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Abstract: Adiponectin is the most abundant plasma adipokine. It mainly derives from white adipose
tissue and plays a key role in the control of energy metabolism thanks to its insulin-sensitising,
anti-inflammatory, and antiatherogenic properties. In vitro and in vivo evidence shows that
adiponectin could also be one of the hormones controlling the interaction between energy balance and
fertility in several species, including humans. Indeed, its two receptors—AdipoR1 and AdipoR2—are
expressed in hypothalamic–pituitary–gonadal axis and their activation regulates Kiss, GnRH and
gonadotropin expression and/or secretion. In male gonads, adiponectin modulates several functions
of both somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress.
In females, it controls steroidogenesis of ovarian granulosa and theca cells, oocyte maturation, and
embryo development. Adiponectin receptors were also found in placental and endometrial cells,
suggesting that this adipokine might play a crucial role in embryo implantation, trophoblast invasion
and foetal growth. The aim of this review is to characterise adiponectin expression and its mechanism
of action in male and female reproductive tract. Further, since features of metabolic syndrome are
associated with some reproductive diseases, such as polycystic ovary syndrome, gestational diabetes
mellitus, preeclampsia, endometriosis, foetal growth restriction and ovarian and endometrial cancers,
evidence regarding the emerging role of adiponectin in these disorders is also discussed.
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1. Introduction

It is well known that white adipose tissue is no longer the main storage compartment of
triglycerides but it is a real endocrine organ releasing a number of biologically active proteins, also
known as adipokines [1]. Adipokines are considered as main regulators of the whole body energy
homeostasis. One of these adipokines, named adiponectin, is recognised to play a major role in
regulation of the insulin sensitivity and the pathogenesis of the metabolic syndrome. In recent years,
its role in the modulation of reproductive functions has become increasingly important. There has
therefore been a spate of research investigating its role in the hypothalamic–pituitary–gonadal axis
but also in placenta and uterus. In this review, we will discuss the structure of adiponectin and its
physiological role in the male and female reproductive tract, with a predominant emphasis on its role
in several human reproductive diseases including polycystic ovary syndrome, gestational diabetes
mellitus, foetal growth restriction, ovarian and endometrial cancer, endometriosis and preeclampsia.

2. Structure and Mechanism of Adiponectin Action

2.1. Structure of Adiponectin Gene and Proteins

2.1.1. Adiponectin Gene

Adiponectin, also known as ACRP30 (adipocyte complement-related protein of 30 kDa), GBP28
(Gelatin-binding protein 28), ADIPOQ (Adiponectin, C1Q And Collagen Domain Containing) and
apM1 (Adipose most abundant gene transcript 1), has been discovered as a factor produced by the
white adipose tissue almost simultaneously by four different teams using different approaches. The
term “adiponectin” appears in 1999 following the alignment of nucleotide sequences of these four
factors [2]. In human, apM1 is a 16 kb gene consisting of three exons and two introns (Figure 1),
showing sequence homologies with the genes encoding collagen VIII, collagen X and the C1q factor
of complement [3]. Several regulatory regions of apM1 gene expression have been identified in one
region promoter of the gene surrounding exon 1. Unlike many genes, the promoter of apM1 does not
include a TATA sequence, but contains several elements of response to many transcriptional factors [4],
as described in Figure 1. So, the transcriptional activity of the adiponectin gene can be regulated by
many mechanisms.

2.1.2. Adiponectin Protein

The full length of human adiponectin (244 amino acids, 30 kDa) consists of four domains: an
amino-terminal signal peptide made up of 18 amino acids, a species specific hypervariable domain of
23 amino acids, a 66-amino acid collagen-like domain consisting of 22 repeats of the motif (Glycine-X-Y)
where X and Y are variable amino acids, and a 137-amino acid carboxy-terminal globular domain [5]
(Figure 2). It represents the long form of adiponectin. However, it exists also a short form of adiponectin
resulting from the cleavage made by an elastase secreted by monocytes and neutrophils. Several
proteolytic sites have been described located within the variable sequence and the collagen domain.
The short form of adiponectin preserves its globular domain integrity and can exert its effects by
binding to its receptor [6] (Figure 2). In contrast to humans, mouse adiponectin is a 247-amino acid
protein [7].

Adiponectin is secreted from adipocytes into the bloodstream as three oligomeric complexes
including trimer (67 kDa), hexamer (complex of two trimers, 130 kDa) and a high molecular weight
(300 kDa) [8] Figure 2. Adiponectin as a monomer is undetectable in native conditions. Polymerisation
is therefore an essential mechanism in regulating the biological activity of the protein [9] Thus,
adiponectin forms trimers (low molecular weight form or LMW) following the establishment of
hydrophobic bonds between the globular domains and noncovalent interactions within α-helices of the
collagenous domains [10]. The short form of the protein does not polymerise further [11]. In contrast,
in its long form adiponectin trimers form hexamers (intermediate or medium molecular weight form or
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MMW) and much more complex structures composed of 18 or more monomers (high molecular weight
form or HMW) [12,13]. This polymerisation of adiponectin requires post-translational modifications.
Indeed, the formation of hexamers is achieved by the establishment of disulphide bridges between
two cysteines located in the variable region of adiponectin. Experimental evidence suggests that
different forms of adiponectin fractions exhibit different biological activities. For example, non-HMW
adiponectin (i.e., complexes with lower molecular weight) shows stronger anti-inflammatory actions,
whereas the HMW form, whose active form constitutes nearly 70% of circulating adiponectin in healthy
people, may be related to insulin sensitivity [14,15].
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Figure 1. Structure of adiponectin gene and its promoter region. Binding sites (cis-elements) are
STAT-RE: Signal Transducers and Activators of Transcription Response Element; CCAAT: CCAAT box is
a distinct pattern of nucleotides with GGCCAATCT consensus sequence; SRE: Serum Response Element;
PPRE: Peroxisome Proliferator Response Element; ATF-RE: Activating Transcription Factor-Response
Element; LRH-RE: Liver Receptor Homolog 1 Response Element; E-box: Enhancer-box; NFAT-RE:
Nuclear Factor of Activated T cells Response Element. Transcription factors (trans-elements) are STAT5:
Signal transducer and activator of transcription 5; C.EBPα: CCAAT/enhancer-binding protein alpha;
PPAR: Peroxisome Proliferator-activated Receptor gamma; ATF3: Activating Transcription Factor 3;
NFATc4: Nuclear Factor of Activated T cells 4; LRH-1: Liver Receptor Homolog-1. The stimulatory
(+) and inhibitory (−) roles of each transcription factor in the adiponectin gene expression are shown
below the binding sites.

Adiponectin is considered as the adipokine most widely present in the bloodstream. It circulates
at relatively high levels (3 to 30 µg/mL) representing thus 0.01% of the total plasma proteins [16] in
different species like human, pigs, dairy cows, rats, chicken and turkeys [17–23]. In human, MMW
and HMW forms represent 90% of the protein in the circulation and the LMW form represents only
10% [24]. The globular form remains extremely minor [12]. In cows, it is well known that the plasma
concentration of adiponectin reaches its minimum before calving and its maximum during early
lactation [25–29]. Unlike rodents and humans, the main circulating form is HMW in cows [26], while
trimeric forms and globular forms are not detected [28,30]. In various species, the plasma adiponectin
level is likely related to reproductive pathologies (polycystic ovary syndrome, gestational diabetes
mellitus, preeclampsia, endometriosis, foetal growth restriction and ovarian and endometrial cancer)
that are detailed below (Section 9 of this review). Expression of the adiponectin in the body is closely
related to many physiological and physiopathological processes.

Adiponectin plasma concentrations are correlated with the adipose tissue level. They are also
regulated by the nutritional status. Indeed, they are increased during fasting and decreased after
refeeding in rodents and sheep [31,32]. Moreover, they are higher in females compared to males in
humans and rodents [21]. Adiponectin levels are lower in women under certain conditions. Indeed,
Cnop et al. (2003) showed that adiponectin levels in the postmenopausal women are higher than
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in the premenopausal women [33], while data from Nishizawa et al. (2002) found no significant
differences [21]. In mice, plasma adiponectin levels are 4-fold higher in mature female than in
immature female [34]. In obese compared to control patients, adiponectin concentrations in adipose
tissue and in the circulation have consistently been found to be abnormally low [35], suggesting that
adiponectin is strongly associated with obesity and is a potentially important hormone in the link
between obesity and women’s pathology.
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2.1.3. Regulation of Adiponectin Expression

Adiponectin expression can be regulated by various factors and physiological processes. As shown
in Figure 1, human adiponectin gene contains binding sites for many transcription factors including
PPAR (peroxisome proliferator-activated receptor gamma [36] and its coactivator PPARγ, coactivator
1α (PGC1α) [37], C/EBPα (CCAAT/enhancer-binding protein alpha) [38], LRH-1 (liver receptor
homolog-1) [36], FoxO1 (forkhead box O1) [39], SREBP-1c (sterol-regulatory element-binding protein
1c) [40], ATF3 (Activating Transcription Factor 3) [41], NFATc4 (nuclear factor of activated T cells 4) [41],
Id3 (inhibitor of differentiation 3) [42], STAT5 (Signal transducer and activator of transcription 5) [43]
and the clock helix–loop–helix transcription factors CLOCK and BMAL1 [44]. The activation and the
repression of these transcription factors are finely regulated by endogenous and exogenous signals
inducing the activation of many signalling pathways in the secretory cell. Once released in the
bloodstream, adiponectin exerts its physiological effects by binding to specific membrane receptors.

