shown advantageous in some sys-
tems with respect to HYPRE in terms of memory manipula-
tion.

3.6.4. GPU-accelerated solver
A GPU based solver is also available for solving the Pois-

son equation when a significant number of iterations is required
to achieve convergence. The pressure is solved using a Jacobi
method for equation (56). The need for the Jacobi method in-
stead of a Gauss-Seidel arises because of the intrinsic nature of
GPU devices. The usual domain decomposition parallelization
allows the implementation of the iterative step by using a simple
for loop over the indexes i, j, k. The sequentiality of the indexes
cannot be achieved on GPU devices, as in this case each index
combination is ideally computed simultaneously. In this sense,
the larger number of iterations required by the Jacobi method is
mitigated by the speed-up provided by GPUs.

The memory handling is a critical aspect in GPUs applica-
tions and it is even more critical in DNS. Although a Jacobi
method intrinsically requires doubling the memory usage for
the matrix p, it also enables the leanest data transfer between
CPUs and GPUs, which is also a critical aspect of normal
CUDA applications. A Gauss-Seidel red-black solver is in prin-
ciple possible and beneficial for certain applications. In fact, let
us assume that the size of the matrix p is Np = nxnynz, the nor-
mal implementation of a red-black Gauss-Seidel solver would
be

for all Ωi, j,k cells of ”red” type do
compute pi, j,k using (56)

end for
for all Ωi, j,k cells of ”black” type do

compute pi, j,k using (56)
end for
check convergence

which inherently reduces the memory usage required. On the
other hand, the first for loop is not parallelizable in an efficient
way in CUDA. Therefore, such an algorithm would be benefi-
cial from a memory standpoint, but would improve the compu-
tational time only if Np is at least 4 times greater than the num-
ber of GPU process available. As it is usually not the case, the
beneficial effects of a red-black algorithm are limited, although
it will be object of future studies.

The implementation of the algorithm is achieved by means
of the open-source CUDA library for C developed by NVIDIA,
while the intercommunication between processors is still
achieved by using MPI. For this reason, an interface between
Fortran90 and C is created in module CUDA.f90. By passing
through the interface, each process transfers the matrices A and

p to the C/CUDA environment (in poissonCUDA.cu) where the
iteration step is performed. The boundary conditions, as well as
the MPI communication, are enforced in the environment that
originally created the MPI communication, hence these func-
tions are programmed in cudaFun.f90.

3.6.5. Free surface pressure solver
A free-surface flow solver is implemented in Paris , which is

designed to apply a free-surface condition as described in 2.3
for inviscid flows. For viscous cases, the stress free interface
condition in (12) is not ensured, therefore the implementation
is limited to inviscid cases. The free-surface solver uses the
VOF method in Paris to track the interface. The flow is then
solved in one phase (χ = 0) using the same numerical meth-
ods as described previously. For the purpose of description the
solved phase will be called liquid and the unsolved phase will
be gas. The only difference between the free-surface solver and
the standard one–fluid VOF approach is that the gas phase is not
solved. Instead, it is assumed to have a fixed pressure that can
only vary in time. The time variation in pressure is determined
using a polytropic gas law

pc = p0

(
V0

Vc

)γ
, (57)

where Vc is the total volume of gas pocket at pressure pc. p0 and
V0 are respectively the reference pressure and volume of the gas
phase, γ is the heat capacity ratio. The gas phase pressure along
with the pressure jump due to surface tension is then applied
as a Dirichlet boundary condition for the pressure in the liquid
flow, as given in (11).

The method used to apply this pressure boundary condition is
inspired by the idea of Fedkiw and Kang [28, 29], often referred
to as the ghost fluid method. Let the time-varying pressure in
the unsolved phase be pc. Special care is required in the dis-
cretization of (22) for liquid cells near the interface. Cells that
contain mostly gas are excluded from the solution, so that only
cells where C < 0.5 are solved (here the convention is to have
C = 0 in the liquid). Fig. 9 shows a representation of a 2D grid
with a section of an interface. The grey area represents a gas-
filled volume. Cells that contain a filled circle are included in
the pressure solution, while cells without a marker are excluded.
Since only the liquid phase is solved, only the liquid density is
applied. Furthermore, for cubic cells ∆x = ∆y = ∆z = h, where
h is the constant grid spacing.

The stencil for the pressure gradient components has to be
changed near the interface when a neighbouring cell falls in-
side the gas phase. This cell’s pressure must be substituted by a
surface pressure. We apply a finite difference gradient approach
as Chan [30]. As an example, the approximation for the pres-
sure gradient components for the cell with indices i and j in Fig.
10 is written

∇h
x pi+1/2, j =

ps,i+1, j − pi, j

δi+1/2, j
; ∇h

y pi, j−1/2 =
pi, j − ps,i, j−1

δi, j−1/2
,

(58)
where δ is the distance between the pressure node under con-
sideration and the intersection with the interface. The pressure

11

Figure 9: A 2D section of the numerical grid, showing part of a gas bubble
in grey. Circles represent computational cell nodes where pressure is calcu-
lated. Triangles indicate scalar velocity components on the computational cell
faces. Filled triangles indicate values which are found by solving the governing
equations, while unfilled triangles represent boundary values found by extrap-
olation.

pi, jpi−1, j

ps,i, j−1

pi, j+1

δi, j−1/2 δi+1/2, j

ps,i+1, j

Figure 10: Discretisation of the pressure equation near the interface

ps on the liquid side of the interface is found by adding to pc

the Laplace pressure jump. The pressure pc inside each cavity
is known from the polytropic law (57). The interface pressure
in the x-direction will then be

ps,i+1, j = pc,i+1, j + σ
κi, j + κi+1, j

2
. (59)

From (59) and (58) it is clear that accurate interface curvature
as well as an accurate prediction of the interface location are
important parameters to ensure the accuracy of the pressure so-
lution. Since the height function is the approximate interface
distance from some reference cell in a given direction, it is used
for δ. When the interface configuration is such that a height
cannot be obtained in the required direction, the distance is ap-
proximated by using a plane reconstruction of the interface in
the staggered volume.

