
HAL Id: hal-02120840
https://hal.sorbonne-universite.fr/hal-02120840

Submitted on 6 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian variable selection based on clinical relevance
weights in small sample studies-Application to colon

cancer
Sandrine Boulet, Moreno Ursino, Peter F Thall, Anne-Sophie Jannot, Sarah

Zohar

To cite this version:
Sandrine Boulet, Moreno Ursino, Peter F Thall, Anne-Sophie Jannot, Sarah Zohar. Bayesian variable
selection based on clinical relevance weights in small sample studies-Application to colon cancer.
Statistics in Medicine, 2019, 38 (12), pp.2228-2247. �10.1002/sim.8107�. �hal-02120840�

https://hal.sorbonne-universite.fr/hal-02120840
https://hal.archives-ouvertes.fr


Received: 7 November 2017 Revised: 19 October 2018 Accepted: 8 January 2019

DOI: 10.1002/sim.8107

R E S E A R C H A R T I C L E

Bayesian variable selection based on clinical relevance
weights in small sample studies—Application to
colon cancer

Sandrine Boulet1 Moreno Ursino1 Peter Thall2 Anne-Sophie Jannot1,3 Sarah Zohar1

1INSERM U1138, Team 22, Centre de
Recherche des Cordeliers, University Paris
Descartes, University Pierre et Marie
Curie, Paris, France
2Department of Biostatistics, MD
Anderson Cancer Center, Houston, Texas
3Department of Statistics, Computing and
Public Health, Hôpital Européen
Georges-Pompidou, AP-HP,Paris, France

Correspondence
Sandrine Boulet, INSERM U1138, Team
22, Centre de Recherche des Cordeliers,
University Paris Descartes, University
Pierre et Marie Curie, Paris, France.
Email: sandrine.boulet@crc.jussieu.fr

Funding information
French National Cancer Institut (INCa),
Grant/Award Number: INCA_10801 and
INCA_9539

Using clinical data to model the medical decisions behind sequential treat-
ment actions raises methodological challenges. Physicians often have access to
many covariates that may be used when making sequential treatment decisions
for individual patients. Statistical variable selection methods may help finding
which of these variables are used for this decision in everyday practice. When
the sample size is not large, Bayesian variable selection methods can address
this setting and allow for expert information to be incorporated into prior distri-
butions. Motivated by clinical practice data involving repeated dose adaptation
for Irinotecan in colorectal metastatic cancer, we propose a modification of the
stochastic search variable selection (SSVS) method, which we call weight-based
SSVS (WBS). We use clinical relevance weights elicited from physician experts
to construct prior distributions, with the goal to identify the most influential tox-
icities and other covariates used for dose adjustment. We evaluate and compare
the WBS model performance to the Lasso and SSVS through an extensive simu-
lation study. The simulations show that WBS has better performance and lower
rates of false positives and false negatives than the other methods but depends
strongly on the covariate weights.
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1 INTRODUCTION

Recent innovations in the accessibility and availability of hospital electronic health records (EHRs), where comprehensive
information about patients are gathered, have made this source of structured data accessible for statistical analysis and
medical research.1,2 Reuse of such records facilitates a better understanding of medical decision making associated with
sequential treatment decisions. Modeling the medical decisions behind treatment actions as a function of patient char-
acteristics, including previous treatments or doses and clinical outcomes, raises methodological challenges. Statistical
models must account for many possible covariates, comorbidities, and clinical events that may explain dose modifications
or sequences of treatments for individual patients.

Abbreviations: SSVS, stochastic search variable selection; RMSE, root mean square error; FPR, false positive rate; FNR, false negative rate
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General treatment recommendations often are based on clinical trial results, in which patients are a selected subset
of the actual treated population. Inclusion and exclusion criteria of clinical trials can be so strict that older, pediatric,
or patients with particular comorbidities may be excluded. As a result, general recommendations may be unsuitable for
these patients, which forces practicing physicians to modify treatment decisions based on each patient's characteristics
and history. In medical practice, at each patient visit, the physician must choose a new treatment or modify the dose of
an ongoing treatment based on their experience, outside recommendations, and the patient's current history, including
covariates, previous treatments, and clinical outcomes. Modeling such medical decision making based on observed tox-
icities and covariates can be difficult, particularly because of the multidimensionality of clinical toxicity observations,
classified by organ and severity (https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm). Physi-
cians typically prioritize certain covariates over others and may use their own subjective clinical relevance weights when
making treatment decisions. Accounting for clinical relevance weights may be highly informative when analyzing EHR
data to estimate optimal treatment sequences or dose modifications.

In oncology, many innovative molecules and biomarkers (genomic, clinical, or physiological) have been recently pro-
posed, which has led to consideration of many small subpopulations of diseases previously assumed to be homogeneous.3

In such small subpopulations, identifying causes of toxicities and resulting treatment modifications in everyday health
care may be quite complicated. With small samples, fitted multivariate models may have large variances of estimated
parameters, limiting inferential reliability. Variable selection methods in such settings may mitigate this difficulty by keep-
ing only covariates having the strongest effects. Most of these methods are frequentist, using penalization criteria, such
as the bridge, Lasso, SCAD, LARS, elastic net, or OSCAR regressions.4-8 One of the most popular methods is the Lasso,
which performs variable selection by applying an L1-penalty to least squares. The Lasso shrinks some coefficients to zero
while selecting others. However, these variable selection methods have been validated and associated with good conver-
gence properties for large samples. In our setting, given the small sample sizes and large number of variables considered,
these methods often fail to provide reliable results.

Bayesian regression is a reasonable alternative approach when working with small samples. In the Bayesian frame-
work, variable selection may be performed by applying the so-called “spike and slab” priors to identify and estimate the
posteriors of nonzero regression parameters9 while deleting variables that do not appear to predict outcome. Mitchell
and Beauchamp assumed the prior distribution of each regression coefficient to be a two-component mixture of a point
mass at 0 (the spike) and a uniform distribution on a finite interval (the slab).10 These two components quantify prior
belief about whether a covariate effect exists and, if it does, the effect's magnitude. This method has been extended in a
variety of ways, focusing on specific formulations of priors.11-15 A very useful extension is the stochastic search variable
selection (SSVS) method, in which the prior of each parameter is assumed to be a mixture of two normal distributions
centered at zero but with very different variances,11 one large and the other small. Other methods specify continuous
prior distributions that approximate the “spike and slab” shape while shrinking the estimates toward zero.16,17 Park and
Casella extended the frequentist Lasso by assuming a double exponential distribution for the regression parameters.17 For
a review of Bayesian variable selection methods, see the work of O'Hara and Sillanpää.9

A major advantage of Bayesian inference is that external information can be incorporated formally into prior distri-
butions. Many Bayesian variable selection studies use priors that do not specify a preference for any variable but may,
for instance, show a preference for sparse models. Several Bayesian variable selection studies have proposed simple
approaches for incorporating prior knowledge, by independently assigning each variable a prior probability of being
included in the model.18 For example, Kitchen et al provide a method for prior parameter specification using the sci-
entific literature for regression problems with many predictors in which the priors include both shrinkage and variable
selection components, extending the model of Kuo and Mallick.12 The authors posit this approach as a solution to the
phenotype-genotype problem. They construct a so-called “voting” prior by assigning a count to each codon position based
on the number of times that it is identified as important in the literature.19 In such a study, the same amount of infor-
mation is available for each biomarker. However, in other settings with many covariates, such as clinical variables, the
variable selection literature is limited.