2.2. Adiponectin Receptors and Adiponectin Signalling Pathways

2.2.1. AdipoR1 and AdipoR2

Adiponectin acts mainly through two seven-transmembrane domain receptors—AdipoR1 and
AdipoR2—that differ from other G protein-coupled receptors. Indeed, their topology is opposite of
that of the G protein-coupled receptors; their C-terminal end is located extracellularly whereas the
N-terminal end is located intracellularly (Figure 3). AdipoR1 and AdipoR2 have a zinc binding motif
that appears to be essential for signal transduction in the intracellular compartment [45]. They are
structurally conserved (67% amino acid identity) [22]. AdipoR1 is expressed in all tissues and the
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highest expression is in skeletal muscles, while AdipoR2 is expressed mainly in the white adipose
tissue and liver. These receptors have differing affinities for specific forms of adiponectin. AdipoR1 is
a high-affinity receptor for the globular adiponectin form, and acts as a low-affinity receptor for the
long form of adiponectin in skeletal muscle. In contrast, AdipoR2 is an intermediate-affinity receptor
for both globular and full length adiponectin form in the liver [19,22,46].
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Figure 3. Adiponectin receptors and some examples of biological effects of adiponectin in reproductive
tissues or cells. Adiponectin interacts with adiponectin receptors (mainly AdipoR1 and AdipoR2)
to activate or inhibit a number of signalling pathways. T Cadherin receptor (T Cadherin R) binds
the hexameric and high molecular weight isoforms of adiponectin but it has no intracellular domain.
AdipoR1- and R2-dependent signalling is mediated through APPL 1 and APPL2. In the absence of
adiponectin signal, APPL2 can bind to the N-terminal domain of the adiponectin receptors or it can
form an APPL1/APPL2 heterodimer which prevents the APPL1/adiponectin receptors binding. On
the other hand, the binding of adiponectin to its receptors favours the dissociation of this heterodimer.
In peripheral tissues, adiponectin receptors have differing affinities for specific forms of adiponectin.
In the reproductive tissues the affinities for specific forms of adiponectin is unknown. However, in
these tissues, adiponectin regulates different biological effects through various signalling pathways.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 37 

 

structurally conserved (67% amino acid identity) [22]. AdipoR1 is expressed in all tissues and the 
highest expression is in skeletal muscles, while AdipoR2 is expressed mainly in the white adipose 
tissue and liver. These receptors have differing affinities for specific forms of adiponectin. AdipoR1 
is a high-affinity receptor for the globular adiponectin form, and acts as a low-affinity receptor for 
the long form of adiponectin in skeletal muscle. In contrast, AdipoR2 is an intermediate-affinity 
receptor for both globular and full length adiponectin form in the liver [19,22,46]. 

 
Figure 3. Adiponectin receptors and some examples of biological effects of adiponectin in 
reproductive tissues or cells. Adiponectin interacts with adiponectin receptors (mainly AdipoR1 and 
AdipoR2) to activate or inhibit a number of signalling pathways. T Cadherin receptor (T Cadherin R) 
binds the hexameric and high molecular weight isoforms of adiponectin but it has no intracellular 
domain. AdipoR1- and R2-dependent signalling is mediated through APPL 1 and APPL2. In the 
absence of adiponectin signal, APPL2 can bind to the N-terminal domain of the adiponectin receptors 
or it can form an APPL1/APPL2 heterodimer which prevents the APPL1/adiponectin receptors 
binding. On the other hand, the binding of adiponectin to its receptors favours the dissociation of this 
heterodimer. In peripheral tissues, adiponectin receptors have differing affinities for specific forms of 
adiponectin. In the reproductive tissues the affinities for specific forms of adiponectin is unknown. 
However, in these tissues, adiponectin regulates different biological effects through various signalling 
pathways. ⇧ Increase/stimulation. ⇩ Decrease/inhibition. 

2.2.2. The Other Adiponectin Receptors 

The T-cadherin receptor protein has been identified as a receptor for the MMW and HMW forms 
of adiponectin [47]. This membrane receptor does not have an intracellular domain. Thus, T-cadherin 
could regulate the bioavailability of adiponectin, rather than exerting its own effects [22]. Indeed, 
mice deficient in T-cadherin have increased circulating adiponectin levels, especially of the HMW 
form [48]. Some data also suggest that there are other AdipoR isoforms still unknown to date. 
AdipoR-independent effects of adiponectin have been observed in hypothalamic cells expressing the 
AdipoR1 and AdipoR2 receptors. Similarly, macrophages whose expression of AdipoR1, AdipoR2 
and T-cadherin have been invalidated by interfering RNA still show biological effects of adiponectin 
[49]. 

Increase/stimulation.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 37 

 

structurally conserved (67% amino acid identity) [22]. AdipoR1 is expressed in all tissues and the 
highest expression is in skeletal muscles, while AdipoR2 is expressed mainly in the white adipose 
tissue and liver. These receptors have differing affinities for specific forms of adiponectin. AdipoR1 
is a high-affinity receptor for the globular adiponectin form, and acts as a low-affinity receptor for 
the long form of adiponectin in skeletal muscle. In contrast, AdipoR2 is an intermediate-affinity 
receptor for both globular and full length adiponectin form in the liver [19,22,46]. 

 
Figure 3. Adiponectin receptors and some examples of biological effects of adiponectin in 
reproductive tissues or cells. Adiponectin interacts with adiponectin receptors (mainly AdipoR1 and 
AdipoR2) to activate or inhibit a number of signalling pathways. T Cadherin receptor (T Cadherin R) 
binds the hexameric and high molecular weight isoforms of adiponectin but it has no intracellular 
domain. AdipoR1- and R2-dependent signalling is mediated through APPL 1 and APPL2. In the 
absence of adiponectin signal, APPL2 can bind to the N-terminal domain of the adiponectin receptors 
or it can form an APPL1/APPL2 heterodimer which prevents the APPL1/adiponectin receptors 
binding. On the other hand, the binding of adiponectin to its receptors favours the dissociation of this 
heterodimer. In peripheral tissues, adiponectin receptors have differing affinities for specific forms of 
adiponectin. In the reproductive tissues the affinities for specific forms of adiponectin is unknown. 
However, in these tissues, adiponectin regulates different biological effects through various signalling 
pathways. ⇧ Increase/stimulation. ⇩ Decrease/inhibition. 

2.2.2. The Other Adiponectin Receptors 

The T-cadherin receptor protein has been identified as a receptor for the MMW and HMW forms 
of adiponectin [47]. This membrane receptor does not have an intracellular domain. Thus, T-cadherin 
could regulate the bioavailability of adiponectin, rather than exerting its own effects [22]. Indeed, 
mice deficient in T-cadherin have increased circulating adiponectin levels, especially of the HMW 
form [48]. Some data also suggest that there are other AdipoR isoforms still unknown to date. 
AdipoR-independent effects of adiponectin have been observed in hypothalamic cells expressing the 
AdipoR1 and AdipoR2 receptors. Similarly, macrophages whose expression of AdipoR1, AdipoR2 
and T-cadherin have been invalidated by interfering RNA still show biological effects of adiponectin 
[49]. 

Decrease/inhibition.

2.2.2. The Other Adiponectin Receptors

The T-cadherin receptor protein has been identified as a receptor for the MMW and HMW
forms of adiponectin [47]. This membrane receptor does not have an intracellular domain. Thus,
T-cadherin could regulate the bioavailability of adiponectin, rather than exerting its own effects [22].
Indeed, mice deficient in T-cadherin have increased circulating adiponectin levels, especially of the
HMW form [48]. Some data also suggest that there are other AdipoR isoforms still unknown to date.
AdipoR-independent effects of adiponectin have been observed in hypothalamic cells expressing the
AdipoR1 and AdipoR2 receptors. Similarly, macrophages whose expression of AdipoR1, AdipoR2 and
T-cadherin have been invalidated by interfering RNA still show biological effects of adiponectin [49].
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2.2.3. APPL1 and APPL2

Adiponectin induces activation of many signalling pathways. However, adiponectin receptors
do not appear to exhibit kinase or phosphorylation domains. Indeed the targeted mutagenesis of
tyrosine residues of these receptors does not induce disruption of adiponectin signalling [50]. Thus, the
activation of the transduction pathways following the binding of adiponectin to its receptor involves
intermediate molecules binding to adiponectin receptors in response to their conformational change.
The protein APPL1 (Adaptor protein, phosphotyrosine interacting with PH (Pleckstrin Homology)
domain and leucine zipper 1) has thus been identified as an adapter protein capable of binding to the
intracellular domains of AdipoR1 and AdipoR2 receptors [50] (Figure 3). The binding of the APPL1
protein to adiponectin receptors is regulated by a second adapter protein, the APPL2 protein (Figure 3).
In the absence of adiponectin signal, APPL2 can bind to the N-terminal domain of the adiponectin
receptors or it can form an APPL1/APPL2 heterodimer which prevents the APPL1/adiponectin
receptors binding [22]. On the other hand, the binding of adiponectin to its receptors favours the
dissociation of this heterodimer. Thus the APPL proteins regulate the adiponectin signal according to
the Yin and Yang model proposed by Wang et al. [49,51].

2.2.4. Signalling Pathways Regulated by Adiponectin

Upon binding to its receptors, adiponectin activates different signalling pathways in various cell
types: mitogen-activated protein kinase (MAPK), such as p38 and extracellular signal-regulated kinases
1/2 (ERK1/2); serine/threonine protein kinase (Akt); and AMP-activated protein kinase (AMPK). It is
also able to phosphorylate the transcription factor, peroxisome proliferator-activated receptor alpha
(PPARα). Thus, adiponectin regulates through these signalling pathways different functions in the
organism [19,22]. Figure 3 shows some examples of cell signalling pathways regulated in reproductive
tissues or cells.