Extrapolation of the velocity field. The resolved velocity com-
ponents right next to the interface will require neighbours in the
gas phase to discretize the momentum advection term. These
values in the gas phase can be seen as boundary values to the
resolved velocities. In order to find neighbours in the gas phase,
we extrapolate the resolved velocities similarly to Popinet [31].

After calculating the liquid velocities using standard methods
in Paris , the boundary velocities in the gas phase are updated
for the next time step from the closest two velocity neighbours
using a linear least square fit. Let’s assume the velocity field
can be described as a linear combination

u (x) = A · (x − x0) + u0 (60)

where the components of the tensor A and of the vector u0 are
the unknowns.
If we now take a 5 × 5 stencil around the unknown gas veloc-
ity at location x0, we can find the extrapolated velocity u0 by
minimizing the functional

L =

N∑
k=1

∣∣∣A · (x − x0) + u0 − uk

∣∣∣2 (61)

This is done first for all locations closest to the resolved ve-
locities uk (“first neighbours”), whereafter the process is re-
peated for the “second neighbours”. Note that only resolved
velocity components are included in the cost function, there-
fore the number of solved velocities N can vary depending on
the shape of the interface. Furthermore, because of the stag-
gered grid, only one velocity component of u0 is computed at
any location x0.

Ensuring volume conservation. The extrapolation of liquid ve-
locities into the gas phase was explained in the previous section.
An additional step is required to ensure that the extrapolated ve-
locities are divergence free. This is required to ensure that the
advection of C is conservative.

A similar approach to Sussman [32] is used. Only the first
two layers of cells inside the gas phase are considered and all
other cells are disregarded. A 2D example is presented in Fig.
11. Similar to the projection step explained earlier, a “phantom”

12

Liquid

Gas

Figure 11: 2D example of the problem to correct the extrapolated velocities
(unfilled triangles). A Poisson problem is solved in the cells marked with an
unfilled circle.

pressure is obtained in these cells by solving a Poisson equation

∇h·

(
∇hP̂

)
= ∇h·ũ , (62)

where P̂ is the “phantom” pressure and ũ is the velocity on the
faces of the first two gas neighbours. P̂ is only calculated in the
cells represented by unfilled nodes in Fig. 11. On the liquid
side of these cells, the solved velocities (filled triangles) are
used as a velocity boundary condition with the pressure gradient
on this face set to zero. On the gas side outside the cells we
consider (red filled circles), a fixed pressure is prescribed. Only
the extrapolated velocities (unfilled triangles) are then corrected
by the solved pressure gradient, ∇P̂

ũn+1 = ũ − ∇hP̂ (63)

to ensure non-divergence of velocity in the first two layers of
cells just inside the gas.

For more details on the numerical method and its application
in idealized micro-spall, see [33] and [34].

3.7. Solid boundaries
Solids are defined in a “block” or “Lego” manner. A

domain-wide binary flag si, j,k is defined that is equal to 0
inside the solid and 1 outside. A set of link-based flags
sx, sy and sz is also defined (a link-based array is data lo-
cated on the velocity component collocation points such as
i + 1/2, j, k). The following pseudo code is executed at ini-
tialisation:

for all i, j, k do
sx

i+1/2, j,k ← si, j,k

sx
i−1/2, j,k ← si, j,k

(same for y, z directions)
end for

The indexes sx, sy and sz are then used to “block” the ve-
locity and the pressure correction on the solid region and
its boundary. This is done each time the velocity is up-
dated:

for all i, j, k do
ui+1/2, j,k ← si, j,kui+1/2, j,k

(same for v,w components)
end for

The pressure correction should not change the velocity, so on
the links a Neuman boundary condition for the pressure is es-
tablished, which is equivalent to setting to zero some coeffi-
cients:

for all i, j, k do
A1,i, j,k ← sx

i−1/2, j,kA1,i, j,k
A2,i, j,k ← sx

i+1/2, j,kA2,i, j,k
(same for A3, A4 and sy, and for A5, A6 and sz)
A7,i, j,k ←

∑6
p=1 Ap,i, j,k

end for
The solid domain can be initialized by implicit functions or by
loading a file containing the si, j,k data. In both cases it is im-
portant that the presence of the solid does not make the lin-
ear system (22) ill-posed. This will happen for example if the
boundary conditions are Dirichlet for the velocity at the entry of
a channel and the solid completely blocks the channel. There is
thus a small utility program “rockread.c”, distributed with the
code, that checks that the fluid “percolates”.

4. Testing

The testing of the code is performed automatically. The short
version of testing is done by typing make test, the long ver-
sion by typing make longtest. The short version takes ap-
proximately 5 minutes on a laptop with an i7 processor and
the long version takes approximately 25 minutes. All the re-
sulting tests give a report of “PASS” or “FAIL”. Each test is
contained in a subdirectory of the Test directory. The subdirec-
tory corresponding to a test has a self-explanatory name, e.g.
PresPoiseuille for the pressure-driven Poiseuille flow.

The tests can be divided into two categories, elementary tests
which are basically sanity checks verifying that the code is not
corrupted and finds elementary flows easily, and more complex
test that are in some cases a verification of the code, comparing
it to analytical solutions. However, the verification has not been
pushed very far, since the code is an assembly of methods that
have been tested extensively elsewhere, see for example TSZ
for a review of these tests. The more recent methods such as
the “momentum-conserving” option for velocity advection, has
been tested extensively in [7] although several test cases of the
method exist and will be described below.

4.1. Elementary tests
4.1.1. Poiseuille flow

An elementary Poiseuille flow [35] is tested. The simulation
is set up in a 8 × 8 × 2 grid in which the system reduces to a
2D planar flow in the box (0, 1) × (0, 1). The parameters are
‖∇p‖ = µ = ρ = 1. The boundary conditions are set pressure
on the left and right. The simulation is continued until the flow
becomes stationnary, which happens with 10−3 accuracy around
time 1. This time is reached in 1000 time steps. The explicit
version of viscous diffusion is used.