We are motivated by clinical practice data in which dose modifications were made over multiple cycles for patients being
treated with Irinotecan for colorectal cancer. We use elicited clinical relevance weights to reflect the medical experience
of practicing physicians.20 When a physician makes a decision regarding a patient's treatment or dose modification, cer-
tain patient characteristics and previous clinical outcomes are given more weight than others. This practice implies that
the decision is influenced by the physician's personal experience and knowledge regarding the clinical relevance of cer-
tain covariates. To analyze our motivating data set, we elicited expert relevance weights for patient covariates, including
toxicities, from each of several physicians and used these weights to construct prior distributions.

https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm
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In the colorectal cancer setting, biomarkers that explain certain toxicities have recently been identified. For example,
activating mutations of the KRAS oncogene have been shown to be predictive of resistance of anti-EGFR agents, such
as Cetuximab, which is sometimes used with Irinotecan in treating metastatic colorectal cancer.21 Another example is
the gene UGT1A1, which is strongly associated with bilirubin levels, for which a variant is linked to an increased risk of
Irinotecan toxicity. This finding suggests that patient subgroups defined by these variables should be treated differently.
The most common adverse events associated with Irinotecan include vomiting, nausea, diarrhea, asthenia, neutropenia,
and anemia. All of these toxicities occur at various severity levels, classified as grade 0, 1, 2, 3, or 4. Generally, the dose for
each patient is calculated according to his/her body surface area. Toxicities often require decreasing the patient's dose,
extending the delay between two dose administration intervals (or cycles), or temporarily discontinuing treatment. In
addition, age, performance status, bilirubin, genetic polymorphism, and drug administration schedule have been shown
to be related to Irinotecan toxicity.22 While standard protocols for dose adjustment in chemotherapy for adverse events
exist, these recommendations do not account for possible associations between the covariates noted above. Thus, in clin-
ical practice, physicians adapt doses and schedules during successive cycles of treatment by accounting for all of the
patient's characteristics and treatment history, including doses and outcomes. As a result, each patient's dose regimen
over multiple cycles often differs from what is recommended in standard protocols.

To analyze the Irinotecan data, we proceeded in four steps: (1) First, we asked each of four physicians who are experts
in treating colorectal cancer to specify numerical clinical relevance weights to reflect their beliefs about the importance
of each variable in their decision making. When a covariate takes on a specific value, physicians will reduce the dose
with a probability that depends on the physician's clinical relevance weight associated with this covariate. Each physician
provided their clinical relevance weight associated with each grade of each toxicity type and each level of each covariate.
(2) Next, we constructed a modification of the SSVS method, which we call weight-based SSVS (WBS), to identify covari-
ates that influence dose adjustment. We used the elicited clinical relevance weights to compute the hyperparameters of
the prior distributions of the variables' inclusion indicators to provide a basis for the WBS. (3) Third, we compared the
influence of the physicians' clinical relevance weights using our proposed method with two other methods, the Lasso and
conventional SSVS. We also studied the effect of sample size on our method. (4) Finally, we applied our WBS method to
analyze the Irinotecan data set.

The remainder of this paper is organized as follows. Methods and criteria for model comparison are discussed in
Section 2. In Section 3, we describe a simulation study design to assess our methodology, and we present the simulation
results in Section 4. We present the data analysis of our case study in Section 5 and close with a discussion in Section 6.

2 METHODS

Our motivating data set is made of one continuous dependent variable, the dose of Irinotecan (mg/m2), and twelve
covariates: age > 80 years, weight loss > 10% since the beginning of treatment, World Health Organization (WHO) score,
bilirubin> 35𝜇mol/L, treatment line≥ 3 (that is, the patient previously received more than three other cancer treatments)
and toxicities associated with Irinotecan treatment (vomiting, nausea, diarrhea, asthenia, neutropenia, thrombopenia,
and anemia). All of these variables are known for each patient and each of his/her cycles, so it is repeated measures data.
In cancer, a cycle is a course of treatment repeated on a regular schedule with periods of rest in between. In our setting,
the treatment is given on day 1 and the next cycle begins 14 days later. Thus, a new cycle starts when the patient receives
a new dose. Side effects can appear during the cycle, as described in Figure 1. The data set was built to study the impact
of covariates on clinicians' decisions to adapt the doses, therefore each line of the data set corresponds to one cycle of a
given patient and contains the dose given to the patient at the beginning of the cycle and the observed covariates between
the start of the previous cycle and the present cycle.

The following notation is introduced for the general problem of variable selection using clinical relevance weights for
longitudinal data. Let n be the number of subjects, J the number of covariates, and K the number of cycles. For patient
i ∈ {1, … ,n}, let xi,k be the J-vector of covariates available at the start of cycle k ∈ {1, … ,K}. In our application,
certain variables, such as age and treatment, are assumed to be fixed in time, while other patient characteristics and
toxicities associated with adverse events and treatment responses may change over time. For j ∈ {1, … , J}, let xi,k,j take
values in {x′𝑗,0, x′𝑗,1, … , x′

𝑗,C𝑗
}, where x′𝑗,c is the cth most severe level, c = 0, … ,Cj. For instance, age is dichotomized

and takes on values in {0, 1}, where 0 means that age < 80, and 1 means that age ≥ 80. Each toxicity is categorized by
integer-valued grades between 0 (absent) and either 3 or 4 (most severe). Let zi,k be the vector of all patient covariates in
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FIGURE 1 Example for one patient of dose adjustment according to the patient's characteristics and toxicities [Colour figure can be
viewed at wileyonlinelibrary.com]

xi,k, using the dummy coding of categorical and/or ordinal data, that is, zi,k has length L =
∑J

𝑗=1 C𝑗 with each xi,k,j split
into Cj dummies variables, each taking a value of 1 if the corresponding category was selected in xi,k,j and 0 otherwise.
In the following section, we formally define clinical relevance weights and explain how we use them to determine prior
distribution hyperparameters in a Bayesian model.

2.1 Clinical relevance weights
Clinical relevant weights reflect the importance that a physician places on each value of each variable used in a medical
decision. Once these weights are elicited, they can be used to compute the hyperparameters of the prior distributions of
each variable's inclusion indicator in the Bayesian model. In the elicitation, each of several physicians who are experts in
the field is asked to provide positive-valued numerical weights wj for each variable j ∈ {1, … , J} and each of its possible
values c ∈ {1, … ,Cj}. Denote w𝑗 = (w𝑗,1, … ,w𝑗,C𝑗

), ordered such that 0 = w𝑗,0 ≤ w𝑗,1 ≤ · · · ≤ w𝑗,C𝑗
= Wmax for each j.

The value wj,c reflects how much the expert thinks he/she would change the dose on a scale between 0 and Wmax when
the severity level xj,c is observed. The value wj,0 is not included in the weight vector because it represents the reference
level, that is, no toxicities in the case of toxicity variables or the reference value in the case of a dichotomous variable.
For example, letting Wmax = 100, the vector w6 = {0, 20, 80, 90} refers to clinical relevance weights for the sixth variable,
which has C6 = 4 levels. By analogy with z, we define w′ to be the L-vector of all clinical relevance weights. This structure
follows that structure introduced by Bekele and Thall,23 who used elicited toxicity severity weights to define total toxicity
burden for use in phase I dose-finding.

For our setting, oncologists helped us build a questionnaire by choosing the variables and thresholds that they used
for decision making. Different experts could give different weights, which led to different prior distributions. Toxicity
covariates were defined using the Common Terminology Criteria for Adverse Events' grades. Four clinicians separately
completed the online questionnaire. Each clinician specified a numerical clinical relevance weight for each grade of each
toxicity type and each level of each covariate, within the range [0,Wmax] = [0, 100], with 0 corresponding to no severity
and 100 the highest possible severity.

Table 1 presents the elicited clinical relevance weights for each oncologist and each variable. For example, {0, 20, 80, 90}
in the row “vomiting” of Table 1 refers to clinical relevance weights of grades {1, 2, 3, 4} given by clinician 1. The table sug-
gests that, if grade 2 vomiting is observed clinician 1 reduces the dose in 20% of cases. For all clinicians except clinician 1,
the WHO score is very often considered for dose adjustment, and grade 4 is always considered for dose reduction.
Clinician 1 gives the small weight of 20 to WHO scores 2, 3, and 4. Clinicians 2, 3, and 4 do not consider treatment line for
decision making, while clinician 1 considers it for dose reduction. Concerning toxicities, vomiting is used very differently
by the four clinicians to make decisions. Finally, on average, clinicians 2 and 3 appear to assign lower weights to many
levels of many variables (cf sum of weights in Table 1) compared with clinicians 1 and 4. The elicited weights suggest that
the four physicians are likely to act differently when facing the same situations.