3. Expression, Regulation and Effect of Adiponectin and Adiponectin Receptors in the
Hypothalamic–Pituitary Axis

The hypothalamic–pituitary–gonadal (HPG) axis plays a critical role in regulating reproductive
function. Gonadotropin-releasing hormone (GnRH), which is secreted by the hypothalamus, acts
on pituitary gonadotrophs to stimulate luteinising hormone (LH) and follicle-stimulating hormone
(FSH) synthesis and secretion, ultimately affecting the animal’s fertility. Adiponectin and its AdipoR1
and AdipoR2 receptors are expressed in the human hypothalamus and pituitary [52,53]. Adiponectin
appears to play an important role in regulating the activity of hypothalamic–pituitary axis, because its
deficiency disrupts FSH and LH secretion as well as LH surge [54]. Adiponectin mutation also causes
significant reduction in GnRH immunoreactive neurons, which helps explain the disrupted estrous
cyclicity and ovarian functions [54].

3.1. Adiponectin and Hypothalamus: A Role in the Fertility Regulation?

Adiponectin receptors expression in the hypothalamus has been observed in many species,
including humans, rodents and pigs [52,55,56]. Adiponectin is also present in the human, mice
and rat cerebrospinal fluid (CSF), suggesting an autocrine or paracrine action of this adipokine on
the hypothalamic–pituitary axis [52,57,58]. In the CSF, the adiponectin trimer is the predominate
form [57]. In addition, studies in mice show that peripheral intravenous application of adiponectin
leads to a concurrent rise in CSF adiponectin [59]. Therefore, adiponectin does cross the blood–brain
barrier, although concentrations in the CSF are approximately 1000-fold lower than that in serum [57].
Cerebrospinal fluid concentrations of adiponectin are increased during fasting and decreased after
refeeding in rodent and sheep [31,32].

In the hypothalamus, GnRH neurons are key components of the reproductive axis, controlling the
synthesis and release of gonadotropins. In vitro studies have notably described an inhibitory effect of
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adiponectin on the secretion of GnRH by hypothalamic cells through activation of AMPK [60]. Indeed,
in GT1-7 cells (subset strains of GT1 cell lines) adiponectin inhibits GnRH secretion but also suppresses
KISS1 mRNA transcription [61,62]. Kisspeptins are hypothalamic neuropeptides discovered in the
2000s. The binding of kisspeptins to their KISS1-R receptors appears to be the mechanism that triggers
puberty by inducing secretion of GnRH.

Thus, adiponectin appears to decrease the secretion of GnRH via the reduction of the signal
emitted by kisspeptins. A more recent study showed that AdipoR2 was expressed in mouse GnRH
neurons and adiponectin rapidly decreased GnRH neuronal activity in a subpopulation of GnRH
neurons via a PKCζ/LKB1/AMPK signalling cascade [63].

3.2. Adiponectin and Pituitary: A Role in the Fertility Regulation?

Adiponectin and its receptors were also described in the pituitary of various species including
human, mouse, rat, chicken and pig [53,64–66]. In human, adiponectin was present mainly in
growth hormone (GH)-, follicle-stimulating hormone (FSH)-, luteinising hormone (LH)- and thyroid-
stimulating hormone (TSH)-producing cells, whereas adiponectin receptors were located in the
gonadotrophs, somatotrophs and thyrotrophs, but not in corticotrophs or lactotrophs. [53]. In cultured
rat and mouse pituitary cells, adiponectin inhibited basal and GnRH-induced LH secretion [64,67].
Furthermore, it decreased the expression of the gene encoding the GnRH receptor (GnRH-R) [64]. In
the porcine primary pituitary cells, adiponectin increased basal FSH release [66]. In this latter study,
adiponectin also modulated GnRH and insulin-induced LH and FSH secretion dependently on the
stage of the oestrous cycle. At the opposite, Sarmento-Cabral A et al., 2017 showed recently that
adiponectin did not affect LH and FSH release by primary pituitary cell cultures from two normal
nonhuman-primate species [68].

The presence of adiponectin receptors in the GnRH neurons and pituitary cells, and its influence on
the GnRH, LH and FSH release suggests an important role of adiponectin at the hypothalamic–pituitary
axis in the control of fertility in both male and female. Both LH and FSH ultimately control gonadal
function. In female, ovarian follicles are stimulated by FSH to grow and mature; LH stimulates ovulation
and corpus luteum formation. In men, FSH initiates, and in conjunction with high intratesticular
testosterone, sustains spermatogenesis, whereas LH controls androgen synthesis by the testicular
Leydig cells. As described below, adiponectin system is expressed and regulates gonadal functions.

4. Expression, Regulation and Effect of Adiponectin in Gonads

4.1. Expression, Regulation and Effect of Adiponectin System in Ovary

The involvement of adiponectin in ovary of multiple species has already been well reviewed by
our and other groups [69,70]. Here we briefly summarise the major published works with an emphasis
on differences between human, rodents and agronomic species.

4.1.1. Plasma and Follicular Fluids Profiles

Adiponectin is detected in follicular fluids (FF). Adiponectin levels are higher in FF than in plasma
in women [71], and the opposite is observed in cows [30]. In human, FF adiponectin concentrations
are positively correlated with the serum values [71–73]. In addition to the differences in adiponectin
concentrations, adiponectin isoform distribution varies between the serum and FF compartments
in women. Indeed, the HMW fraction is significantly higher in serum than in FF [72]. Moreover,
adiponectin levels are lower in FF from women with repeated implantation failures [74]. Taken
together, all these data suggest that ovarian cells could produce adiponectin and FF adiponectin could
be involved in the success of the techniques of medical assistance to procreation.
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4.1.2. Expression in Ovarian Cells

In granulosa cells, adiponectin expression is low and almost undetectable in humans, rodents
and chickens [17,69]. However, adiponectin is strongly produced by human theca cells and even
more so during follicular maturation. In contrast, the expression of AdipoR1 and AdipoR2 is greater
in granulosa cells than in theca cells of hens [17]. In addition, adiponectin, AdipoR1 and AdipoR2
are present in the corpus luteum of mammalian species (human, rat, cow and sows) [69]. In avian
species, the expression of adiponectin in granulosa cells is positively correlated with the weight of F3
preovulatory follicle and is upregulated in ovarian tissues during the laying period compared with the
prelaying period [75,76].

4.1.3. Regulation by Physiologic Status

As adiponectin system was simultaneously involved in metabolism and reproduction, modulation
of the body energy status may regulate their expression in ovarian tissues. The expression pattern of
adiponectin and its receptors increases in bovine granulosa cell during follicular development and
the opposite was observed in bovine theca cells [77]. In human, stable levels of plasma adiponectin
have been observed during the phases of the physiological menstrual cycle [78], whereas Galván and
coworkers have shown lower plasma adiponectin levels in the luteal than in the follicular and the
mid-cycle phase [79]. So, the plasma adiponectin profile is contradictory during the menstrual cycle in
women. In pig, both gene and protein expression of adiponectin are enhanced during the luteal phase
of the cycle [20]. More recently, we demonstrated that the plasma adiponectin concentration is higher
in cows fed high energy diets than cows fed low energy diets presenting reproductive defects [29].
In sheep, feeding restriction increases circulating level of adiponectin and the expression level of both
AdipoR1 and AdipoR2 in ovary [32]. On the other hand, the expression of AdipoR1 and AdipoR2 is
decreased in theca cells of hens fed with fish oil supplementation, while the expression of AdipoR2
is increased in restricted hens [76]. Thus, adiponectin system is modulated by the energy status in
various species.

4.1.4. Regulation by Hormones

Hormones may regulate the production and action of adiponectin at different levels: adiponectin
secretion, adiponectin receptor expression and cellular responses. In humans, LH treatment increases
the level of adiponectin FF as well as in theca and granulosa cells [20,69,80,81]. In addition, FSH and
hCG (a substitute for LH) treatment contribute to activate LH receptors and consequently upregulate
by more than 2-fold the expression of AdipoR2 (but not AdipoR1) in human granulosa cells [69].
Conversely, an hCG injection increases the expression of adiponectin and AdipoR1 (but not AdipoR2)
genes in rat ovaries [17,69]. Furthermore, the expression of AdipoR2 is increased by LH and reduced
by IGF1 in bovine theca cells [69,82].

4.1.5. Effect on Steroidogenesis

Adiponectin can modulate and mediate the actions of hormones production by ovarian cells.
In mammals, numerous studies have shown beneficial effects of adiponectin on various physiological
functions. The work published by our team has clearly demonstrated an effect of adiponectin on the
steroidogenesis of ovarian cells trough variability across species. In human granulosa cells, adiponectin
enhances the secretion of progesterone and oestradiol in the presence of FSH or IGF-1 [71,83].
Furthermore, depletion of adiponectin gene in mice disturbs steroidogenesis, follicular development
and reduces fertility [54]. In cattle, adiponectin inhibits insulin-induced steroidogenesis in granulosa
and theca cells [82,84]. In hens, adiponectin increases IGF-1-induced progesterone production by
granulosa cells from F2 and F3/4 follicles and decreases LH or FSH-induced production by granulosa
cells from F3/4 follicles [17].
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Adiponectin also inhibits synthesis androgens including androstenedione in the murine ovary [85], as
described in Section 9.1.1. In women with polycystic ovary syndrome, characterised by hyperandrogenism,
circulating levels of adiponectin are decreased [86]. Adiponectin and its receptors are also present in the
male reproductive tract.

4.2. Expression, Regulation and Effect of Adiponectin System in Testis

4.2.1. Blood Plasma and Seminal Fluid Profiles

Seminal fluid (SF) is the male body fluid related to reproduction. It contains adiponectin at
concentrations approximately 66- and 180-fold lower than serum in men and bulls, respectively [30,87].
In addition, a positive correlation between the adiponectin concentrations in both SF and blood plasma
was observed suggesting that adiponectin is transferred from the blood to testis tissue, particularly via
gaps in the blood–testis barrier.