This test passes if the numerical segments are tangent to the
theoretical profile as seen in Figure 12. Because the Poiseuille

13

flow profile is quadratic, second order finite differences offer ex-
act values for the second derivative of velocity, which ensures
that the profile found is exactly a parabola. The accuracy of the
amplitude of that parabola is set by the quality of the approxi-
mation of the u = 0 (solid wall) boundary condition. Since that
is set at first order, there is a small O(h2) difference with the
exact parabola.

The bottom wall tangential velocity boundary condition is
u = 0 on y = 0. Since the wall is at yi,1/2, the boundary con-
dition is written using a ghost velocity at yi,−1/2 that satisfies
ughost

i,−1/2 + ui,1/2 = 2uwall. The boundary condition is thus imple-
mented by writing in a “ghost layer” of the grid

ughost
i,−1/2 ← 2uwall − ui,1/2. (64)

The result is shown on Figure 12. It is also possible to run the

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1

Figure 12: Poiseuille flow test case.

Poiseuille flow test in other manners, with set inflow velocity
for example. It is also possible to run it with the implicit version
of viscous diffusion, in which case the flow converges in a few
time steps.

4.1.2. Stokes flow around a disk
A pressure driven flow around a disk of diameter 1/2, with

the other parameters as before, is set and left to evolve until
steady state. The advection operator Ladv is turned off which
ensures that the steady state is a Stokes flow. The explicit ver-
sion of the viscous terms is used. The test resides in the test
directory PresDisk. If the implicit version is used, convergence
to the steady state can be faster but an error of order τ affects the
solution. The result is shown on Figure 13. There are two other
similar tests beyond this first one. In the second one, located

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 13: Stokes flow around a disk test case.

in the directory Disk, the flow is driven by a body force akin to
gravity in the test directory instead of being driven by pressure.
This second test is still with periodic boundary conditions. The
third test has inflow and outflow conditions and is located in the
test directory Inflowdisk.

4.1.3. Droplet advection
This is an elementary test to check whether the VOF method

is operating normally. The final state of the field Ci, j,k is com-
pared to a precomputed value. The test has to be visualized
“by hand” by the user, with the help of graphics software such
as Visit or Paraview. One should see an underformed droplet
move accross the domain.

4.1.4. Cylinder advection
This is a more sophisticated test that probes the “momentum-

conserving” option. The test is described in detail in [7]. If
the velocity field stays uniform and constant and as a result the
droplet is advected undeformed, it means that momentum ρu
and density ρ are advected in lock-step, so that the operation
ρu/ρ, at each time step, gives the constant u.

4.1.5. Speed
This is not so much a test as a report on the code speed. How-

ever a significant drop of the code speed would be a serious
issue.

4.2. Capillary wave

In this section we present results of the oscillation of planar
capillary waves between two viscous fluids with equal density
and viscosity in the presence of surface tension. The interface
between the two fluids is slightly perturbed with a sinusoidal
function of small amplitude a0 and the initial velocity is set to

14

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0 5 10 15 20 25

no
rm
al
iz
ed

 a
m
pl
itu
de

 a
(t
)/
λ

time

Simulation
Reference

Figure 14: Comparison of the temporal evolution of the amplitude of the inter-
face perturbation obtained numerically and the analytical initial-value solution
by [36].

N = λ/h 8 16 32 64 128
Gerris 0.159 0.032 0.0077 0.0022 5.5 10−4

Basilisk 0.139 0.024 0.0069 0.0024 4.8 10−4

Paris 0.050 0.023 0.0054 0.0015 4.1 10−4

Table 1: Relative L2 error of the numerical solution for capillary waves for var-
ious codes and numbers of grid points N per wavelength. The errors estimated
by the codes have been rounded to the nearest digit. Results for Gerris are from
the website http://gfs.sf.net, not from the paper [24]. Results for Basilisk, ob-
tained by the authors from the code published on the website http://basilisk.fr,
are similar.

zero. The solution of this problem is governed by the Laplace
number which is La = σρλ/µ2 = 3000, where λ is the wave-
length of the sinusoidal function. Simulation are performed in a
box of dimensions Lx = λ and Ly. The results are compared to
the analytical initial-value solution (AIVS) obtained in [36, 37]
for small-amplitude capillary waves in viscous fluids. In the
AIVS the aspect ratio Ly/Lx should be sufficiently large (at least
2) and the initial capillary wave amplitude a0 sufficiently small.
Moreover the time step τ and the tolerance of the solvers should
be at convergence. We have checked that all these four param-
eters were at convergence for fixed h. We then look at the de-
pendance of the remaining error on h. Figure 14 compares the
temporal evolution of the amplitude of the interface perturba-
tion with the AIVS.

To analyze the methods, the relative L2 error norm of the dif-
ference between the numerical and the AIVS solution is com-
puted. The results, depicted in Table 1 and Figure 15 show sec-
ond order convergence for coarse grids. For very refined grids,
when the error is below 1%, the accuracy on the solution is con-
trolled by the initial amplitude of the wave. In the case of the

 0.0001

 0.001

 0.01

 0.1

 10 100

2nd order
Basilisk
Paris
Gerris

Figure 15: Relative L2 error of the numerical solution as a function of the
number of grid points per wavelength N = λ/h for the capillary wave.

D µl µg ρl ρg σ
(m) (kg m−1s−1) (kg m−1s−1) (kg m−3) (kg m−3) (kg s−2)

3 10−3 10−3 1.7 10−5 103 1.2 0.0728

Table 2: Physical parameters (defined in the text) for the oscillating droplet.

resolution λ/h = 128, instead of a 0.01 amplitude as in [24], a
0.005 amplitude had to be used to match the AIVS.