2.2 Weight-based SSVS
The general framework of clinical practice reflected by the Irinotecan data is repeated dose adaptation over successive
treatment cycles based on the patient's most recently updated treatment, dose, and outcome data. In the first cycle, a
starting dose is chosen based on the patient's baseline characteristics, including age, bilirubin, WHO score, and possibly
previous treatments. Thereafter, if toxicities are observed in a given cycle, the clinician may adapt the dose for the following
cycle. We assume the following linear mixed effect model, which is intended to use the updated covariates in each cycle

http://wileyonlinelibrary.com
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TABLE 1 Clinical relevance weights for each variable elicited from each clinician

Clinicians
Covariates 1 2 3 4

Age ≥ 80 years 100 - - - 60 - - - 100 - - - 80 - - -
Treatment line 3, > 3 30 50 - - 0 0 - - 0 0 - - 0 0 - -
Weight loss > 10% 50 - - - 20 - - - 50 - - - 80 - - -
WHO score (1, 2, 3, 4) 0 20 20 20 0 0 40 100 0 0 80 100 0 20 80 100
Bilirubin >35 𝜇mol/L 100 - - - 40 - - - 100 - - - 20 - - -
Toxicity grades 1, 2, 3, 4
Vomiting 0 20 80 90 0 30 70 100 0 10 10 10 10 20 80 100
Nausea 0 20 80 - 0 10 50 - 0 10 10 - 10 30 80 -
Diarrhea 0 40 80 100 0 20 50 100 0 50 80 100 0 20 70 90
Asthenia 10 50 100 - 10 10 40 - 0 0 70 - 10 50 70 -
Neutropenia 0 70 100 100 0 0 30 50 0 0 50 50 0 20 70 80
Thrombopenia 40 100 100 100 0 0 20 30 0 0 50 50 0 50 80 100
Anemia 0 50 80 100 0 0 20 30 0 0 0 0 0 20 50 70
Sum of weights 1900 930 980 1560

to explain the physician's decisions. Let di,k denote the dose given to patient i at cycle k and zi,k the vector of the patient's
covariates at that cycle visit for i ∈ {1, … ,n} and k ∈ {1, … ,K}. The model is given by the equation

di,k = 𝜃0 + 𝜽Tzi,k + 𝛾i + 𝜖i,k, (1)

where 𝜽 is a parameter vector of length L; 𝛾1, … , 𝛾n are iid  (0, 𝜎2
𝛾 ) random patient effects; and 𝜖i,k ∼  (0, 𝜎2

𝜖 ) is the
error term. In this formulation, the Markov property is assumed conditional on the random effects such that the dose
given at cycle k depends only on the covariates resulting from the previous cycle and collected in zi,k. Thus, zi,k includes
indicators of the grades of any toxicities that occurred in cycle k − 1 and any updated values of the baseline covariates.
Note that toxicities are not the outcomes of the regression, but rather they are the covariates.

Our objective is to find a subset, , of the vector z that describes the data well. For covariate index l ∈ {1, … ,L}, let Il
to be the indicator variable that takes the values

Il =

{
1, if z..l is in the model
0, otherwise,

where we refer to the lth covariate by z..l for convenience. The SSVS approach assumes that the prior distribution for
each covariate parameter in model (1) is a mixture of two normal distributions, both centered at zero but with different
variances. Specifically, as given in the work of George and McCulloch,11

𝜃l|Il ∼ (1 − Il) (
0, 𝜏2

l
)
+ Il (

0, gl𝜏
2
l
)
, (2)

where ℙ(Il = 1) = pl, denoted by Il ∼ (pl). In Equation (2), the first term (the spike) accounts for the nonselected
covariate z..l (Il = 0), with the density centered at 0 having small variance. Note that the sequence of zero-centered normal
distributions converges to the Dirac delta function at 0 as the variance converges to 0. Thus, rather than using a prior
with a point mass on the regression coefficient equaling 0, we decided to use a normal distribution with small variance
to approximate it and thus allow us to use usual statistical software. The second term accounts for the selected covariates
z..l, where Il = 1, and therefore, it has a large variance.

In the classical SSVS framework, pl is set to 0.5. Here, we use the elicited weights to choose a prior distribution for
Il such way that Il is more likely to be 1 when its elicited clinical relevance weight is high, and it is more likely to be 0
otherwise. Rather than fixing pl, we assume that it follows a beta prior distribution

pl ∼ Beta(al, bl). (3)

Consequently, Il|pl follows a beta-binomial distribution with parameters (al, bl). The main innovation of our proposed
WBS method is that we assume the prior equation given by Equation (3) and compute its hyperparameters al and bl of
using the elicited clinical relevance weights w′

l described in Section 2.1. Thus, first, each clinician separately specifies a
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TABLE 2 (a, b) values giving a beta(a, b) distribution centered at clinical relevance weight∕100

Clinical Relevance Weights 0 10 20 30 40 50 60 70 80 90 100

a 1.41 1.41 1.41 2.88 4.43 5.78 6.65 6.72 5.64 5.64 5.64
b 5.64 5.64 5.64 6.72 6.65 5.78 4.43 2.88 1.41 1.41 1.41
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FIGURE 2 Probability density functions for p's beta distributions with parameters a and b and mean w/100

vector of numerical clinical relevance weights w′ associated with each grade of each toxicity type and each level of each
covariate. Then, we find al and bl by solving the equations

⎧⎪⎨⎪⎩
𝔼(pl) =

al
al+bl

= w′
l

Wmax

𝕍(pl) =
albl

(al+bl)2(al+bl+1)
= S.

Thus, the mean of pl is w′
l∕Wmax, while S is a tuning parameter that accounts for uncertainty, chosen based on a prelim-

inary sensitivity analysis. In our application, we choose the same S for all prior distributions, although in general, the
value may be different for different pl, reflecting different levels of the physician's confidence for different covariates. Note
that no inference procedures are needed for the clinical relevance weights to be elicited from each clinician. To imple-
ment the WBS method, we set the minimal and maximal thresholds to 20 and 80, respectively, to avoid highly informative
priors. Values of a and b obtained from clinical relevance weights used in the WBS method are presented in Table 2 and
Figure 2. We choose Wmax = 100 because the scale [0, 100] is well known and easily understandable by clinicians, and
we set S = 0.02 based on our preliminary sensitivity analysis. S quantifies the variability that one wants to add to the
prior distribution. We denote the WBS method based on the mth clinician's clinical relevance weights as WBS(m), for
m ∈ {1, 2, 3, 4}.

2.3 Combination of prior opinions
To combine prior opinions from different physicians, we propose two methods: (1) use of the WBS method with a mixture
prior obtained by weighting each of the four elicited physician priors 0.25 each and (2) Bayesian Model Averaging (BMA)
of the WBS models used with each clinician's clinical relevance weights. To accommodate inconsistent weighting by
different physicians, BMA calculates the predictive distribution of a coefficient 𝜃l, ∈ {1, … ,L}, as a weighted average of
posterior distributions of 𝜃l using each model WBS(m), m ∈ {1, … , 4} (see the work of Raftery et al24)

p(𝜃l|d, z) = 4∑
m=1

p(WBS(m)|d, z)p(𝜃l|WBS(m),d, z),
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where the weights p(WBS(m)|d, z) are the posterior probabilities of each model

p(WBS(m)|d, z) = p(d, z|WBS(m))p(WBS(m))∑4
m1=1p(d, z|WBS(m1))p(WBS(m1))

.

The marginal likelihood of the model WBS(m) is

p(d, z|WBS(m)) = ∫ p(d, z|𝜽,WBS(m))p(𝜽|WBS(m))d𝜽,

where p(d, z|𝜽,WBS(m)) is the likelihood that we can assess using the Laplace method and p(𝜽|WBS(m)) the prior
distribution. Then, the expected value and the variance of 𝜃l are obtained by

⎧⎪⎨⎪⎩
𝔼(𝜃l|d, z) = ∑4

m=1
̂𝜃m
l p(WBS(m)|D)

𝕍(𝜃l|d, z) = ∑4
m=1

[
𝕍(𝜃l|d, z,WBS(m)) +

(
̂𝜃m
l

)2
]

p(WBS(m)|d, z) − 𝔼(𝜃l|d, z)2,

where ̂𝜃m
l = 𝔼(𝜃l|d, z,WBS(m)).

2.4 Model comparison
In our simulations, we compare the performance of the WBS method to the classical Bayesian SSVS and the frequentist
Lasso. Our evaluation criteria are bias, pointwise prediction performance, the posterior distribution of the prediction
performance, and variable selection performance.