4.2.2. Expression in Testicular Cells

Adiponectin and adiponectin receptors are expressed in human testes and more precisely in the
Leydig cells. Adiponectin receptors are also present in the spermatozoa [88–90]. AdipoR2 null mice
demonstrated atrophic seminiferous tubules with aspermia (lack of semen) and enlarged brains, but
displayed normal testosterone levels; whether these testicular defects reflect central or peripheral
responses to the loss of AdipoR2 signalling remains unknown [91]. Expression of adiponectin and its
receptors (AdipoR1 and AdipoR2) declines significantly in the testis of old mice [92].

Thus, an adequate concentration of adiponectin and its receptors may be required for normal
testicular functions and adiponectin treatment could be a promising antiageing therapy promoting
normal reproductive activities in the testis of aging mice.

4.2.3. Regulation by Physiologic Status

In chicken, the expression of AdipoR1 and AdipoR2 mRNA is modified during the puberty;
the expression of these two mRNA is increased in adulthood compared to prepubertal animals [93].
This suggests that the sexual maturation induces an upregulation of testicular adiponectin receptors
genes expressions. AdipoR2 protein expression is also increased in Leydig cells during the puberty in
rats [89,94] and mouse making the cells more sensitive to circulating adiponectin. Moreover, in the
mouse, it has been shown that the serum concentration of adiponectin is also increased during this
period [24,95].

4.2.4. Regulation by Hormones

Several studies have shown a link between the steroid secretion and adiponectin. For example,
an ablation of gonads in adult male mice led to an increase of circulating adiponectin [95,96]. However,
when an injection of testosterone was performed on the same animals, the levels of circulating
adiponectin were restored [96]. In men with hypogonadism, high concentrations of serum adiponectin
were reduced by androgen supplementation [97]. A study in the rat has shown a relationship between
testosterone and adiponectin. In this study, a developmental exposure to isoflavones has increased
serum adiponectin levels and decreased serum testosterone levels [94]. The testis extract from the pig,
enhanced adiponectin secretion in adipocyte through the peroxisome proliferator-activated receptor
signalling pathway [98]. Taken together, these studies suggest that a reciprocal relationship and a
possible regulation exist between gonadal steroid hormones and adipose tissue-derived factors.

4.2.5. Effect on Steroidogenesis, Lactate Production and Cytokine-Mediated Cytotoxicity

Adiponectin regulates both spermatogenesis and steroidogenesis in adult testis via its two
receptors, AdipoR1 and AdipoR2 [89,99]. Indeed, in vitro experiments showed that adiponectin
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acted directly in Leydig cells to decrease androgen secretion, which was associated with inhibition of
the StAR protein in Leydig cells [94].

Following adiponectin binding, AdipoR1 and AdipoR2 activate downstream targets such as
AMPK, PPAR-α, and MAPK [19]. In the testis, AMPK and PPAR-α signalling pathways have been
shown to be functional and involved in the regulation of steroidogenesis [100]. Therefore, adiponectin
could interact through these signalling pathways to alter testosterone production.

However, adiponectin did not modulate anti-Mullerian hormone (AMH) transcript levels [101].
Another important role of adiponectin is to maintain insulin sensitivity by stimulating glucose uptake
in the testes [99]. Indeed, intratesticular glucose level was shown to be associated with testicular
functions like testosterone production [102]. Furthermore, adiponectin administration ameliorates
testicular mass and functions in aged mice by enhanced expression of insulin receptor, antioxidative
enzyme activity, testosterone synthesis and glucose and lactate uptake by enhanced expression of
transporters GLUT8 (glucose transporter) and MCT2 & MCT4 (lactate transporters) [92].

As potent anti-inflammatory mediators, adiponectin has been demonstrated to protect Leydig
cells against cytokine-mediated cytotoxicity, acting as a testicular defence mechanism to attenuate
the negative impact of proinflammatory molecules, particularly those released by macrophages
(e.g., interleukin 1 (IL-1), tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)) on
steroidogenesis [103].

Thus, while adiponectin signalling appears to be present in male gonadal tissue, the extent to
which this signalling contributes to normal testicular function and fertility potential need to be clarified.

5. Expression, Regulation and Effect of Adiponectin System in Gametogenesis (Oocyte and
Spermatozoa)

5.1. Oocyte

The expression of adiponectin (gene and protein) was found in the oocytes of rats [17] and
cows [77,84], whereas that of AdipoR1 and AdipoR2 has been shown in oocytes of cows [84], pigs [104],
goats [105] and rats [17]. Several studies have shown that adiponectin supplementation during
in vitro maturation (IVM) of human, mouse, goat and swine oocytes exerts positive effects on meiotic
progression and initial embryonic development [104,106,107] (Figure 4A). In goat oocytes, adiponectin
has a positive effect on the meiotic maturation through the classical MAPK pathway [105]. In contrast,
no significant effects of adiponectin were observed on bovine IVM, cleavage and blastocyst formation
rates [84] (Figure 4A). These results indicate that species differences may exist with regard to the
specific oocyte response to adiponectin. In human, a decrease in DNA methylation levels in the
promoter of adiponectin has been described in response to glucose IVM exposed to 10 mM glucose as
compared to controls [108].
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5.2. Spermatozoa

5.2.1. Localisation of Adiponectin and Its Receptor

The presence of adiponectin receptors on spermatozoa has been reported by Kawwass et al.
2015 [70]. In bulls, adiponectin is abundantly found on flagellum whereas AdipoR1 can be observed
particularly on the equatorial and acrosome regions, and AdipoR2 on the sperm head region and on
equatorial line [109].

5.2.2. Role of Adiponectin on Sperm Motility and Capacitation

In bull, plasma adiponectin concentration and spermatozoa mRNA abundances for AdipoR1
and AdipoR2 are positively related to sire conception rate [109]. In ram, an association between
adiponectin and its receptors and sperm motility parameters has been reported [110] (Figure 4A).
In human, adiponectin levels in seminal plasma have been shown to be positively correlated with sperm
concentration, sperm count and percentage of typical sperm forms [87] (Figure 4A). After capacitation,
the levels of adiponectin and its receptors are lowered, suggesting a direct role on sperm motility [87].

6. Expression, Regulation and Effect of Adiponectin System in Embryo Development and
Implantation: The Evolution of the Adiponectin System during Pregnancy

6.1. Adiponectin System during Embryo Development

Adiponectin and its receptors are expressed in embryos at different stages of development,
in different species of mammals, chickens and fishes [111,112].

Kim et al. (2011) demonstrated, in mouse, the expression of adiponectin mRNA in 2-cell and 8-cell
embryos [113]. The receptors were detected at all stages of the preimplantation embryo, although
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levels were lowest at the blastocyst stage. AdipoR1 mRNA level was raised in 8- to 16-cell embryos.
In morulas and blastocysts, the level of adipoR1 mRNA was significantly higher than in oocytes.
AdipoR2 mRNA level was lower in 4-cell embryos and 8- to 16-cells embryos than in oocytes, and
significantly increased in morulas and blastocysts [114]. By in situ hybridisation, adiponectin mRNA
was detected in the mouse embryo at day 7 and day 8. In bovine embryo, AdipoR1 was clearly
expressed but AdipoR2 and adiponectin were weakly present and undetectable, respectively [84].

The effects of adiponectin on in vitro oocyte maturation and early embryo development
were assessed in different species (Figure 4A). In bovine, when culture medium of embryos
was supplemented with recombinant adiponectin, any effect of adiponectin was observed in the
48 h-cleavage and day 8 blastocyst rates [84]. In mouse, when 4-cell embryos were cultured in vitro
and supplemented with 10 µg/mL of different isoforms of adiponectin, most of the embryos in all
groups reached the blastocyst stage; however, the full-length and the trimeric isoforms had opposite
effects on the embryo distribution. With the full-length isoform, the proportion of embryos with lower
cell numbers decreased while the proportion of embryos with high cell numbers increased. Opposite
results were observed with the trimeric isoform [114]. In pig, when oocytes were matured in vitro in
medium alone, and then cultured for 7 days with adiponectin, development to the blastocyst stage was
significantly improved compared to the control group (medium alone). These results provide evidence
that adiponectin has positive effects in both oocyte maturation and embryo culture in this species [104]
(Figure 4A). Furthermore, a recent study shows that in pig embryos, the methylation level of AdipoR2
increased in response to female nutritional restriction [115], suggesting that the nutritional status of
the mother can affect the adiponectin system in the offspring.

Mammalian preimplantation embryos contain lipid droplets [116] that serve as an energy source.
They influence cell–cell interactions, cell proliferation and intracellular transport mechanisms [117].
However, excess lipid accumulation above the normal level is linked with impaired embryo quality
due to cellular dysfunction and/or cell death caused by increased lipid peroxidation and mitochondrial
dysfunction. In rabbit, adiponectin regulates embryonic lipid metabolism by AMPK signalling [118].

6.2. Evolution of Serum Adiponectin during Pregnancy

After several controversies, it is now well established that adiponectin is not a placental
hormone [119,120]. Maternal adiponectinemia is constant throughout pregnancy and results mainly
from adipocyte production. However, a decrease in circulating adiponectin levels is observed after
delivery [121]. This suggests that placental factors contribute to increased adiponectinemia early in
pregnancy and persist until parturition. It has also been shown that the HMW form of adiponectin is
present in the bloodstream of the pregnant woman compared to the nonpregnant woman [122].