4.3. Oscillating droplets and bubbles

A droplet with a large density ratio is initialized with a small
ellipsoidal deformation. The droplet has air-water properties
described in Tables 2 and 3. The initial shape, when tracked
with the Front, is shown in Figure 16. This test is not designed
to assess the accuracy of the code, since the methods used in
the code have already been used and tested elsewhere (see for
example [38] for a oscillating droplet test with Volume of Fluid
methods and [39, 40] for similar tests with Front Tracking. It
should however be noted that in all of these references the tests
are 2D, hence easier). We thus expect the accuracy to be sim-
ilar to that of already published and tested codes using similar
curvature and surface tension methods. The purpose of the test
is rather to ensure that the code is working as expected, and

r m La
ρl/ρg µl/µg σρld/µ2

l
833.3 58.82 218400

Table 3: Dimensionless parameters for the oscillating droplet. La is the Laplace
number.

15

Figure 16: Initial ellipsoidal shape of the droplet or bubble with the Front.

to assess whether air water properties, which are often creating
stability problems, are in fact in the stable regime of the code.

Figure 17 shows the amplitude oscillations. It shows the am-
plitude oscillations in time for a Droplet of D/h = 19.2 grid
points per diameter and an initial excentricity of 0.75. The test
shown is run without the momentum conserving option, which
is here seen to be unnecessary for the stability, and with the
mixed-height option discussed in Section Appendix A.3. The
reference solution plotted alongside the test simulation result is
obtained from the same VOF simulation at the larger resolution
D/h = 38.4. Satisfying agreement is found.

Note that when this test is run automatically in the test suite,
the reference solution stored in the Test/Droplet directory has
been obtained by our code running in the same conditions, a
device frequently used in several test cases in the code test
suite. That way, one tests that the behavior of the code has
not changed drastically, but not that the code (original version
and current version) is correct.

We test the Front-Tracking part of the scheme by simulating
the same droplet with the Front. Results are shown on Figure
18. the reference solution is obtained from the VOF simulation
at larger resolution, with D/h = 38.4 grid points. Satisfying
agreement is found.

We repeat these tests by just inverting the phases, thus initial-
izing an air bubble inside water. The physical and the numerical
parameters (such as the scheme options) are the same as before.

Figure 19 shows the amplitude oscillations, reproducing the
results from the Bubble test case. It shows the kinetic energy
oscillations in time for a Bubble of D/h = 19.2 grid points per
diameter and an initial excentricity of 0.75. The kinetic energy
is used this time instead of the deformation amplitude. The
reference solution is again obtained from the VOF simulation at
larger resolution, with D/h = 38.4 grid points. There is again
good agreement.

We test again the Front-Tracking part of the scheme by sim-
ulating the same bubble with the Front. Results are shown on
Figure 20. In this case as in the previous one the reference solu-

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0 0.005 0.01 0.015 0.02 0.025

w
(0
,0
,R
)

time

Oscillating droplet simulation with VOF

D/∆x=38 reference simulation
D/∆x=19 test simulation

Figure 17: Amplitude of capillary oscillations of the Droplet test case.

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0 0.005 0.01 0.015 0.02 0.025

w
(0
,0
,R
)

time

Oscillating droplet simulation with Front

D/∆x=38 reference simulation
D/∆x=19 test simulation

Figure 18: Amplitude of capillary oscillations of the FrontDroplet test case.

16

 0

 5x10-9

 1x10-8

 1.5x10-8

 2x10-8

 2.5x10-8

 3x10-8

 0 0.005 0.01 0.015 0.02 0.025

E
k

time

Oscillating bubble simulation with VOF

D/∆x=38 reference simulation
D/∆x=19 test simulation

Figure 19: Kinetic Energy of capillary oscillations of the Bubble test case.

 0

 5x10-9

 1x10-8

 1.5x10-8

 2x10-8

 2.5x10-8

 3x10-8

 3.5x10-8

 0 0.005 0.01 0.015 0.02 0.025

E
k

time

Oscillating bubble simulation with Front

D/∆x=38 reference simulation
D/∆x=19 test simulation

Figure 20: Kinetic Energy of capillary oscillations of the FrontBubble test case.

µl µg ρl ρg

(kg m−1s−1) (kg m−1s−1) (kg m−3) (kg m−3)
1.0016 10−3 1.835 10−5 998.2 1.19

Table 4: Physical parameters for the raindrop test. Only the parameters that
differ from Table 2 are given.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.005 0.01 0.015 0.02

di
m
en
si
on
le
ss

 li
qu
id

 k
in
et
ic

 e
ne
rg
y

time

reference
E-k2

Figure 21: Kinetic Energy of a 3mm falling raindrop at low resolution D/∆x =

8.

tion is obtained from the VOF simulation with the same larger
resolution D/h = 38.4. The agreement is satisfying but a small
drift of the kinetic energy is observed.

4.4. Falling raindrop

This is an important test case, since it is very demanding for
several codes. A spherical raindrop is setup with a diameter
d =3mm and allowed to fall in air under gravity. The droplet
should remain approximately spherical, with a pancake or bun
like shape, but in many codes one finds this case difficult and
spurious atomisation of the droplet is seen. For an exemple with
the basilisk code see [41]. For details about the setup of the test
we refer the reader to [7]. The test is performed with the pa-
rameters of Table 4. Notice that these parameters differ slightly
from those of [7] as we input here the experimental values for
air and water at 20deg C. The grid resolution is low D/∆x = 8,
since the test is more demanding (it leads to a blowup of the
code more easily) for low resolutions. Figure 21 provides the
result of the Raindrop test in the code distribution. It is seen
that the solution deviates somewhat from the reference, how-
ever this is not worrisome since the flow is in a regime that is
very sensitive to parameters and initial conditions and any small
change in the code will create a deviation of the sort. The shape
of the droplet is shown in Figure 22.

17

Figure 22: Simulated shape of a 3mm falling raindrop at low resolution D/∆x =

8.

5. Installation and Usage

5.1. External Libraries
When solving elliptic equations, we may apply the Hypre

package’s [42] SMG, a semi-coarsening multigrid solver with
3D plane smoothing on structured, cuboid meshes, as men-
tioned in Section 3.6.2.