Bias
The bias of the estimator 𝜃l, l ∈ {1, … ,L}, is defined as the difference Bias(𝜃l) = 𝔼(𝜃l) − 𝜃l between the expected value

of the estimator and the true values of the coefficient 𝜃l, where 𝜃l is the posterior mean of 𝜃l for the Bayesian methods
and the Lasso estimates otherwise.

Performance of prediction
To evaluate the prediction performance of each method, we use the root mean square error (RMSE), computed as the

sample standard deviation of the differences between predicted and observed values

RMSE(̂̃d) =
√

MSE(̂̃d) =
√

𝔼((̂̃d − d̃)2) ≈

√√√√ 1
n

1
K

n∑
i=1

K∑
i=1

( ̂̃di,k − d̃i,k)2,

where d̃ are observed doses for patients in the validation data set and ̂̃d = 𝜃0 + 𝜽̂
T

Z̃ are the estimations given by the model
for these doses. Additional details are presented in Appendix A.

Bayesian predictive model accuracy
Unlike frequentist methods, the Bayesian approach provides a posterior distribution, which provides a basis for com-

puting the log pointwise predictive density, proposed by Gelman et al.25 We adapt this approach to the repeated measures
structure of the Irinotecan data set. Denoting the prior distribution as p(𝜽, I, 𝛄, 𝜎2

𝛾 , 𝜎
2
𝜖 ) and the posterior distribution as

ppost(𝜽, I, 𝛄, 𝜎2
𝛾 , 𝜎

2
𝜖 | data), the posterior predictive distribution of d̃ is

ppost(d̃ | data) = ∫ p
(

d̃|𝜽, I, 𝛄, 𝜎2
𝛾 , 𝜎

2
𝜖

)
ppost

(
𝜽, I, 𝛄, 𝜎2

𝛾 , 𝜎
2
𝜖 | data

)
d𝜽dId𝛄d𝜎2

𝛾 d𝜎2
𝜖 .

In practice, the distribution fi,k(d) depends on (𝜽, I, 𝛄, 𝜎2
𝛾 , 𝜎

2
𝜖 ), which are not known. We thus work with the log pointwise

predictive density

LPD =
n∑

i=1

K∑
k=1

log ppost(d̃i,k) =
n∑

i=1

K∑
k=1

log∫ p
(

d̃i,k|𝜽, I, 𝛄, 𝜎2
𝛾 , 𝜎

2
𝜖

)
ppost(𝜽 | data)d𝜽dId𝛄d𝜎2

𝛾 d𝜎2
𝜖 .
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To assess the predictive accuracy for the n × K data points in a data set, the expected log pointwise predictive density
(ELPD) is defined as follows:

ELPD =
n∑

i=1

K∑
k=1

E𝑓i,k{log ppost(d̃i,k)},

where fi,k(d) is the distribution representing the true data-generating process for di,k.
For computational details, see Appendix B. Because each model has the same number of parameters, and they are

estimated in the same way, one might simply compare their best-fit log predictive densities directly. We thus select the
model with the smallest value of −LPD.

Precision of variable selection
A method's variable selection ability may be assessed through its false positive rate (FPR) and false negative rate (FNR).

The FPR is defined to be the number of nonpredictive variables, ie, having true coefficient 0, that are wrongly selected by
the method (false positive = FP) divided by the total number of actual nonpredictive variables (N)

FPR = FP
N

= FP
FP + TN

,

where TN is the number of true negatives, ie, covariates having true coefficient 0. In the Bayesian framework, a variable is
considered selected when its posterior median is equal to one. For Lasso methods, all nonselected covariates are estimated
as exactly zero. Note that FPR = 1 − TNR, where TNR is the true negative rate or specificity.

Similarly, the FNR is defined as

FNR = FN
P

= FN
FN + TP

,

where FN is the number of false negatives, TP is the number of true positives, and P = FN + TP is the total number of
positive selections. Additionally, FNR = 1 − TPR where TPR is the true positive rate or sensitivity.

3 SIMULATION DESIGN

We simulated a sample of patients treated for colorectal metastatic cancer by Irinotecan, to imitate the structure of our
motivating data set. The protocol is based on a theoretical dose of 180 mg/m2. Severity levels of toxicities were simulated
with grades taking on integer values from 0 (indicating no toxicity of that type) to 4 (the most severe level), or to 3 for
nausea and asthenia.

3.1 Covariate distributions used in the simulations
Numerical parameter choices for the simulations were based on case study covariate distributions (cf Table 3). X..1 and
X..2 are assumed to be fixed in time. All other variables change over time and were simulated with an autocorrelation
structure of order 1 (𝜌) between cycles according to a Gaussian copula-based procedure.

3.2 Dose generation
The dose for individual i ∈ {1, … ,n} at cycle k ∈ {1, … ,K} was generated from the model

di,k = Dmax − 𝜷Tzi,k + 𝜖i,k,

where 𝜖i,k ∼  (0, 𝜎2). Four realistic scenarios were simulated: two involving clinician 1's clinical relevance weights
(scenarios 1a and 1b) and two involving clinician 2's clinical relevance weights (scenarios 2a and 2b). First, we selected
variables with clinical relevance weights greater than specific thresholds; then, we set coefficients 𝜷 of the selected vari-
ables as a linear function of the clinical relevance weights such that all doses were included between Dmin and Dmax.
We also constructed an unrealistic scenario where the clinical relevance weights used to simulate the scenario are taken
equal to 100 − w′ for clinician 1. Thus, for example, vomiting of grade 4 is linked to a smaller clinical weight that vom-
iting of grade 3. So, considering priors built on clinician expertise could favor inclusion of wrong variables. Values of the
thresholds and coefficients −𝜷 are given in Table 4.
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TABLE 3 Simulation parameters for the covariates

Variables Original Variables Probability Distribution Parameters

x..1 Age ≥ 80 years  (𝜇, s2) 𝜇 = 63, s = 12
x..2 Treatment line 3, > 3 eom(r1) r1 = 0.5
x..3 Weight loss > 10% (r2) r2 = 0.1
x..4 WHO score (l, r3) l = 4, r3 = 0.5
x..5 Bilirubin >35 𝜇mol/L (r3) r4 = 0.1
x..6 Vomiting eom(r5) truncated to s1 r5 = 0.2, s1 = 4
x..7 Nausea eom(r6) truncated to s2 r6 = 0.2, s2 = 3
x..8 Diarrhea eom(r7) truncated to s3 r7 = 0.2, s3 = 4
x..9 Asthenia eom(r8) truncated to s4 r8 = 0.2, s4 = 3
x.,.,10 Neutropenia eom(r9) truncated to s5 r9 = 0.2, s5 = 4
x.,.,11 Thrombopenia eom(r10) truncated to s6 r10 = 0.2, s6 = 4
x.,.,12 Anemia eom(r11) truncated to s7 r11 = 0.2, s7 = 4

Abbreviation: WHO, World Health Organization.

TABLE 4 Values of −𝜷 used for each simulation scenario

Variable Realistic Scenarios Unrealistic Scenario
1a 1b 2a 2b F

X..1 18.6 13.4 14.4 12.6 0
X..2 0, 0 0, 6.70 0, 0 0, 0 0, 0
X..3 0 6.70 0 4.19 0
X..4 0, 0, 0, 0 0, 0, 0, 0 0, 0, 9.63, 24.1 0, 0, 8.39, 21.0 18.8, 15.1, 15.1, 15.1
X..5 18.6 13.4 9.63 8.39 0
X..6 0, 0, 0, 0 0, 0, 10.7, 12.1 0, 0, 16.9, 24.1 0, 6.29, 14.7, 21.0 18.8, 15.1, 0, 0
X..7 0, 0, 0 0, 0, 10.7 0, 0, 12.0 0, 0, 10.5 18.8, 15.1, 0
X..8 0, 0, 0, 18.6 0, 0, 10.7, 13.4 0, 0, 12.0, 24.1 0, 4.19, 10.5, 21.0 18.8, 0, 0, 0
X..9 0, 0, 18.6 0, 6.70, 13.4 0, 0, 9.63 0, 0, 8.39 17.0, 0, 0
X.,.,10 0, 0, 18.6, 18.6 0, 9.39, 13.4, 13.4 0, 0, 0, 12.0 0, 0, 6.29, 10.5 18.8, 0, 0, 0
X.,.,11 0, 18.6, 18.6, 18.6 0, 13.4, 13.4, 13.4 0, 0, 0, 0 0, 0, 4.19, 6.29 0, 0, 0, 0
X.,.,12 0, 0, 0, 18.6 0, 6.70, 10.7, 13.4 0, 0, 0, 0 0, 0, 4.19, 6.29 18.8, 0, 0, 0

Number of variables actually used 10 20 11 19 12
Weights' threshold 100 50 40 20 80

To assess the extent to which the prior deviates from the simulated parameter value, we calculate Spearman's rank
correlation coefficients between the following:

• corrected clinical relevance weights used to build prior distributions (w′c), that is, clinical relevance weights with
minimal and maximal thresholds to 20 and 80 respectively;

• weights used to build scenarios (w′u), that is, only clinical relevance weights greater than thresholds specific to each
scenario are nonzero weights.