7. Expression, Regulation and Effect of Adiponectin System in Endometrium, Placenta and
Relation between the Foetus and Mother

7.1. Expression and Effects of Adiponectin on Uterine Functions

The role of adiponectin in the endometrium is relatively unknown. The AdipoR1, AdipoR2 and
adiponectin receptors themselves are present in this tissue [123,124]. A variation in AdipoR1 and
AdipoR2 protein expression was measured during the menstrual cycle. Specifically, this expression
is maximal in the middle of the secretory phase of the cycle, corresponding to the period of uterine
receptivity to the embryo [123]. This study therefore suggests an important role of the adiponectin
signal during human embryonic implantation. This hypothesis has been reinforced by a study showing
that the endometrium of women with repeated implantation failures underexpresses AdipoR1 and
AdipoR2 compared to fertile endometrium [124]. Adiponectin would also exert an anti-inflammatory
effect in the endometrium by inhibiting the production of proinflammatory cytokines such as IL-6,
IL-8 and MCP-1 (monocyte chemotactic protein-1) [123]. Finally, adiponectin decreases cell viability of
human endometrial cells [125] (Figure 4B).
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7.2. Expression and Effects of Adiponectin on the Placenta

Adiponectin appears to exert an endocrine action (via adipose tissue) or paracrine (via the
endometrium) in the placenta. Thus, it regulates many placental processes:

• Inflammatory Response:
Interestingly, while its anti-inflammatory role has been described in many organs, including

the endometrium, it appears that adiponectin exerts a proinflammatory effect in the third trimester
placenta. Adiponectin induces the production of CD24 and Siglec-10 inflammatory molecules and
interleukins IL-8 and IL-1β by trophoblasts derived from term placenta [126]. These proinflammatory
effects were also observed during the in vitro culture of placental explants of the third trimester, in
the presence of adiponectin. The authors observed an increase in the secretion of interleukins IL-6
and IL-1β and TNF-α via the NF-κB pathway [127]. These factors may be necessary to trigger the
immunotolerance phenomenon in the mother (Figure 4C).

• Cell Proliferation
Adiponectin exerts its “classic” role of antiproliferative hormone in villous trophoblastic cells in

the first trimester [128]. These results are also observed in the placenta at term, where adiponectin
reduces the number of cells entering into mitosis by control of the MAPK pathway [129] (Figure 4C).

• Cell Differentiation
Adiponectin stimulates the biochemical (secretion of hCG and leptin secretion) and morphological

(increased expression of syncytin-2 and decreased expression of E-cadherin) differentiation of
first-trimester villous trophoblasts early (obtained before the arrival of the blood in the intervillous
chamber) [120]. On the other hand, it inhibits the biochemical differentiation of villous trophoblastic
cells from “late” first-trimester placentas and third-trimester placentas [119,130]. However, it has no
effect on morphological differentiation in the term placenta [130] (Figure 4C).

• Cellular Invasion
Adiponectin increases the invasive abilities of trophoblastic cells by stimulating the activity

of metalloproteases MMP-2 and MMP-9—two major enzymes of the invasion process—which
digest the extracellular matrix of the endometrium. These enzymes thus promote the migration
of trophoblastic cells within the deciduous. At the same time, adiponectin decreases the expression of
the metalloprotease inhibitor, TIMP-2 [119] (Figure 4C).

7.3. Relation between Foetus and Mother

Recurrent spontaneous abortion (RSA) is associated with abnormal maternal tolerance to the
semiallogenic foetus. A recent study shows that recombinant adiponectin therapy improves pregnancy
outcome in a murine model of abortion by expanding the Treg cell population and function and
decreasing the Th17 cell population and function via a p38MAPK-STAT5 pathway. This therapy
reduced the abortion rate in abortion-prone model. Recombinant adiponectin administration induced
the expression of AdipoR1 and AdipoR2 mRNA at the maternofetal interface [131].

Throughout the entire first trimester of pregnancy, foetal growth is sustained by endometrial
secretions, i.e., histiotrophic nutrition. Endometrial stromal cells (EnSCs) accumulate and secrete a
variety of nutritive molecules which are absorbed by trophoblastic cells and transmitted to the foetus.
Glycogen appears to have a critical role in the early stages of foetal development, since infertile women
have low endometrial glycogen levels. Duval et al., 2018 showed that adiponectin exerts a dual role at
the foetal–maternal interface by promoting glycogen synthesis in the endometrium and conversely
reducing trophoblastic glycogen uptake [132].

8. Foetus Growth

It has been observed in a mouse model that the injection of adiponectin into the mother induces a
reduction in the foetal growth of young mice [133]. In humans, a negative correlation between maternal
adiponectinemia and infant weight has also been observed [134]. This effect of adiponectin on foetal
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growth may be related to the effects of this adipokine on the expression of nutrient transporters in the
placenta. Indeed, adiponectin inhibits the expression of amino acid transporters (SNAT) in the human
placenta at term [135]. In the same way in the pregnant rat, adiponectin reduces the expression of the
GLUT3 glucose transporter and that of lipoprotein lipase transporting fatty acids in the placenta [136].
Similar results were observed in the mouse. Indeed, chronic administration of adiponectin during
pregnancy reduces placental transport of amino acids in this species [133]. Thus, by inhibiting the
transport of nutrients, adiponectin appears to negatively regulate foetal growth.

It has been suggested that the hyper-growth pattern of the foetus when there is maternal obesity may
be due to the relatively lesser maternal concentrations of total and HMW adiponectin. This endocrine and
physiological paradigm may result in increased insulin and mammalian target of rapamycin complex 1
(mTORC1) placental signalling, as well as an upregulation of transplacental glucose and sodium-coupled
neutral amino acid transporters (GLUT and SNAT) [133,137,138]. Furthermore, nutrients available for
foetal growth are greater when there is maternal hypoadiponectinemia and insulin resistance [139,140].

In pregnancies where there are not symptomatic problems, increased maternal adiponectin
regulates foetal growth [135]. As pregnancy progresses, the physiologic decrease in adiponectin
concentrations, as well as insulin sensitivity, result in increased amounts of nutrients from the maternal
to foetal circulation, increasing foetal growth [133,135,138]. With maternal obesity or gestational
diabetes, total and HMW concentrations of adiponectin, however, are relatively less, even before
pregnancy as compared to when the obesity condition does not exist [140]. Hypoadiponectinemia
exacerbates the loss of insulin sensitivity and the increases in nutrient partitioning from the maternal
to foetal circulation, resulting in larger foetuses and macrosomic babies [140–142]. The body weight of
foetuses from adiponectin (−/−) dams was significantly greater than that of wild type dams at both
embryonic day (E)14.5 and (E)18.5. In addition to nutrient supply, maternal adiponectin inhibits foetal
growth by increasing IGFBP-1 expression in trophoblast cells [143].

9. Adiponectin and Reproductive Diseases:

Diseases associated with abnormal adiponectin levels are polycycstic ovary syndrome, ovarian
and endometrial cancer, endometriosis, gestational diseases, preeclampsia and foetal growth restriction,
all of which are associated with subfertility.

9.1. Ovarian Pathologies

9.1.1. Polycystic Ovary Syndrome (PCOS)

Polycystic ovary syndrome (PCOS) is a very common endocrinopathy affecting 6 to 13% of women
of reproductive age and one of the leading causes of female poor fertility [144]. Since Rotterdam
Consensus Conference in 2003, its diagnosis requires the presence of at least two of the following
features; oligo-/anovulation, hyperandrogenism and polycystic ovaries on ultrasound (corresponding
to a follicle number per ovary ≥ 20 and/or an ovarian volume ≥ 10 mL in either ovary) [145].
PCOS is frequently associated with insulin resistance (IR), abdominal obesity [146] and an increased
risk of developing type 2 diabetes since as many as 10% of women with PCOS develop diabetes
by the age of 40 years [147]. Hyperandrogenism is the other main feature of the syndrome with
elevated circulating androgen levels observed in 60 to 80% of PCOS patients [148]. Development of
hyperandrogenism happens in part because high insulin levels and free insulin growth factor (IGF)
stimulate androgens production by ovarian theca cells [149]. Furthermore, an increase in abdominal
adipose tissue, stimulated by compensatory hyperinsulinemia, creates an imbalance in sex steroids
with decreased sex hormone binding globulin (SHBG) levels and increased free androgens levels [149].
Although IR and hyperandrogenaemia are the essential abnormalities of the syndrome, mounting
evidence supports that also genetic factors play a key role in PCOS pathogenesis [150].

The implication of adiponectin in energy metabolism as an insulin-sensitising, antiatherogenic and
anti-inflammatory molecule is largely admitted. Notably, obesity and insulin-resistant states have been
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associated with reduced plasma adiponectin concentrations [146]. In women with PCOS, adiponectin
signalling in adipose tissue seems to be impaired with decreased expression of AdipoR1 and AdipoR2,
suggesting that adiponectin dysregulation may be one of the possible mechanisms responsible for
lessening insulin-sensitivity [147] (Figure 6). As accumulating evidence supports a direct role of this
adipokine in female reproductive tissues, altered adiponectin levels could thus be causally involved in
both the reproductive and metabolic disturbances associated with PCOS (Figure 5A,B).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 15 of 37 
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According to two meta-analyses [146,151], after controlling for BMI-related effects, serum
adiponectin concentrations in PCOS women are lower than in non-PCOS controls. Notably, HMW
adiponectin appears to be selectively reduced in women with PCOS independently of IR severity [152]
(Figure 5). Nevertheless, other studies found no difference in adiponectin plasma levels between
PCOS patients and controls [153–156]. Similarly, data concerning adiponectin expression in adipose
tissue are controversial. Carmina et al. demonstrated that adiponectin mRNA levels were reduced in
visceral and subcutaneous (SC) adipose tissue of PCOS patients compared to controls [101], while no
changes of adiponectin expression in SC fat were found by Lecke et al. and Svendsen et al. [155,156]
(Figure 5A).