Installation of the static library versions (*.a files) of Hypre
is controlled via the Makefile. For example, for a Linux system,
this can be realized via the line

HYPRE_DIR = $(HOME)/some_path/hypre-2.10.0b/src/lib

in the Makefile. Note that the file libHYPRE.a is placed in
the directory HYPRE DIR. Consequently, the actual linking is
ensured by another Makefile line:

HYPRE_LIBS = -L$(HYPRE_DIR) -lHYPRE

which is specified in the default Paris distribution. Note that
the Hypre version used for the majority of Paris development
has been 2.10.1; it has been tested for stability in serial and
massively parallel runs [33]. In case of hypre-related problems,
fallback to v. 2.10 is recommended for debugging.

VOFI [18, 19] is a library of Volume-of-fluid related proce-
dures (see Section 3.4.3). It is an interesting option in cases
where initial conditions depend strongly on a very precise inter-
face geometry, e.g. Free Surface solutions of bubble dynamics
[34, 33] and initialisation takes time compared to computation
(as in the curvature test case). Linking of this library is per-
formed in the exact same fashion as in the case of Hypre. The
static library file is named libvofi.a, and the respective linker
switch is -lvofi.

Seeing as Hypre and Vofi are purely optional, compilation
without them is made easy. The user may set or unset the vari-
ables HAVE VOFI and HAVE HYPRE in his shell prior to com-
piling. If these variables are set the Makefile will attempt to
locate the corresponding libraries. If not the compilation with-
out the libraries proceeds. The fallback for Hypre is the built-in
Gauss-Seidel solver followed by the in-code Multigrid solver,

and the fallback for the Vofi are the built-in VOF initialization
procedures.

5.2. Output Files

Various output formats are available in the code: VTK, SILO,
and MPI I/O. While the VTK option generates ASCII files, the
latter two produce binary files. The output in SILO format is
done based on the SILO library developed by LLNL. For both
the VTK and SILO output options, the independent parallel ap-
proach is used, namely every MPI process generates a separate
file. This will become an issue for large-scale simulations using
a large number of MPI processes, since creating a large num-
ber of small files simultaneously may crash the indexing server.
An output option based on the MPI I/O library is implemented
in PARIS for large-scale simulations, which adopts, instead, a
cooperative parallel approach and creates a single file for each
variable for each output. A post-processing code was developed
in PARIS to convert the MPI I/O outputs and SILO files offline
for visualization. This code is available in the distribution as
the file util/post utility.f90 .

5.3. Input Files

Paris requires a set of input files (in text format) to initialize
and start the simulation. These files are:

• input - global and front-solver parameters.

• inputFS - Free Surface solver parameters (optional, Free
Surface simulations only).

• inputlpp - Lagrangian particle module parameters (op-
tional, implicitly requires two-phase flow, see ref. [43]).

• inputvof (optional, Volume of Fluid parameters, as above).

• inputsolids (optional, solid objects parameters).

All input files contain over 220 parameters, thus listing all of
them is not practical in this paper; instead we will only point
to general rules governing the use of these files. However the
reader may find the default values of these parameter in the
source code, usually just below the namelist instruction.

All the input lines contain the parameter specifications writ-
ten as “variable = value”, with values being reals, integers,
string or boolean (T/F). In most cases (in the code versions
distributed in main darcs tree) the variables are commented
Fortran-style, i.e. in the same line, following an exclamation
mark, for example:

MaxDt = 5.e-5 ! maximum size of time step

dtFlag = 2 ! 1: fixed dt; 2: fixed CFL

dt = 1.0e-4 ! dt in case of dtFlag=1

MAXERROR= 1.0d-6 ! Residual for Poisson solver

CFL = 0.042

It must be noted that the Paris source code uses the For-
tran namelist input type, consequences of that being that all
input files have “free format”, i.e. lines can change order or
be deleted. All variables are initialized to default values in the

18

source code. Thus, Paris will initialize with an empty input file
– however in such a case the simulation will be short. Indeed
by default Nx=0 (the grid has zero points in x direction) in or-
der to prevent simulations with some of the absurd input files
that could be selected by mistake. Thus a minimum input file
should contain at least a specification of Nx. For more demand-
ing simulations, beginner users are encouraged to familiarize
themselves with input file examples, such as templates found in
the Tests sub-directory in the distribution which can be copied
and modified to create new Paris cases. Note that in the Test
suite, input files are often generated from template files such as
inputfilename.template using shell scripts.

6. Acknowledgements

We thank Dr. V. Le Chenadec, Mr. C. Pairetti, Dr. S. Popinet
and Dr. S. Vincent for useful conversations on the topics of this
paper.

Portions of this work were supported by National Science
Foundation Grant CBET-1335913, by the ANR MODEMI
project (ANR-11-MONU-0011) program and by grant SU-
17-R-PER-26-MULTIBRANCH from Sorbonne Université.
This work was granted access to the HPC resources of
TGCC-CURIE, TGCC-IRENE and CINES-Occigen under the
allocations t20152b7325, t20162b7760, 2017tgcc0080 and
A0032B07760, made by GENCI and TGCC. The authors
would also like to acknowledge the MESU computing facilities
of Sorbonne Université. Finally, the simulation data are visu-
alized by the software VisIt developed by the Lawrence Liver-
more National Laboratory.

References

[1] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface
and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567–603.

[2] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations
of Gas-Liquid Multiphase Flows, Cambridge University Press, 2011.

[3] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling
merging and fragmentation in multiphase flows with SURFER, J. Com-
put. Phys. 113 (1994) 134–147.

[4] S. Popinet, The gerris flow solver, http://gfs.sf.net (2001-2014).
URL http://gfs.sf.net

[5] S. Popinet, Basilisk, a Free-Software program for the solution of partial
differential equations on adaptive Cartesian meshes (2018).
URL http://basilisk.fr

[6] S. Dabiri, D. Fuster, Y. S. Ling, L. Malan, R. Scardovelli, G. Tryg-
gvason, P. Yecko, S. Zaleski, PARIS Simulator Code: A PArallel
Robust Interface Simulator that combines VOF and Front-Tracking.,
http://parissimulator.sf.net (2012-2015).