It allows one to measure the extent to which, as one variable increases, the other variable tends to increase. Table 5
gives Spearman coefficient between each model and each scenario.

For each of the five scenarios, we studied three cases: (n = 10,K = 3), (n = 10,K = 5), and (n = 20,K = 5). Values
of parameters were derived from case study covariates (cf Table 6). We set 𝜎 = 5 based on suggestions reported in the
literature.

For each of the 15 subscenarios, 1000 data sets were simulated. Each data set consisted of a training set of size n × K,
along with an independent validation set of size 50 × 5. For each simulated data set, we fit eight models on the training data
sets using the Lasso method, the classical SSVS method, and the WBS method with clinical relevance weights provided
by each of the four clinicians, with mixture and with BMA. All analyses were performed using R software 3.3.2 version
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TABLE 5 Spearman's rank correlation
coefficient between corrected clinical relevance
weights (in lines) and weights used to build
scenarios (in columns)

WBS Scenarios
1a 1b 2a 2b F

1 0.668 0.948 0.426 0.585 −0.857
2 0.379 0.505 0.913 0.949 −0.318
3 0.520 0.424 0.562 0.669 −0.300
4 0.436 0.610 0.655 0.788 −0.454

Abbreviations: WBS, weight-based SSVS.

TABLE 6 Parameter values in the simulations

Parameter Values

n 10 or 20
K 3 or 5
J 12
L 35
𝜌 0.5
Dmin 50
Dmax 180
𝜎 5
S 0.02
Wmax 100

and packages glmmLasso and R2jags. In R2jags, autojags was implemented with 3 chains and a burn-in of 1000 and, as a
convergence criterion, Gelman and Rubin's potential scale reduction factor Rhat = 1.1.

3.3 Prior parameter settings
In Bayesian estimation of mixed models (cf Section 2.2, Equation (1)), prior distributions for the parameters 𝜽, 𝜎𝛾 , and 𝜎𝜖

must be defined. After a sensitivity analysis in which several parameter values were tested and model performance was
evaluated in a few scenarios, an inverse-gamma distribution with shape and scale parameters (1, 1) and (0.2, 1), respec-
tively, were chosen for the covariance of the random effects 𝜎2

𝛾 and the residual variance 𝜎2
𝜖 , (cf Table 7). For 𝜽, see

Section 2.2.
The models used by the SSVS and WBS algorithms also require specification of fixed prior hyperparameters, 𝝉2 and g𝝉2,

which we based on the data (cf Equation (2)). For l ∈ {1, … ,L}, 𝜏 l should be chosen such that, if 𝜃l ∼  (0, 𝜏2
l ), then 𝜃l

can be “safely” replaced by 0. Moreover, gl (>1) should be chosen such that if 𝜃l ∼  (0, gl𝜏
2
l ), then a nonzero estimate of

𝜃l should be included in the final model. Some suggestions can be found in the work of George and McCulloch.11 Because
the smallest numerical coefficient value for our simulated data is 4.19 (cf Table 4), we take 3𝜏 l to be equal to the maximum
value at which 𝜃l would be equivalent to 0. In the following, based on our sensitivity analysis, we assume 𝜏 l = 1 and
gl = 1002.

TABLE 7 Choice of prior distributions

Parameter Prior Distribution Hyperparameters

𝜎2
𝛾 Inverse-Gamma(𝛼1, 𝛽1) 𝛼1 = 1, 𝛽1 = 1

𝜎2
𝜖 Inverse-Gamma(𝛼2, 𝛽2) 𝛼2 = 0.2, 𝛽2 = 1

𝜃0 N(𝜇0, s2
0) truncated to 0 𝜇0 = 100, s0 = 100
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4 SIMULATION RESULTS

4.1 Bias
The coefficients' bias (cf Figures 1 and 2 in supplementary material) are on average negative and dramatically decrease
with their real values; therefore, the methods underestimate the coefficients of variables actually used. For realistic sce-
narios, the coefficients of variables actually not used are estimated to be no more than −3 mg/m2, that is, −1.67% of the
baseline dose.

4.2 Prediction performance
Tables 8 and 9 summarize the average prediction performance (RMSEs) for validation sets over 1000 runs, along with
the precision of selected variables (mean FPR and mean FNR) for each method. Figure 3 shows the distribution of RMSE
for all scenarios with n = 10 and K = 3.

Recall that the weights of clinicians 1 and 2 were used for scenarios 1a and 1b and scenarios 2a and 2b, respectively, in
the simulations. For scenarios 1a and 1b, WBS1 has a slightly smaller RMSE than that of SSVS and the WBS2, WBS3, and
WBS4 when n = 10 patients and K = 3 cycles (cf Table 8 and Figures 3A and 3B). However, the improvement is so small
that only a mean improvement of less than 2.3 mg/m2 in the RMSE (for a baseline dose of 180 mg/m2) compared with
the SSVS method is observed. The performance of WBS4 is similar to that of WBS1 as the Spearman's rank correlation
coefficient between scenarios 1a/1b and WBS(m) takes the highest values for WBS1 and WBS4 (cf Table 5). WBS with the
mixture does not improve prediction performance, compared to WBS with BMA that manages inconsistent weighting by
the different physicians by favoring WBS1 and WBS4 models.

For scenarios 2a and 2b, the performance is approximately the same for all methods considered (cf Table 8 and
Figures 3C and 3D). The performance of WBS is similar to that of SSVS, regardless of the weights used for the prior. For
n = 10 patients with K = 3 cycles, the best performance is not achieved with WBS2, as might have been expected, but
rather is best with the WBS4 and WBS with BMA. The WBS4's RMSE decreases by approximatively 1.7 mg/m2 (for a
baseline dose of 180 mg/m2), when n = 10 patients and K = 3 cycles, compared with that of the SSVS method.

Scenario F is the unrealistic scenario built using the importance weights {100 - clinical relevance weights of clinician 1}.
For this scenario, all WBS methods perform poorly and the smallest RMSE is obtained for SSVS model (cf Table 9 and
Figure 3E). Although all Spearman coefficients are negative between scenario F and WBS(m), m ∈ {1, 2, 3, 4}, the higher
Spearman coefficients for this scenario are obtained for WBS3 and WBS2 models for which we find the best performances
among the WBS models (cf Table 5).

Table 1 and Figure 3 in supplementary material present the −1× mean log pointwise predictive density over 1000 repli-
cations for each method. The log pointwise predictive density between the different methods is similar, as is the case
for RMSE.

In general, the frequentist LASSO shows worse performance except for the unrealistic scenario. Performance improves
with an increase in sample size and increased number of cycles. The WBS method predicts no better than the other
methods for n = 20. The RMSE is close to the variance of the error term (𝜎 = 5) for all methods.