Regarding the reproductive tissues, adiponectin concentration in follicular fluid (FF) is decreased
in PCOS women [157–159]. In PCOS and control groups, a strong positive correlation was observed
between HMW adiponectin concentrations in serum and FF samples [158]. Intrafollicular HMW
adiponectin levels were 2 times lower than in plasma, suggesting a combined effect endocrine factors,
including insulin and gonadotropins, rather than passive diffusion result [157]. Compared to normal
ovaries, in PCOS a lower proportion of theca cells expresses adiponectin receptors [147] and granulosa
cells show decreased expression of adiponectin, APPL1 [160], AdipoR1 and AdipoR2, possibly affecting
follicular development and selection of a dominant follicle [158].
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The downregulation of adiponectin expression in PCOS women may contribute to their
characteristically lower insulin sensitivity [101] and even contribute to the hyperandrogenic
environment (Figure 5B). Indeed, adiponectin suppresses production of androstenedione and key
enzymes of the androgen synthesis pathway in mice ovaries [85] and cultured human theca cells [147].
Further, in granulosa cells, it increases the expression of the enzymes involved in oestradiol and
progesterone synthesis [17], enhancing aromatase activity and limiting androgens production by
theca cells. On the other hand, the inhibitory effect of testosterone on adiponectin synthesis has
been suggested by the sexual dimorphism observed in humans, with adiponectin concentrations
significantly higher in women than in men [21], and confirmed in castrated rats [161]. Similarly, in
hypogonadal men, elevated adiponectin levels are reduced to rates similar to healthy individuals
by a testosterone replacement therapy [97]. In vitro, androgens suppress adiponectin expression by
decreasing its secretion [21], but treatment of adipose tissue with testosterone and oestradiol increases
the expression of AdipoR1 and AdipoR2 [162]. According to this observation, in women with PCOS,
possibly as the result of high levels of androgens, adiponectin receptors are upregulated in both
subcutaneous and visceral fats, this may be a compensatory mechanism to achieve some insulin
sensitivity [162] (Figure 5B).

The existence of a potentially causal relationship between adiponectin and PCOS is strengthened
by genomic studies. At first, a single nucleotide polymorphism of human adiponectin precursor gene
(ADIPOQ)—T45G—has been investigated in relation to PCOS, and a statistically definable correlation
between the occurrence of this gene form and the ovarian disorder was found [163]. More recently,
others two functional ADIPOQ polymorphisms—rs1501299 and rs2241766—were reported to be
significantly correlated with PCOS risk in Caucasian women [150]. Specifically, the ADIPOQ rs2241766
TT genotype [164] and the G allele of rs1501299 [165] were associated with a significantly increased
risk of developing PCOS. As previous studies have found that the presumably “protective” T allele of
rs1501299 was accompanied by higher adiponectin expression, this observation further supports the
hypothesis that decreased adiponectin levels are associated with PCOS [165].

Finally, data from clinical investigations in PCOS women confirm adiponectin relevant role
in the physiopathology of this syndrome. Thus, Mohammadi et al. demonstrated that 8-week
omega-3 fatty acid supplementation in overweight and obese PCOS patients significantly increased
the mean baseline levels of adiponectin and concomitantly decreased IR [166]. This effect of
omega-3 fatty acids on adiponectin has been recently confirmed by Yang et al. They also reported
a significant decrease in total cholesterol, triglycerides and LDL-cholesterol, resulting in a global
beneficial effect on cardiometabolic risk factors characteristic of PCOS women [167]. Further, using a
dehydroepiandrosterone (DHEA)-treated PCOS mouse model, Singh et al. showed that exogenous
adiponectin treatment enhanced the ovarian expression of insulin receptors and decreased theca
androgen synthesis [168], which was accompanied by restored ovulation and normalised circulating
androgens and glucose levels [169]. Thus, systemic adiponectin treatment could be even a promising
therapeutic aid for PCOS management.

9.1.2. Ovarian Cancers

Ovarian cancer is the most lethal gynaecologic malignancy among women, with an estimated
150,000 annual deaths [170]. However, due to the unspecific and inconspicuous symptoms in the early
stage of ovarian cancer, there are no effective and accurate detection methods for this disease [171].
There are many types of ovarian cancer that originate from different ovarian cell types [172], including
mucinous ovarian cancer, epithelial ovarian cancer, germ cell cancer, stromal cell cancer (which
forms from the cells that secrete female hormones), ovarian endometrioid adenocarcinoma, clear
cell carcinoma, squamous cell carcinoma and serous carcinoma [173]. Epithelial ovarian cancer, the
most common ovarian malignancy, originates in the epithelial cells on the surface of the ovary and
accounts for 85–89% of ovarian cancers. Germ cell cancer accounts for only 5% of ovarian cancers and
originates from the cells of any one ovary. This rare cancer affects mainly adolescent girls and young
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women. Two other rare cancers that account for 7% of all ovarian cancers are interstitial and endocrine
ovarian tumours.

Literature data have found that lower adiponectin levels are associated with higher incidence of
various human cancers, such as ovarian, endometrial and breast cancers [174,175]. The inhibitory effect
of adiponectin on the proliferation of several types of cancer cells has also been reported [176,177].
Brakenhielm et al. (2004) found that adiponectin inhibits primary tumour growth and is linked to
decreased angiogenesis [177]. These findings suggest that adiponectin may be the link between obesity
and increased cancer risk in women. The expression of AdipoR1 and AdipoR2 has been reported in a
human granulosa tumour KGN cell line [83] and in various epithelial ovarian cancer cell lines. Their
expression in these cell lines was lower than in the granulosa tumour cell line (COV434) [178]. Li et al.
(2017) illustrated that epithelial ovarian cancer patients with AdipoR1-positive expression survived
longer than those with AdipoR1-negative expression [179]. The last study of Hoffmann et al. (2018)
indicated that adiponectin decreased epithelial ovarian cancer cell proliferation, and that this effect
was independent of apoptosis [178]. Nagaraju et al. (2016) proposed that adiponectin action on ovarian
cancer can be induced through activation of AMPK/PKA pathway and PPARγ regulation [180].

9.2. Uterine/Endometrial Diseases

9.2.1. Endometriosis and Endometrial Cancer

Endometriosis corresponds to ectopic implantation and a high invasiveness of the endometrial
tissue. Some studies have indicated that serum adiponectin level decreases in women with
endometriosis [181] and endometrial cancer [182]. Also, adiponectin level in peritoneal fluid of
endometriosis patients decreased dramatically in advanced endometriosis [183]. Takemura et al. (2006)
compared adiponectin concentrations in serum and peritoneal fluid in women with and without
endometriosis [123]. They reported that adiponectin concentrations were lower in women with
endometriosis than in those without endometriosis. However, Pandey et al. (2010) observed
similar adiponectin levels in women with pelvic endometriosis compared to women without
endometriosis [184]. Similar results were reported by Choi et al. (2013), who did not find any difference
in the expression of adiponectin or AdipoR in normal endometrium and ovarian endometrioma [185].
Adiponectin inhibit endometrial stromal cell proliferation in dose and time dependant manner, and
cause cell death, suggest as antiendometriosis agent [125].

So, adiponectin could be a beneficial factor to limit the endometriosis. However, further studies
are necessary to better understand its effects in this gynaecologic disease.

9.2.2. Endometrial Cancer

Endometrial (uterine) cancer starts in the layer of cells that form the lining (endometrium) of
the uterus. Over 80% of endometrial cancers are adenocarcinomas (endometrioid). Endometrial
cancer is most commonly found in women 55 years and older and rarely occurs in women below
45 years of age [180]. Women with high leptin levels, lower circulating levels of adiponectin in
serum due to obesity, hyperinsulinaemia, and high leptin/adiponectin ratio have the highest risk of
developing endometrial cancer [186]. Several study documented that adiponectin and obesity act
independently in promoting endometrial cancer [187,188]. High circulating levels of adiponectin are
related to a reduced risk of developing endometrial cancer, independent of the other risk factors such
as insulin resistance and hypothyroidism that cause obesity [189]. The effect of adiponectin and obesity,
synergistically, was associated with a 6-fold increase in the risk of developing endometrial cancer.
Study of Hyun-Seuk Moon et al. documented that the adiponectin receptors expression is similar in
normal and cancerous tissues, but AdipoR1 was higher than that AdipoR2 in the human endometrial
cancer cell lines KLE and RL95-2 [190]. Moon et al. hypothesised that adiponectin mediates activation
of the AMPK pathway by LKB1 (an adapter molecule with growth-suppressing effects on tumour
cells) [190]. Adiponectin-mediated AMPK activation inhibits cell proliferation, colony formation, and
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adhesion and invasion properties of endometrial cancer cells [191], and inhibits angiogenesis and
the neovascularisation process in mouse [177]. Decreased expression of cyclin D1 and E2, different
pro-growth regulators of cell cycle, and the signalling proteins ERK1/2 and Akt are all associated
with PTEN (phosphatase tensin homolog, tumour suppressor gene) activity and LKB1-mediated
adiponectin signalling in inhibiting endometrial carcinogenesis. These results suggest that additional
studies are needed to determine the significance of adiponectin and adiponectin receptors as prognostic
markers and therapeutic targets in endometrial cancer [180].

9.3. Gestational Pathologies

9.3.1. Gestational Diabetes Mellitus (Figure 6)

Gestational diabetes mellitus (GDM) is defined as “diabetes first diagnosed in the second or
third trimester of pregnancy that was not clearly overt diabetes prior to gestation” [192]. According
to last International Diabetes Federation estimation, it affects approximately 14% of pregnancies
worldwide, representing←18 million births annually [193]. During pregnancy, GDM can result in
serious complications for both mother and child, including preeclampsia, preterm birth, stillbirth,
macrosomia and hypoglycaemia in the newborns. Moreover, although it usually resolves following
delivery, in the long-term, women with a past history of GDM and babies born of GDM pregnancies
are at increased risk of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular diseases [193].