[7] D. Fuster, T. Arrufat, M. Crialesi-Esposito, Y. Ling, L. Malan, S. Pal,
R. Scardovelli, G. Tryggvason, S. Zaleski, A momentum-conserving,
consistent, volume-of-fluid method for incompressible flow on staggered
grids, arXiv preprint arXiv:1811.12327.

[8] M. Bussmann, D. B. Kothe, J. M. Sicilian, Modeling high density ratio in-
compressible interfacial flows, in: ASME 2002 Joint US-European Fluids
Engineering Division Conference, American Society of Mechanical En-
gineers, 2002, pp. 707–713.

[9] O. Desjardins, V. Moureau, Methods for multiphase flows with high den-
sity ratio, Center for Turbulent Research, Summer Programm 2010 (2010)
313–322.

[10] M. Raessi, H. Pitsch, Consistent mass and momentum transport for simu-
lating incompressible interfacial flows with large density ratios using the
level set method, Computers & Fluids 63 (2012) 70–81.

[11] V. Le Chenadec, H. Pitsch, A monotonicity preserving conservative sharp
interface flow solver for high density ratio two-phase flows, J. Comput.
Phys. 249 (2013) 185–203.

[12] S. Ghods, M. Herrmann, A consistent rescaled momentum transport
method for simulating large density ratio incompressible multiphase flows
using level set methods, Physica Scripta 2013 (T155) (2013) 014050.

[13] G. Vaudor, T. Menard, W. Aniszewski, M. Doring, A. Berlemont, A
consistent mass and momentum flux computation method for two phase
flows. Application to atomization process, Computers & Fluids 152
(2017) 204–216.

[14] J. K. Patel, G. Natarajan, A novel consistent and well-balanced algorithm
for simulations of multiphase flows on unstructured grids, Journal of com-
putational physics 350 (2017) 207–236.

[15] N. Nangia, B. E. Griffith, N. A. Patankar, A. P. S. Bhalla, A robust in-
compressible navier-stokes solver for high density ratio multiphase flows,
Journal of Computational Physics.

[16] M. Rudman, A volume-tracking method for incompressible multi-fluid
flows with large density variations, Int. J. Numer. Meth. Fluids 28 (1998)
357–378.

[17] D. M. McQueen, C. S. Peskin, A three-dimensional computational
method for blood flow in the heart: (ii) contractile fibers, Journal of Com-
putational Physics 82 (1989) 289–297.

[18] S. Bnà, S. Manservisi, R. Scardovelli, P. Yecko, S. Zaleski, Numerical
integration of implicit functions for the initialization of the VOF function,
Computers & Fluids 113 (2015) 42–52.

[19] S. Bnà, S. Manservisi, R. Scardovelli, P. Yecko, S. Zaleski, Vofi — a
library to initialize the volume fraction scalar field, Computer Physics
Communications 200 (2016) 291–299.

[20] J. Li, Calcul d’interface affine par morceaux (piecewise linear interface
calculation), C. R. Acad. Sci. Paris, série IIb, (Paris) 320 (1995) 391–396.

[21] R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit
and split lagrangian-eulerian advection, Int J. Numer. Meth. Fluids 41
(2003) 251–274.

[22] G. D. Weymouth, D. K. P. Yue, Conservative Volume-of-Fluid method
for free-surface simulations on Cartesian-grids, J. Comput. Phys. 229 (8)
(2010) 2853–2865.

[23] S. Popinet, Numerical models of surface tension, Annual Review of Fluid
Mechanics 50 (2018) 49–75.

[24] S. Popinet, An accurate adaptive solver for surface-tension-driven inter-
facial flows, J. Comput. Phys. 228 (2009) 5838–5866.

[25] G. Bornia, A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, On
the properties and limitations of the height function method in two-
dimensional cartesian geometry, J. Comput. Phys. 230 (2011) 851–862.

[26] M. Owkes, O. Desjardins, A mesh-decoupled height function method for
computing interface curvature, J. Comput. Phys. 281 (2015) 285 – 300.
doi:http://dx.doi.org/10.1016/j.jcp.2014.10.036.
URL http://www.sciencedirect.com/science/article/pii/S0021999114007189

[27] W. L. Briggs, A multigrid tutorial, SIAM Philadelphia, 1987.
[28] R. P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory eulerian

approach to interfaces in multimaterial flows (the ghost fluid method),
Journal of computational physics 152 (2) (1999) 457–492.

[29] M. Kang, R. P. Fedkiw, X.-D. Liu, A boundary condition capturing
method for multiphase incompressible flow, Journal of Scientific Com-
puting 15 (3) (2000) 323–360.

[30] R. K. C. Chan, R. L. Street, A computer study of finite-amplitude water
waves, J. Comput. Phys. 6 (1970) 68–94.

[31] S. Popinet, S. Zaleski, Bubble collapse near a solid boundary: a numerical
study of the influence of viscosity, J. Fluid Mech. 464 (2002) 137–163.

[32] M. Sussman, A second order coupled level set and volume-of-fluid
method for computing growth and collapse of vapor bubbles, J. Comput.
Phys. 187 (2003) 110–136.

[33] W. Aniszewski, S. Zaleski, A. Llor, L. Malan, Numerical
simulations of pore isolation and competition in idealized
micro-spall process, International Journal of Multiphase Flow-
doi:https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.013.
URL http://www.sciencedirect.com/science/article/pii/S0301932218303082

[34] L. Malan, Y. Ling, R. Scardovelli, A. Llor, S. Zaleski, Direct nu-
merical simulations of pore competition in idealized micro-spall using
the VOF method, Computers & Fluids (submitted) also available as:
arXiv:1711.04561 [physics.flu-dyn].
URL arXiv:1711.04561 [physics.flu-dyn]

19

[35] P. Kundu, I. Cohen, D. Dowling, Fluid Mechanics, 891 pp, Elsevier, Am-
sterdam, 2012.