4.3 Precision of selected variables
Figure 4 and Figures 4 and 5 in the supplementary material respectively show the percentage of times in which each
variable is selected by the model, the true positive rate plotted against the FPR and the percentage of times versus real
coefficients' values when n = 10 and K = 3. For realistic scenarios, the WBS method performs better than the other
methods in terms of variable selection, with both lower FPRs and FNRs in general. The SSVS and WBS methods select a
few variables not actually used (less than 5% FPR), but they fail more often to correctly select variables actually used, with
up to 84% FNR. For small patient samples, the Lasso shows very large FNRs. For scenarios 1a,1b, 2a, and 2b, the FNRs of
the Lasso are 65%, 81%, 67%, and 79%, respectively. When the number of observations increases, the Lasso wrongly selects
many variables, with FPRs of 45%, 85%, 56%, and 80%, while the SSVS and WBS methods only select the true variables
with FPR and FNR values close to 0.

Again, for scenarios 1a and 1b, the WBS1 model gives the best performance in selecting variables, followed by WBS with
BMA and WBS4 (cf Table 8, Figures 4A and 4B, and Figures 4a, 4b, 5a, and 5b in the supplementary material). Indeed,
WBS1 improves the selection ability, with 46% and 30% smaller FNR in scenarios 1a and 1b, respectively, compared with
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TABLE 8 Simulation results for realistic scenarios: mean root mean square errors (RMSEs) and mean false positive rate (FPR)
and mean false negative rate (FNR) over 1000 replications

Lasso Classical SSVS WBS
1 2 3 4 Mixture BMA

Scenario 1a: (n,K )= (10,3)
RMSE 13.4 (1.58) 11.3 (1.83) 8.99 (1.77) 11.8 (1.57) 10.9 (1.65) 10.0 (1.94) 10.4 (1.85) 9.11 (1.87)
FPR 12 3 3 3 3 4 2 3
FNR 65 62 16 68 53 33 45 17

Scenario 1a: (n,K )= (10,5)
RMSE 9.46 (2.00) 7.32 (1.46) 6.53 (0.907) 8.07 (1.87) 7.15 (1.38) 6.78 (1.05) 6.84 (1.17) 6.59 (0.920)
FPR 37 1 1 1 1 1 1 1
FNR 23 13 1 22 9 4 5 1

Scenario 1a: (n,K )= (20,5)
RMSE 6.17 (0.674) 5.50 (0.558) 5.63 (0.563) 5.63 (0.574) 5.63 (0.577) 5.64 (0.578) 5.62 (0.572) 5.63 (0.565)
FPR 45 0 0 0 0 0 0 0
FNR 2 1 0 0 0 0 0 0

Scenario 1b: (n,K )= (10,3)
RMSE 16.5 (1.46) 14.6 (1.82) 12.9 (1.94) 14.6 (1.55) 14.6 (1.62) 13.8 (1.93) 14.0 (1.74) 13.1 (2.11)
FPR 11 5 1 4 4 4 3 2
FNR 81 84 54 84 81 66 76 55

Scenario 1b: (n,K )= (10,5)
RMSE 13.1 (2.14) 12.9 (1.41) 9.79 (1.54) 13.3 (1.23) 13.2 (1.25) 11.4 (1.54) 12.2 (1.44) 9.81 (1.56)
FPR 42 3 0 2 3 2 2 0
FNR 41 73 33 76 73 50 63 33

Scenario 1b: (n,K )= (20,5)
RMSE 6.92 (0.774) 6.33 (0.708) 6.20 (0.624) 6.78 (1.10) 6.75 (1.03) 6.34 (0.688) 6.37 (0.693) 6.22 (0.626)
FPR 85 0 0 0 0 0 0 0
FNR 3 9 7 15 14 9 10 7

Scenario 2a: (n,K )= (10,3)
RMSE 14.1 (1.84) 11.1 (2.00) 10.2 (1.83) 9.79 (1.54) 10.6 (1.92) 9.34 (1.72) 9.72 (1.74) 9.54 (1.83)
FPR 12 3 4 0 1 2 1 3
FNR 67 58 36 44 44 29 38 29

Scenario 2a: (n,K )= (10,5)
RMSE 9.50 (1.74) 7.62 (1.27) 7.22 (1.11) 7.38 (1.12) 7.19 (1.20) 7.03 (1.00) 7.12 (1.08) 6.97 (1.01)
FPR 39 1 1 0 0 1 0 1
FNR 24 23 11 19 12 11 13 8

Scenario 2a: (n,K )= (20,5)
RMSE 6.37 (0.704) 5.72 (0.566) 5.70 (0.559) 5.71 (0.556) 5.67 (0.559) 5.72 (0.559) 5.68 (0.553) 5.68 (0.544)
FPR 56 0 0 0 0 0 0 0
FNR 3 2 1 2 1 2 1 0

Scenario 2b: (n,K )= (10,3)
RMSE 14.9 (1.66) 12.6 (1.82) 11.8 (1.84) 11.5 (1.64) 12.3 (1.72) 10.9 (1.77) 11.5 (1.72) 11.3 (1.92)
FPR 12 4 2 1 1 1 1 2
FNR 79 79 61 68 72 58 68 58

Scenario 2b: (n,K )= (10,5)
RMSE 11.2 (1.97) 9.84 (1.42) 9.00 (1.25) 9.54 (1.19) 9.61 (1.43) 8.70 (1.15) 9.13 (1.25) 8.70 (1.17)
FPR 39 2 1 0 0 0 0 1
FNR 45 63 47 60 57 46 54 44

Scenario 2b: (n,K )= (20,5)
RMSE 6.96 (0.730) 6.65 (0.664) 6.40 (0.621) 6.83 (0.659) 6.62 (0.638) 6.49 (0.624) 6.57 (0.634) 6.39 (0.605)
FPR 80 0 0 0 0 0 0 0
FNR 8 31 23 37 32 26 30 23

Standards deviations are shown in parentheses.
Abbreviations: BMA, Bayesian Model Averaging; SSVS, stochastic search variable selection; WBS, weight-based SSVS.
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TABLE 9 Simulation results for the unrealistic scenario: mean root mean square errors (RMSEs) and mean false positive rate
(FPR) and mean false negative rate (FNR) over 1000 replications

Lasso Classical SSVS WBS
1 2 3 4 Mixture BMA

Scenario F: (n,K )= (10,3)
RMSE 18.2 (3.26) 11.9 (3.78) 20.2 (3.53) 16.8 (3.46) 18.0 (3.61) 19.3 (3.69) 17.9 (3.53) 18.6 (4.53)
FPR 16 5 23 6 8 16 9 18
FNR 60 49 88 78 79 82 82 79

Scenario F: (n,K )= (10,5)
RMSE 10.3 (2.27) 6.97 (0.872) 8.47 (2.60) 7.45 (1.69) 7.38 (1.84) 7.75 (2.18) 7.59 (1.78) 7.40 (1.72)
FPR 46 2 6 3 3 4 3 4
FNR 23 24 36 29 27 28 30 26

Scenario F: (n,K )= (20,5)
RMSE 6.92 (0.678) 5.72 (0.567) 6.06 (0.663) 5.77 (0.614) 5.68 (0.553) 5.71 (0.555) 5.78 (0.598) 5.69 (0.546)
FPR 70 1 2 1 1 1 1 1
FNR 10 5 16 9 6 7 9 6

Standards deviations are shown in parentheses.
Abbreviations: BMA, Bayesian Model Averaging; SSVS, stochastic search variable selection; WBS, weight-based SSVS.

the SSVS method, when n = 10 and K = 3. In the simulations, recall that clinical relevance weights were used (1) to
choose what variables are selected and (2) to estimate the coefficients associated with the variables used for dose reduction.
Therefore, the ideal clinical relevance weights used in the models should all be either 0 or 100, implying that clinicians
are either sure to use a covariate or not in his/her decision process. Scenario 1a is an example in which all covariates that
have an influence on doses are associated with a clinical relevance weight of 100 for the WBS1 method. For scenarios 2a
and 2b, like WBS with BMA, the WBS4 and WBS1 models give low FPR and FNR because of their higher clinical relevance
weights (cf Table 8, Figures 4C and 4D, and Figures 4c, 4d, 5c, and 5d in the supplementary material). In these two
scenarios, the WBS4 model yields 29% and 58% FNR, respectively, when n = 10 and K = 3, while the SSVS method yields
much larger FNR values 58% and 79%. Overall, WBS1 and WBS4 are associated with larger clinical relevance weights
than WBS2 and WBS3 are (cf sum of clinical relevance weights for each clinician in Table 1), and they select a higher
number of covariates. Interestingly, the WBS model that selects the highest number of covariates actually used, and a
smaller number of covariates actually not used, is not necessarily the one that uses the clinical relevance weights of the
clinician on which the simulation setting is based.