In healthy pregnancy, insulin sensitivity (IS) increases during early gestation to promote glucose
uptake into adipose stores in preparation for the energy demands of later pregnancy. As pregnancy
progresses, however, IS lessens under the effect of several local and placental hormones. As result,
glycaemia is slightly elevated and glucose is readily transported across the placenta to fuel foetal
growth. This physiological state of insulin resistance (IR) also promotes endogenous hepatic glucose
production and lipolysis in adipose tissue, resulting in a further increase in blood glucose and free fatty
acid (FFA) concentrations [193]. Pregnant women compensate for these changes through hypertrophy
and hyperplasia of pancreatic β cells, as well as increased glucose-stimulated insulin secretion [194].
Failure of this compensatory response gives raise to maternal hyperglycaemia or GDM [195]. Thus,
GDM is usually the result of β cell dysfunction on a background of chronic IR during pregnancy.
In most cases, both β cell impairment and tissue IR exist prior to pregnancy and can progress,
representing the basis for increased risk of T2DM in post-pregnancy [193]. Indeed, GDM is often
considered as a prediabetic state [196].

Human pregnancy is a physiological condition characterised by decreased circulating
adiponectin [197]. In late pregnancy adiponectin mRNA levels in white adipose tissue were 2.5-fold
lower compared to pre pregnancy assessments, most likely suggesting reduced adiponectin production,
possibly due to gestation-related adipose tissue accumulation in abdominal compartment [197].
Interestingly, lowering in total adiponectin is reflected primarily at the level of HMW adiponectin
complexes resulting in decreased HMW/LMW ratio, further suggesting that HMW adiponectin is
the active form of the protein [197,198]. Pregnancy-mediated adiponectin changes seem related to
impairment of peripheral IS to glucose, but not to lipid metabolism as, contrary to what happens in
nonpregnant women [198], in late pregnancy plasma adiponectin concentrations were independent of
FFA levels under conditions of hyperinsulinemia [197].

Interestingly, during pregnancy, adiponectin is expressed and circulates in maternal and foetal
compartments separately [199]. It can be found in foetal circulation at the 24th week of gestation at the
earliest [200] and its levels increase in parallel with gestational age [201]. Compared to maternal plasma,
umbilical vein serum adiponectin concentration was found 3-fold higher [202]. As no correlation
between adiponectin levels in the maternal and foetal circulation was shown, and since there is
no transplacental crossing of molecules larger than 500 Da, it is likely that different mechanisms are
implicated in adiponectin production and regulation in the foetus and the mother. Notably, adiponectin
may have an important role in foetal carbohydrate metabolism, especially in the presence of GDM [200].
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These findings even suggest that human placenta might be an independent source of adiponectin [203].
Indeed, although the results were controversial [119], there are evidences that adiponectin and its
receptors are present in rat and human placenta [136,163] and that human placenta is able to secrete
adiponectin in an in vitro model [203]. Interestingly, Chen et al. demonstrated also that, compared to
normal placenta, GDM placenta has significantly lower adiponectin gene expression but increased
AdipoR1 levels [203].

Hypoadiponectinemia has been widely observed in women with GDM [200,204–206]. In particular,
compared to pregnant control women, plasma adiponectin concentration in patients with GDM
markedly decreased in the 3rd trimester of pregnancy, but significantly raised up 24 h postpartum [200],
strongly supporting a straight correlation between hypoadiponectinemia and pregnancy- related IR.
Several authors have also linked hypoadiponectinemia to the low-grade inflammatory condition
typical of pregnancy further exacerbated by GDM [197,203,204], derived from white adipose tissue and
placenta increased production of IL-6 and TNF-α [207]. Indeed, TNF-α is known to inhibit adiponectin
synthesis ([208] and a significant negative correlation was found between this proinflammatory
cytokine and adipose tissue mRNA/plasma adiponectin levels [209]. Thus, the upregulation of
proinflammatory cytokines may represent an important functional link between hypoadiponectinemia
and IR in GDM [197].

A recent meta-analysis showed that circulating adiponectin levels during the first or early
second trimester of pregnancy were significantly lower in women who late developed GDM [210].
This result was confirmed by Illiodromiti et al., suggesting that prepregnancy and early pregnancy
assessment of plasma adiponectin may improve the detection of women at high risk of developing
GDM [211]. These findings also confirm that the decline in maternal adiponectin levels precedes clinical
diagnosis of GDM [212], implying that women with GDM are most likely metabolically different before
gestation [213]. Remarkably, the association between adiponectin levels and subsequent risk of GDM
appears to be independent of adiposity in early pregnancy [212–214], suggesting that other pathways
may be involved.

The potential role of adiponectin in pathophysiology of GDM is further supported by recent
genomic studies. Indeed, the G allele of ADIPOQ gene rs266729 polymorphism is associated with an
increased risk of GDM, independently of age, BMI before pregnancy and past pregnancies [215,216].
Further, the association between the G allele of rs2241766 polymorphism and GDM was independently
found in a Chinese population [217], an Iranian population [218] and a Malaysian population [219].
Interestingly, the G allele of rs266729 polymorphism is associated with lower adiponectin levels and
is considered a risk factor for developing T2DM [215]. Similarly, in the cohort of Han et al., women
with TG or GG phenotypes presented significantly lower plasma adiponectin concentrations than TT
homozygotes women [217].

Results from animal investigations strongly suggest that hypoadiponectinemia may even underlie
GDM. In particular, Qiao et al. demonstrated that pregnant mice with adiponectin deficiency
(Adipoq−/−) spontaneously developed the main characteristics of GDM, as glucose intolerance,
hyperlipidaemia and foetal overgrowth [199]. Interestingly, compared to wild type, in Adipoq−/−

dams, despite higher blood glucose concentrations, plasma insulin levels were significantly lower as
the result of decreased β cell mass. Remarkably, adiponectin reconstitution during late pregnancy
restored maternal metabolism, β cell mass and foetal body weight [199]. Thus, adiponectin is most
likely involved in controlling maternal metabolic adaptation to pregnancy and hypoadiponectinemia
may play a causal role in the development of GDM [199]. Particularly, adiponectin may represent a
factor in the expansion of β cell mass that is believed to be necessary for the maintenance of glucose
homeostasis in pregnancy [195]. Indeed, adiponectin is known to enhance β cell proliferation [220] and
a strong association between blood adiponectin concentration in late pregnancy and β cell function
has been repeatedly found [221,222]. Moreover, ante-partum hypoadiponectinemia seem to predict
postpartum IR, β cell dysfunction and fasting glycaemia, providing a means of stratifying women
with GDM with respect to their future risk of T2DM [206].
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In summary, adiponectin may be associated with GDM development through impaired insulin
sensitivity, decreased β cell mass and attenuated anti-inflammatory capacity, thus representing a
potential target for treatment or prevention of GDM [195] (Figure 6).
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9.3.2. Preeclampsia (Figure 6)

Preeclampsia (PE) is a severe pregnancy complication affecting 4.6% of pregnant women
worldwide [223]. It is at the second or third place in the world ranking of maternal morbidity
and mortality causes [224]. It is defined as the association of arterial hypertension appearing from
the 20th week of gestation onward and one of the following conditions: proteinuria, maternal organs
dysfunction (renal insufficiency, hepatic impairment, neurological complication or haematological
disorder like thrombocytopenia or haemolysis) and uteroplacental dysfunction including foetal growth
restriction [224]. The pathophysiology of PE has not yet been fully elucidated. However, the two main
characteristics of the syndrome appear to be an abnormal placentation and an exaggerated maternal
inflammatory response [224]. Indeed, initial incomplete trophoblast invasion and abnormal uterine
spiral artery remodelling would be followed by the release into maternal circulation of placental factors,
such as inflammatory cytokines and reactive oxygen species, able to trigger a broad intravascular
inflammatory response resulting in endothelial dysfunction [225]. As clinical manifestations of PE
regress after delivery, it is likely that placental trophoblast cells function may play a central role
in its pathogenesis [226]. Like GDM, PE shares risk factors with metabolic syndrome including IR,
subclinical inflammation and obesity [227], and women with a history of hypertensive pregnancy
disorders present 1.4–3 times higher risk of future cardiovascular diseases compared to women with
normotensive pregnancies [228]. Notably, IR was suggested to be part of the pathophysiology that links
obesity and PE and would explain the increased rate of this syndrome in obese pregnant women [225].

Strong evidence supports the association between PE and hypoadiponectinemia during the first
trimester of pregnancy [163]. In late pregnancy however a paradoxical significant increase in circulating
adiponectin has been repeatedly found [201,229–233]. Indeed, this result is highly controversial, with
some studies reporting hypoadiponectinemia [234–236] and others finding no significant difference in
serum adiponectin levels during pregnancy compared to normal pregnant women [237,238]. Likewise,
Haugen et al. failed to demonstrate significant differences in adipose tissue adiponectin mRNA
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expression in PE patients compared to healthy controls [231]. Reasons for these conflicting results
include PE definition, ethnic background of patients, BMI, renal function and smoking [227]. Moreover,
Takemura et al. showed that adiponectin changes between PE patients and normal pregnant women
were limited to HMW isoform, since no significant difference was found in low- or medium-molecular
weight isoforms [234].

Similarly, studies that evaluated the potential prediction of PE by adiponectin measurement in
early pregnancy showed conflicting results [227]. Analyses of the relationship between circulating
adiponectin and BMI in PE were also inconsistent. Plasma adiponectin levels decreased in women with
severe PE and BMI > 25 kg/m2, whereas they increased in normal weight PE patients [233]. Likewise,
Eleuterio et al. showed a negative correlation between serum adiponectin concentration and BMI in
normal pregnant women but not in PE patients [232].