[36] A. Prosperetti, Motion of two superposed viscous fluids, Phys. Fluids 24
(1981) 1217–1223.

[37] F. Denner, G. Paré, S. Zaleski, Dispersion and viscous attenuation of cap-
illary waves with finite amplitude, The European Physical Journal Special
Topics 226 (6) (2017) 1229–1238.

[38] D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical
simulation of droplets, bubbles and waves: state of the art, Fluid Dyn.
Res. 41 (6) (2009) 065001.

[39] D. J. Torres, J. U. Brackbill, The Point-Set Method: Front-Tracking with-
out Connectivity, Journal of Computational Physics 165 (2) (2000) 620–
644.

[40] U. Olgac, D. Izbassarov, M. Muradoglu, Direct numerical simulation of
an oscillating droplet in partial contact with a substrate, Computers and
Fluids 77 (C) (2013) 152–158.

[41] C. Pairetti, S. Popinet, S. M. Damián, N. Nigro, S. Zaleski, Bag mode
breakup simulations of a single liquid droplet, 2018, 6th European
Conference on Computational Mechanics (ECCM 6)7th European
Conference on Computational Fluid Dynamics (ECFD 7)1115 June
2018, Glasgow, UK.
URL http://www.eccm-ecfd2018.org/admin/files/filePaper/p1694.pdf

[42] P. Sloot, C. Tan, J. Dongara, A. H. (Editors), Hypre: a library of high per-
formance preconditioners, in: Computational Science - ICCS, Springer-
Verlag, ICSS 2002, Berlin, 2002.

[43] Y. Ling, S. Zaleski, R. Scardovelli, Multiscale simulation of at-
omization with small droplets represented by a lagrangian point-
particle model, Int. J. Multiphase Flow 76 (2015) 122 – 143.
doi:http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.07.002.
URL http://www.sciencedirect.com/science/article/pii/S0301932215001524

[44] R. Scardovelli, S. Zaleski, Analytical relations connecting linear inter-
faces and volume fractions in rectangular grids, J. Comput. Phys. 164
(2000) 228–237.

Appendix A. Details of curvature computation from Height
Functions

Appendix A.1. Height computation
The height computation is performed as described in Sec-

tion 3.5.2. A more general definition than (47) is to consider
for each cell Ωi, j,k the possible existence of one of six height
functions defined with reference to a direction ea, 1 ≤ a ≤ 3,
where ea is one of the cartesian base vectors algined with the
grid, and an orientation ε = −sign, (ea · ∇C) (The minus sign
ensures that the canonical situation where the “fluid” C = 1 is
below the “air” C = 0 has ε = 1. It also corresponds to the
sign convention for the interface normal nδS = −∇χ). This
cell-and-orientation-dependent HF is defined as

H(a,+)
i, j,k =

∑
stencil S

Cl,m,n − Li, j,k (A.1)

where the sum is over all the cells in a “stencil” or “stack” S
centered on containing xi, j,k and oriented parallel to ea and for
the “positive” orientation ε. The distance Li, j,k is the distance
Li, j,k = ε(xi, j,k − xO) · ea from the base of the stack to the cell
center. When the orientation is ε = −1

H(a,−)
i, j,k =

∑
stencil S

(
1 −Cl,m,n

)
− Li, j,k (A.2)

and the distance Li, j,k is now with reference to an origin in di-
rection −ea from the cell. An example of stack is shown on
Figure 6(c). This height function can be computed whenever

the bottom cell and the top cell of the stack both do not contain
the interface, and the interface crosses only once the intermedi-
ate cells. This can be tested by requiring that that there are cells
with C = 0 and C = 1 at the top and bottom 6(c).

For a straight line interface the height function is exact. It is
interesting to see how many cells are needed in the stack S to
find the height for a straight line in 2D. The most “difficult” case
is the 45deg case. Thus, considering a cell crossed by the in-
terface, one seems to need to explore one cell above or one cell
below that cell. With the addition of the full and empty cells
this requires the exploration of two cells above and below the
starting cell. The total number of cells for a symmetric stencil
about the starting cell would thus be five, but the total number
of cells in a stencil maybe as low as four. However with even a
vanishing amount of curvature five cells in a symmetric stencil
are not sufficient and seven cells are needed. Thus one would
need to explore Nd = 3 cells above or below. In three dimen-
sions the most “dangerous” cases now have the plane normal
n = (1, 1, 1). A similar reasoning also leads to a height of seven
cells for the symmetric stencil in 3D. Note that the stencil does
not have to be symmetric, rather this is a accidental feature or
our implemention of the method.

For each cell, it is determined whether there is a full or empty
cell at a maximum distance Nd (the parameter NDEPTH in the
code) above or below the cell. The value NDEPTH=3 is hard
coded. In order to function in parallel, and since only two lay-
ers of celles are exchanged between MPI processes, the sum in
(47) is broken in two parts, one in each processor. Then the pro-
cesses exchange two informations, the “partial sums” so com-
puted, and the lengths Li, j,k in expression (A.1) allowing them
to reconstruct the full sum.

Appendix A.2. First pass, first attempt: full aligned heights

In the first pass, a loop is performed over all cells cut by the
interface. These are defined as cells that have 0 < Ci, j,k < 1.
In this first pass two attempts are made. The current cell Ω0
has grid coordinates i0, j0, k0. In the first attempt, the normal
n is estimated by MYCS. Then the grid direction ea closest to
the normal is determined (maximum of n.ea). Without loss of
generality consider the case a = 3 and consider the plane per-
pendicular to e3. This plane is then horizontal and it is the grid
plane most aligned with the interface. A 3 × 3 planar slate of
cells Σ0, aligned with this plane, is selected containing cells
Ωi, j,k0 such that i0 − 1 ≤ i ≤ i0 + 1 and j0 − 1 ≤ j ≤ j0 + 1.
For all these cells, either a height Hi, j is readily available, or is
searched in the above and below cells over two layers, that is
for k0 ± 1 and k0 ± 2. When all nine heights are available, the
coefficients of the polynomial (48) can be found using

a1 = ∂2
xxH ' H1,0 − 2H0,0 + H−1,0,

a2 = ∂2
yyH ' H0,1 − 2H0,0 + H0,−1,

a3 = ∂2
xyH ' (H1,1 − H−1,1 − H1,−1 + H−1,−1)/4,

a4 = ∂xH ' (H1,0 − H−1,0)/2,
a5 = ∂yH ' (H0,1 − H0,−1)/2.