Furthermore, WBS1 fails to select a higher percentage of variables for scenario 1b, with an FNR of 54% for (n,K) =
(10, 3), compared with scenario 1a, with an FNR of 16% for (n,K) = (10, 3)), generated based on fewer variables and larger
coefficients for the variables' effect on selected doses. Similarly, scenario 2a has a lower FNR than scenario 2b. Finally,
for n = 20 patients, the FNR values are close to 0 for scenario 2a but are high for scenario 2b. As expected, the ability to
correctly select variables increases with increasing sample size and number of cycles.

For scenario F, the variable selection performance of our method is as bad as the predictive performance for this scenario
(cf Table 9, Figure 4E, and Figures 4e and 5e in the supplementary material).

The Lasso failed to converge in 1 to 11% of the simulated cases, depending on the scenario, with a median of 6%, while
the other methods failed to converge in less than 2% of the cases.

5 CASE STUDY

We extracted data for patients treated for metastatic colorectal cancer with a combination of drugs including Irinotecan
from the Georges Pompidou University Hospital (HEGP) I2B2 warehouse with IRB approval. The protocol encompasses
a theoretical dose of 180 mg/m2 and a theoretical cycle of chemotherapy of 14 days. All patients who were treated with
any other protocol including Irinotecan were excluded. One cycle was defined as doses being given over one to three
successive days. When a patient received a dose more than 28 days later, we considered that to be the beginning of another
protocol. The data included the covariates age, weight, total bilirubin, WHO score, treatment line, and the seven toxicity
types registered on each cycle of chemotherapy, as described in Section 3, using the physicians' elicited clinical relevance
weights.
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FIGURE 3 Boxplot of root mean square error (RMSE) for each method and for each scenario with n = 10 and K = 3. A, Scenario 1a:
(n,K) = (10, 3); B, Scenario 1b: (n,K) = (10, 3); C, Scenario 2a: (n,K) = (10, 3); D, Scenario 2b: (n,K) = (10, 3); E, Scenario F: (n,K) = (10, 3)
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FIGURE 4 Percentage of times where each variable is selected by the model for scenarios with n = 10 and K = 3. Variables actually used
are identified by dashed lines. A, Scenario 1a: (n,K) = (10, 3); B, Scenario 1b: (n,K) = (10, 3); C, Scenario 2a: (n,K) = (10, 3); D, Scenario 2b:
(n,K) = (10, 3); E, Scenario F: (n,K) = (10, 3)



BOULET ET AL. 2243

TABLE 10 Case study: description of covariates

Variables 0 1 2 3 4

Age ≥ 80 years 19 (58) 14 (42) - - -
Weight loss > 10% 32 (97) 1 (3) - - -
WHO score 7 (21) 21 (64) 5 (15) - -
Bilirubin >35 𝜇mol/L 33 (100) - - - -
Treatment line 3, > 3 33 (100) - - - -

Toxicity Grades
Vomiting 33 (100) - - - -
Nausea 15 (45) 16 (48) 2 (6) - -
Diarrhea 17 (52) 15 (45) 1 (3) - -
Asthenia 4 (12) 18 (55) 10 (30) 1 (3) -
Neutropenia 28 (85) 3 (9) 2 (6) - -
Thrombopenia 28 (85) 5 (15) - - -
Anemia 23 (70) 9 (27) 1 (3) - -

Percentages are shown in parentheses.
Abbreviation: WHO, World Health Organization.

TABLE 11 Case study results: estimated coefficients, root mean square errors and –log pointwise predictive density

Weights of Clinicians: Lasso Classical SSVS WBS With Prior From Clinicians: BMA
Variables 1 2 3 4 1 2 3 4 Mixture
Intercept - - - - 178 174 176 173 178 174 175 176
Age ≥ 80 years 100 60 100 80 −11.1* −3.21 −10.1* −5.56 −13.4* −8.79* −10.2* −11.0*
Weight loss > 10% 50 20 50 80 0 −0.267 −0.664 −0.177 −0.737 −1.72 −0.625 −0.850
WHO score 1 0 0 0 0 −10.9* 0.268 −0.00462 0.0618 0.194 0.0936 0.0663 0.0895
WHO score 2 20 0 0 20 0 −0.721 −0.454 −0.590 −0.754 −0.438 −0.522 −0.570
Nausea 1 0 0 0 10 0 −0.337 −0.342 −0.605 −2.16 −1.95 −0.925 −1.31
Nausea 2 20 10 10 30 0 0.483 0.305 2.32 2.24 1.89 1.35 1.38
Diarrhea 1 0 0 0 0 0 −0.784 −1.44 −0.399 −2.34 −0.268 −0.714 −1.55
Diarrhea 2 40 20 50 20 0 1.23 0.313 0.222 0.175 0.180 0.191 0.235
Asthenia 1 10 10 0 10 0 −0.238 0.0724 0.0915 0.0812 0.0534 0.0955 0.0733
Asthenia 2 50 10 0 50 7.39* −6.57* −2.54 −1.61 −3.36 −1.58 −1.88 −2.65
Asthenia 3 100 40 70 70 0 −86.7* −82.1* −80.5* −85.3* −81.9* −81.3* −83.2*
Neutropenia 1 0 0 0 0 0 0.357 0.331 0.303 0.190 0.640 0.224 0.328
Neutropenia 2 70 0 0 20 0 −0.956 −1.26 −3.39 −0.764 −1.64 −1.56 −1.21
Thrombopenia 1 40 0 0 0 7.11* −7.65* −2.78 −2.39 −2.39 −2.81 −2.42 −2.62
Anemia 1 0 0 0 0 −3.09* 0.445 −0.0263 −0.0508 0.0188 0.0380 −0.0572 0.000632
Anemia 2 50 0 0 20 −38.3* −5.99 −14.2* −7.35 −1.93 −13.6* −10.7* −9.21*

Number of selected variables 6 3 3 1 2 3 3 3
RMSE 25.2 17.6 17.3 18.5 17.1 17.5 17.5 17.3

–Log pointwise predictive density - 142 141 144 141 142 143 -

∗ represents the variables selected by the model.
Abbreviations: BMA, Bayesian Model Averaging; SSVS, stochastic search variable selection; WBS, stochastic search variable selection; WHO, World Health
Organization.

In our database, we found 185 patients who had data for the first K = 5 cycles, among whom 70 patients had at least
one cycle with complete toxicity data available. To test our method with a small sample, we randomly selected n = 10
patients having N = 33 complete forms. Among the 10 included patients, only 3 toxicities of grade 3 (asthenia) were
observed (see Table 10 for description of covariates). For the case study, RMSEs were computed over these patients.

Results are shown in Table 11. The best performance was obtained by WBS3, with the smallest RMSE and two variables
selected: age > 80 years and asthenia of grade 3 respectively linked to dose reductions of −13.4 mg/m2 and −85.3 mg/m2.
Asthenia 3 is selected by all methods, except the Lasso, and age is selected by these same methods, except WBS2. The
clinical relevance weight linked to age is 100 for WBS1, WBS3, and WBS4 but is only 60 for WBS2. Only WBS2 yields
worse performance than the classical SSVS, with only one variable selected. The Lasso selects six variables. WBS1, WBS4,
and WBS with mixture and WBS with BMA choose the same variables. WBS3 and WBS4 select fewer variables than WBS1
and WBS4, possibly because of smaller sums of weights (cf Table 1). Other selected variables are anemia grade 2, selected
by three methods (coefficient < −10); asthenia grade 2 and thrombopenia grade 1, only selected by the Lasso and SSVS;
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and WHO score and anemia grade 1, only selected by the Lasso. The WBS methods do not select thrombopenia grade 1,
likely because this toxicity has clinical relevance weights of only 40 and 0.

In general, the WBS method produces coherent results, with WBS likely to correctly select ordinal variables having
the highest clinical value, while the Lasso appears to select variables almost completely randomly, for instance, selecting
asthenia grade 2 while not selecting asthenia grade 3.