The association of genetic variations of the single-nucleotide polymorphism (SNP) type in the
adiponectin gene (ADIPOQ) with IR, metabolic syndrome, GDM, T2DM and hypertension has
been widely reported [239]. Interestingly, PE was found to be associated with one of the same
polymorphisms, 276G>T, that correlates with ovarian disorders [163]. Notably, the TT genotype seems
to be related with protection against the development of PE [240]. A significant association was also
found between PE and the CT genotype of the −11377C>G polymorphism [239], suggesting that
adiponectin may be involved in PE development.

Regarding the pathophysiological role of adiponectin in PE, it has been hypothesised that
increased adiponectin concentrations could be part of a physiological feedback mechanism aimed
at improving IS and mitigating endothelial dysfunction and cardiovascular risk associated with this
syndrome [231]. Actually, adiponectin might attenuate the excessive inflammatory response in the
vascular wall through inhibition of NF-κB signalling, decreased CRP (C-reactive protein) and increased
nitric oxide generation [227] via endothelial nitric oxide synthase activation and superoxide inhibition
in endothelial cells [241]. Further, some reports proposed adiponectin as a positive regulator in the
process of trophoblast invasion by modulation of MMP/TIMP balance [232]. In particular, adiponectin
showed the ability to increase MMP2 and MMP9 activity in human extra villous trophoblast cells via a
reduction of TIMP2 expression [119]. Interestingly, Eleuterio et al. found a negative correlation between
circulating adiponectin and MMP2 and TIMP2 in PE patients, suggesting that hyperadiponectinaemia
may contribute to the systemic endothelial dysfunction characterising PE [232]. The role of adiponectin
in proliferation of trophoblast cells and invasive mechanisms was also demonstrated in rat placenta,
where adiponectin and ADIPOR2 expression has been repeatedly reported [136,163]. Intriguingly,
some authors have also suggested that adiponectin upregulation in PE patients might represent the
result of an adiponectin resistance state, as already described in different animal models [227].

In summary, until now data about the relationships between adiponectin and PE are poor.
Nevertheless, its insulin-sensitising and anti-inflammatory activities and its ability in modulating
trophoblast cells proliferation and trophoblast invasion led us to speculate that this adipokine might
play a role in PE pathogenesis (Figure 6).

9.3.3. Foetal Growth Restriction (Figure 6)

Foetal Growth Restriction (FGR) is a common complication of pregnancy affecting 3 to 9% of
pregnancies in the developed world and up to 25% of pregnancies in low-middle income countries [242].
Traditionally, an estimated foetal weight less than the 10th percentile for the population at a given
gestational age is highly suggestive of FGR. The main feature of this pathological condition is a
placental failure to adequately supply oxygen and nutrients to the developing foetus, thus resulting in
a stunted foetal growth [243] This phenomenon, named placental insufficiency, is idiopathic in up to
60% of cases and it is due to a physiological deficiency in uterine spiral arteries remodelling, resulting in
restricted uteroplacental perfusion [244]. Placentas from FGR foetuses are then small and show vascular
defects that seem to be associated with excessive apoptosis and impaired trophoblast invasion [245].
Moreover, the altered expression of glucose, amino acids and fatty acids carriers in placental
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syncytiotrophoblast contributes to reduced nutrients transport from mother to foetus [245–247]. Indeed,
nutrient supply, a key determinant of foetal growth, depends mainly on placental nutrient transport
rather than maternal nutrient levels [133]. In the foetus, hypoxia derived from placental insufficiency
results in the so-called brain sparing, that is, the preferential blood flow redistribution to vital organs
like brain, myocardium and adrenal glands. Prolonged foetal hypoxia reduces foetal weight and has
an adverse impact on foetal organ development and vascular remodelling, resulting in increased rates
of neonatal mortality and morbidity [243]. FGR is the greatest risk factor for stillbirth [248] and FGR
newborns more likely present transient neonatal morbidities including hypothermia, altered glucose
metabolism, polycythaemia, jaundice and sepsis [249]. Interestingly, Small-for-Gestational-Age (SGA)
is also a likely risk factor for the development of metabolic complications in later life, such as obesity,
high blood pressure, glucose metabolism disorders and adipose tissue dysfunction [250].

Data concerning the relationship between adiponectin concentration in maternal circulation and
FGR are controversial. Some studies showed increased serum adiponectin levels [251,252], whereas
others reported a negative correlation between circulating adiponectin and FGR [253,254]. Interestingly,
mothers who gave birth to Large-for-Gestational-Age (LGA) children had lower plasma adiponectin
levels, and hypoadiponectinemia was accompanied by a decrease in mRNA levels of adiponectin
receptor AdipoR2 [255]. It is even noteworthy that, according to a very recent meta-analysis [250],
blood adiponectin concentration at birth is significantly lower in SGA newborns than in healthy
controls.F

Compared to adults, adiponectin concentration in human foetal circulation and umbilical
cord blood is 2 to 3 times higher, suggesting that adiponectin may be involved in foetal growth.
This hypothesis was confirmed by four independent studies which demonstrated that adiponectin
downregulates placental nutrient transport functions. In particular, adiponectin inhibited glucose
transporter GLUT1 and GLUT2 expression in human villous cytotrophoblasts [256] and downregulated
GLUT3 mRNA expression in placentas of rats exposed to a chronic adiponectin treatment during
pregnancy [136]. Besides, in vivo experiments showed that adiponectin chronic infusion in pregnant
mice was associated with downregulation of placental amino acid transporters via inhibition of mTOR
signalling and resulted in a 19% foetal weight drop [133]. The same result was found in human villous
cytotrophoblasts [256]. Using a mouse model of obesity in pregnancy, Aye et al. further confirmed that
maternal adiponectin supplementation prevents foetal overgrowth caused by maternal obesity by the
inhibition of placental insulin and mTORC1 signalling resulting in normalisation of placental nutrient
transport [138]. Surprisingly, in human villous cytotrophoblasts, adiponectin seems also to inhibit
mitochondrial biogenesis and to play a proapoptotic role via caspase activity, suggesting a causative
role of this adipokine in foetal growth regulation [256].

Hence, adiponectin seems to function as an endocrine link between maternal adipose tissue and
foetal growth by regulating placental functions [138]. This may further explain the strong association
between maternal BMI and birth weight. Indeed, based on these postulates, low adiponectin levels
characterising women with obesity and GDM would remove the inhibition of this adipokine on
placental insulin signalling and amino acid transport, thereby promoting increased foetal growth [133]
(Figure 6).

10. Conclusions

Adiponectin and its receptors are largely expressed in the central and peripheral reproductive
tissues in both male and female in different species. In mice, adiponectin deficiency leads to female
subfertility associated to central and ovarian dysfunctions. These data suggest that adiponectin is
essential for normal mouse reproduction. However, the role of the local versus systemic adiponectin
in the fertility is still unclear. Moreover, the involvement of the different forms of adiponectin in
reproductive tract remains also to be investigated. Interestingly, plasma and/or tissue expression of
adiponectin might be associated to various reproductive diseases like PCOS syndrome, gestational
diabetes, preeclampsia and uterine growth restriction. Studies on animal models and human data
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suggest that adiponectin could be a potential target for treatment or prevention of these pathologies.
Finally, all the data suggest that additional studies are needed to determine the significance of
adiponectin and adiponectin receptors as prognostic markers and therapeutic targets in different
ovarian or endometrial cancers.
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Abbreviations

STAT Signal Transducers and Activators of Transcription
CCAAT CCAAT box is a distinct pattern of nucleotides with GGCCAATCT consensus sequence
SRE Serum Response Element
PPRE Peroxisome Proliferator Response Element
AP-1 Activator Protein 1
LRH-RE Liver Receptor Homolog 1 Response Element
LMW Low Molecular Weight
MMW Medium Molecular Weight
HMW High Molecular Weight
PCOS Polycystic Ovary Syndrome
CSF CerebroSpinal Fluid
HPG Hypothalamic–Pituitary–Gonadal axis
AMH Anti-Mullerian Hormone
MMP Matrix MetalloProteinases
TIMP Tissue Inhibitors of MetalloProteinases
PE PreEclempsia
IGFBP-1 Insulin-like Growth Factor Binding Protein 1
hCG human Chorionic Gonadotropin
FF Follicular Fluid
TNF Tumour Necrosis Factor
IFN InterFeroN
PKA Protein Kinase A
SF Seminal Fluid
IVM In Vitro Maturation
IGF-1 Insulin like Growth Factor 1
IR Insulin Resistance
IS Insulin Sensitivity
FFA Free Fatty Acid
BMI Body Mass Index
StAR Steroid Acute Regulatory protein
T2DM Type 2 Diabetes Mellitus
DHEA DeHydroEpiAndrosterone
PTEN Phosphatase and TENsin homolog
LKB1 Liver Kinase B1
NFkB Transcription factor Nuclear Factor-kappa B
IL8/1 InterLeukin 8/1
ERK1/2 Extracellular signal-Regulated Kinases 1 & 2
MAPK Mitogen-Activated Protein Kinases
PPAR Peroxisome Proliferator-Activated Receptor
AMPK AMP-activated Protein Kinase
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APPL1/2 Adaptor Protein, Phosphotyrosine interacting with PH domain and Leucine zipper 1/2
BMAL1 Brain and Muscle Arnt-Like protein-1
CLOCK Circadian Locomoter Output Cycles protein Kaput
Siglec10 Sialic acid binding ig like lectin 10
SNAT Sodium-coupled Neutral Amino acid Transporters
mTORC1 Mammalian Target Of Rapamycin Complex 1 or mechanistic target of rapamycin complex 1
GLUT GLUcose Transporter
MCT2/4 MonoCarboxylate Transporter (lactate transporter)
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