20

Appendix A.3. First pass, second attempt: mixed heights
If the first attempt fails then a “mixed heights” approach

is used but only if the parameter MIXED HEIGHTS is set to
’T’. For every height H(a,ε)

i, j,k that has been calculated, a point

xa
i, j,k = H(a,ε)

i, j,k ea + xbeb + xcec is defined, where xb and xc are
the cell-central coordinates in the two directions other than ea.
Since there are six height directions, up to 54 points could be
computed. However, a general orientation is computed using
the MYCS normal and only the orientations compatible with
that orientation are retained, which yields 27 possible points.
With certain point configurations there is a risk of a degener-
ate case where the least-square linear operator is not invertible.
This happens in particular in the set of six points obtained with
combinations of x = 0, 1, y = −1, 0, 1, z = 0. All paraboloids of
the form z = x(1 − x) pass through these points. Other degen-
eracies are possible: points all on a circle will be fitted by in-
finitely many revolution paraboloids z′ = κ(x2 +y2)/2. To avoid
these degeneracies and after trial and error the minimum num-
ber of points requested is hardcoded as Ns =NFOUND MIN
+1= 7. In addition to these “mixed heights” points the cen-
troid of the VOF face in the current cell Ωi, j,k0 is added to the
set of points to fit. In some cases, different directions ea could
yield two close points in the same cell or in a neighboring cell.
Points which are closer than h/2 are rejected. In equations,
if ||xa

i, j,k − xb
l,m,n|| < h/2 then one of the two points is rejected.

Which point is rejected depends on the order in which points are
added to the stack, which in turn depends on the order in which
mixed heights are investigated, typically closest to the general
orientation etc. Before the fitting is performed, an approximate
normal is computed using the MYCS approach and the coordi-
nate system is rotated so that the z axis is now aligned with the
approximate normal. The rotation is optional and is controlled
by the parameter DO ROTATION. We found that performing
rotation had a certain positive influence on the accuracy of the
results, although it is not clear why.

By default the parameter MIXED HEIGHTS is set to ’T’
(true). This gives less accurate results in L1 norm for curvature,
but a smoother computation and as a result simulations appear
to be more stable for large density ratios when the momentum-
conserving scheme is not used. The results in Figure 7 are with
MIXED HEIGHTS=’F’ . With MIXED HEIGHTS=’T’ one ob-
tains the results of Figure A.23. The results without mixed
heights and those from Basilisk are added for comparison.
There is a difference remaining with the basilisk computations
than we have not yet been able to explain.

Appendix A.4. Averaging scheme
A new loop over all cells cut by the interface is started. If

both schemes above have failed in the current cell, an average
is performed over neighboring cells that have been succesful by
either method in the first pass. For each cell Ωi, j,k, the cubic set
of neighbors

Bi, j,k = {Ωl,m,n|i−1 ≤ l ≤ i+1, j−1 ≤ m ≤ j+1, k−1 ≤ n ≤ k+1}

is defined. If at least one of the cells in Bi, j,k has been succesful,
the resulting curvature in Ωi, j,k is the average curvature of these
succesful cells.

 0.001

 0.01

 0.1

 1

 10

 1 10 100

C
ur
va
tu
re

 m
ax

 r
el
at
iv
e
Li
nf

 e
rr
or

 in
 2
D

Grid points per Diameter

4 x-2
Basilisk

ParisSim mixed heights
ParisSim no mixed heights

Figure A.23: Maximum L∞ error norm in two dimensions for the curvature
estimated for a cylinder using the height function method in Paris and Gerris
. Two Paris results are shown, one with the mixed curvature option and one
without. Averaging is used in both cases. Using the mixed-cell option yields
less accurate results than not using it.

Appendix A.5. Second pass: centroid fit

A final loop on cells Ωi, j,k is performed. If all three heights
approaches above have failed or are not set to be used, then
one falls back to a fitting of centroids. In each cell of Bi, j,k

containing an interface, the cell centroid is computed using the
vof functions microlibrary included in the code (implementing
the method in [44]). Except for very small fragments, the in-
terface must find at least five neighboring cells in addition to
the current cell. This gives six points with which to fit the six
parameters in expression (48).

In some cases, the fit fails because the least-square linear op-
erator is not invertible. The code then reports in a statistical
manner these failures and flags the cell as having an uncom-
putable curvature. A zero surface tension force is then added to
the momentum.

Appendix A.6. Comparison with other implementations of
height-function curvature

The accuracy contrast when modifying the mixed-heights op-
tion is even more dramatic in 3D, see Figure A.24. There is a
striking drop in the L1 error near 13 grid points per diameter.
This drop is due to the averaging step in Appendix A.4. Sup-
pressing the averaging reverts the results to accuracies compa-
rable to those of Basilisk or slightly better.

21

 0.001

 0.01

 0.1

 1

 10

 1 10 100

C
ur
va
tu
re

 m
ax

 r
el
at
iv
e
Li
nf

 e
rr
or

 in
 3
D

Grid points per Diameter

4/(x*x)
Basilisk

ParisSim mixed heights
ParisSim no mixed heights

Figure A.24: Maximum L∞ error norm in three dimensions for the curvature
estimated for a sphere using the height function method in Paris and Basilisk
. Two Paris results are shown, one with the mixed curvature option and one
without. Averaging is used in both cases. Using the mixed-cell option yields
less accurate results than not using it.

22