6 DISCUSSION

In this paper, we have proposed the WBS (weight-based SSVS) method derived from SSVS (stochastic search variable
selection). The WBS method uses elicited clinical relevance weights to construct prior distributions for covariate coeffi-
cient inclusion probabilities in a regression model for longitudinal clinical practice data. An extensive simulation study
showed that, as long as clinicians do not provide weights that make no sense, compared with the classical SSVS method,
the WBS method exhibited better performance for all criteria considered (RMSE, log pointwise predictive density) and
produced lower rates of both false positives and false negatives. As expected, performance improved with increasing sam-
ple size. WBS performance depended not only on the covariates' importance weights but also on the weights' sum, which
must be calibrated carefully to obtain good performance. In our simulation study, we chose a large number of covariates
implicated in dose reduction, and therefore, models with lower prior weights showed poorer performance because of low
variable selection rates. The Lasso showed poor performance compared with WBS and SSVS, confirming that Bayesian
methods outperform frequentist methods when working with small samples.

To our knowledge, variable selection methods incorporating informative prior distributions have been considered
mainly in genomic settings. In this context, priors are established by exploiting an expansive literature on genetic vari-
ant severity, both from experimental and bioinformatic points of view. Therefore, in genetic settings, variability of priors
is considered to be low, and simulation studies of performance variability due to prior specification have received little
interest.19 This is not the case for covariates retrieved from EHR, for which the literature is extremely limited regarding
their respective effects on disease severity and thus their importance in medical decision making.

In our setting, only binary variables were used. We dichotomized continuous variables because it is more straightfor-
ward for clinicians to provide elicited weights for binary variables. The proposed method allows for the use of continuous
variables, however. Another limitation of our formulation is that no hierarchical constraints were imposed in variable
selection; that is, if one variable was included, nothing forced another to be included. For instance, if vomiting grade 3
is included in the model, vomiting of grade 4 should also be included. This limitation could be overcome by using the
Farcomeni approach developed for SSVS models.14 Additionally, in the Irinotecan data and similar settings, one may force
all estimated regression coefficients to be negative or null because associated variables should imply either a dose reduc-
tion or no dose adjustment. Furthermore, this work began the analysis only from the second cycle, as we focused on
toxicities. However, the first cycle can be included by considering all toxicities in this cycle to be null.

Many additional elaborations are possible. In this study, although the visit times for different patients may differ sub-
stantially, depending on the side effects generated in the previous cycle, we did not incorporate time or covariates of
previous cycles. In our model, toxicities are not dependent variables but rather are covariates, and if there is a trend with
respect to time, it should have already be summarized by the toxicities. In clinical practice, oncologists consider all of the
patient's treatment history in choosing the dose and the next visit time. Furthermore, toxicities depend directly on previ-
ous doses and times. One possible extension might be to adapt this method to bivariate models in a dynamic treatment
regime framework. Moreover, our model does not take into account the probability of changing the dose but only “how
to reduce the dose when the clinician should to do it.” Another extension of our model could be a conditional model on
“when to change.”

Concerning elicitation of clinical relevance weights, our case study results suggest that clinicians may not have an accu-
rate perception of their actual decision process for dose adjustment. Indeed, most individuals are influenced by cognitive,
psychological, and emotional factors that often prevent decision makers from choosing the best rational option available.26

For example, in clinical practice, if a physician observes major side effects in a patient one day, his/her emotions and
actual experience can lead him/her to reduce the dose of the next patient, even if common sense says to maintain the
current dose.

The elicited scores differed between clinicians, as may be expected. When analyzing real data, one solution could be to
combine the physicians' experiences to build more informative priors either by applying a mathematical aggregation rule,
such as using a mixture prior with the physicians weighted equally, or by allowing the experts to interact with each other
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to obtain a consensus prior.27,28 This interaction may be face-to-face or may involve exchanges of information without
direct contact. The prevailing mathematical approaches are averaging and pooling.29,30 Other such approaches deviate
from these traditional approaches by treating the elicited information as data. In this paper, we have proposed using BMA
in order to combine the results obtained by the WBS method for each clinician's set of weights, giving higher importance
to the best performing model.

Finally, modeling medical decision making may be regarded as a first step to modeling the complex relationships
between covariates, dose reduction decisions, and survival. Our methodology may be extended to focus on dose combi-
nations in frail patients, with the goal to optimize survival. Finally, our method may also be applied in other settings in
which we wish to account for experts' opinion when selecting specific variables in small samples. Indeed, after choosing
what variables to include in the model and categorizing them, clinical relevance weights may be elicited from many clin-
icians for each variable. Then, to combine the different sets of clinical weights, a mixture prior can be used after fitting
the models for each clinician's weights or directly BMA as suggested in this paper. With this approach, the methodology
is generally applicable to other settings having this data structure.
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APPENDIX A

CONVERGENCE OF RMSE

Take the simple case of the linear regression model

di = 𝜃0 + 𝜽Tzi + 𝜖i, 𝜖i iid ∼  (0, 𝜎2), i ∈ {1, … ,n}.

Once coefficients (𝜃0,𝜽
T) have been estimated, we predict the dose di by

d̂i = 𝜃0 + 𝜽̂
T

zi.

Because MSE(d̂) = RMSE(d̂)2 = 𝔼((d − d̂)2), the MSE can be estimated by

MSE = 1
n

n∑
i=1

(di − d̂i)2

= 1
n

n∑
i=1

(
(𝜃0 − 𝜃0) + (𝜽T − 𝜽̂

T
)zi + 𝜖i

)2
.
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In the ideal case in which (𝜃0, 𝜽̂
T
) = (𝜃0,𝜽

T), we obtain

MSE = 1
n

n∑
i=1

𝜖2
i = 𝜎2

n

n∑
i=1

(𝜖i

𝜎

)2
.

Now,
(

𝜖i
𝜎

)
1≤i≤n

are independent, standard normal random variables; thus, the sum of their squares is distributed according
to a chi-squared distribution with n degrees of freedom

n∑
i=1

(𝜖i

𝜎

)2
∼ 𝜒2

n .

We deduce the expectation and the variance

𝔼(MSE) = 𝜎2, 𝕍(MSE) = 2 × 𝜎4

n
.

APPENDIX B

PRACTICAL COMPUTATION OF LOG POINTWISE PREDICTIVE DENSITY

To compute the LPD in practice, it is possible to evaluate the expectation using draws from ppost(𝜽, I, 𝛄, 𝜎2
𝛾 , 𝜎

2
𝜖 ), the usual

posterior simulations, which are labeled 𝜽s, Is, 𝛄s, c2s, 𝜎2s
𝜖 , s = 1, … , S,

L̂PD =
n∑

i=1

K∑
k=1

log

(
1
S

S∑
s=1

p
(

di,k|𝜽s, Is, 𝛄s, c2s, 𝜎2s
𝜖

))
.

The log pointwise predictive density L̂PD is the sum over patients and cycles of the log of the mean over MCMC iterations
of the probability that a new dose d̃ would be obtained by the estimated model.

The following steps are suggested to compute the LPD in our case:

1. For s = 1, … , S, sample (𝜽s, c2s, 𝜎2s
𝜖 ) from ppost(𝜽, 𝛄, 𝜎2

𝛾 , 𝜎
2
𝜖 ):

(𝜽s, c2s) are the values obtained for the sth iteration of the MCMC;
2. For s = 1, … , S, for i = 1, … ,n, draw 𝛾 s

i from  (0, c2s);

3. Compute the probability that p(d̃|𝜽s) = (𝜎2s
𝜖 )−

nk
2 exp

(
−

(
d̃−𝜃s

0−z𝜽s−𝛄s
)T(

d̃−𝜃s
0−z𝜽s−𝛄s

)
2𝜎2s

𝜖

)
.


	Bayesian variable selection based on clinical relevance weights in small sample studies—Application to colon cancer
	Abstract
	INTRODUCTION
	METHODS
	Clinical relevance weights
	Weight-based SSVS
	Combination of prior opinions
	Model comparison

	SIMULATION DESIGN
	Covariate distributions used in the simulations
	Dose generation
	Prior parameter settings

	SIMULATION RESULTS
	Bias
	Prediction performance
	Precision of selected variables

	CASE STUDY
	DISCUSSION
	References
	Appendix A 
	Appendix B 


