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Research Article

Aberrant regulation of the GSK-3b/NRF2 axis
unveils a novel therapy for adrenoleukodystrophy
Pablo Ranea-Robles1,2 , Nathalie Launay1,2, Montserrat Ruiz1,2, Noel Ylagan Calingasan3,

Magali Dumont4, Alba Naudí5, Manuel Portero-Otín5, Reinald Pamplona5, Isidre Ferrer6,7,8,9,

M Flint Beal3, Stéphane Fourcade1,2,* & Aurora Pujol1,2,10,**

Abstract

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator
of endogenous antioxidant responses. Oxidative damage is a
shared and early-appearing feature in X-linked adrenoleukodystro-
phy (X-ALD) patients and the mouse model (Abcd1 null mouse). This
rare neurometabolic disease is caused by the loss of function of
the peroxisomal transporter ABCD1, leading to an accumulation of
very long-chain fatty acids and the induction of reactive oxygen
species of mitochondrial origin. Here, we identify an impaired
NRF2 response caused by aberrant activity of GSK-3b. We find that
GSK-3b inhibitors can significantly reactivate the blunted NRF2
response in patients’ fibroblasts. In the mouse models (Abcd1� and
Abcd1�/Abcd2�/� mice), oral administration of dimethyl fumarate
(DMF/BG12/Tecfidera), an NRF2 activator in use for multiple sclero-
sis, normalized (i) mitochondrial depletion, (ii) bioenergetic failure,
(iii) oxidative damage, and (iv) inflammation, highlighting an intri-
cate cross-talk governing energetic and redox homeostasis in X-
ALD. Importantly, DMF halted axonal degeneration and locomotor
disability suggesting that therapies activating NRF2 hold therapeu-
tic potential for X-ALD and other axonopathies with impaired GSK-
3b/NRF2 axis.
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Introduction

Oxidative stress and mitochondrial dysfunction contribute to the

onset and progression of age-related neurodegenerative diseases,

such as amyotrophic lateral sclerosis, Parkinson’s, Huntington’s,

and Alzheimer’s disease (Lin & Beal, 2006). A common theme

among these disorders, as well as the prototypic demyelinating

disease multiple sclerosis, is axonal degeneration (Li et al, 2001;

Tallantyre et al, 2010).

Endogenous antioxidant responses are controlled by nuclear

factor erythroid 2-like 2 (NRF2, encoded by NFE2L2), which binds

to antioxidant response element (ARE) in the promoter region of

target genes, subsequently activating the transcription of genes

encoding phase II detoxifying enzymes and cytoprotective defences

against oxidative stress (Itoh et al, 1997). These genes include

heme oxygenase-1 (HMOX1), NAD(P)H:quinone oxidoreductase-1

(NQO1), and enzymes of glutathione metabolism, such as

glutathione S-transferases (GST), glutamate-cysteine ligase (GCL),

and glutathione peroxidases (McMahon et al, 2001; Lee et al, 2003).

NRF2 also regulates proteostasis (Komatsu et al, 2010; Pajares et al,

2016), neuroinflammation (Innamorato et al, 2008; Rojo et al,

2010), and bioenergetic homeostasis (Holmstrom et al, 2013) in the

nervous system, such that activating NRF2-dependent responses

initiates a sustained neuroprotective effect in several neurodegener-

ative disorder models (Kanninen et al, 2009; Neymotin et al, 2011;

Stack et al, 2011; Kaidery et al, 2013; Lastres-Becker et al, 2016).

We therefore sought to explore the role of NRF2 pathway in the

neurodegenerative processes of X-linked adrenoleukodystrophy

(X-ALD; McKusick no. 300100).

This is the most common peroxisomal disease and leukodystro-

phy with an incidence of 1:15,000 (Kemper et al, 2017). It is caused

by mutations in the ABCD1 gene (Mosser et al, 1993) located on
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Xq.28, which encodes a peroxisomal transporter that moves very

long-chain fatty acids (VCLFA) into the peroxisome for degradation

by b-oxidation (van Roermund et al, 2008; Wiesinger et al, 2013).

As a consequence, very long-chain fatty acids (VLCFA), especially

C26:0, accumulate in tissues and plasma and constitute a pathog-

nomonic biomarker for diagnosis. There are two main forms of the

disease (Engelen et al, 2012). First, cerebral adrenoleukodystrophy

is present mostly in boys between 5 and 10 years (35–40% of the

cases) but also in adolescents and adult men, who present a strong

inflammatory demyelinating reaction in central nervous system

white matter. Second, adrenomyeloneuropathy occurs in 60% of the

cases and affects adult men and heterozygous women over the age

of 40 (Engelen et al, 2014). Adrenomyeloneuropathy is character-

ized by peripheral neuropathy and distal axonopathy involving

corticospinal tracts of the spinal cord. The clinical presentation of X-

ALD varies even in the same family, which suggests the presence of

modifier genes or environmental factors (Berger et al, 1994; Turk

et al, 2017). Current therapeutic options are restricted to bone

marrow transplantation (Miller et al, 2011) and hematopoietic stem

cell gene therapy (Cartier et al, 2009; Eichler et al, 2017), and are

limited by a very narrow therapeutic window, which reinforces the

need to develop additional therapies for this devastating disease.

The mouse model of X-ALD (Abcd1� mice) develops axonopathy

and locomotor impairment very late in life, at 20 months of age,

resembling adrenomyeloneuropathy, the most frequent X-ALD

phenotype (Pujol et al, 2002). The closest homolog Abcd2 exhibits

overlapping metabolic functions (Fourcade et al, 2009) and has

been postulated as modifier of the biochemical defect (Muneer et al,

2014). Double mutant Abcd1�/Abcd2�/� mice develop a more

severe, earlier onset axonopathy starting at 12 months of age, what

makes them a more suitable model for therapeutic essays (Pujol

et al, 2002; Mastroeni et al, 2009; Lopez-Erauskin et al, 2011;

Morato et al, 2013, 2015; Launay et al, 2015, 2017). Using these

mouse models and patients’ samples, studies by our laboratory and

others have revealed that VLCFA-induced oxidative stress is a criti-

cal, early pathogenic factor in X-ALD (Vargas et al, 2004; Powers

et al, 2005; Fourcade et al, 2008, 2010; Hein et al, 2008; Lopez-

Erauskin et al, 2011; Petrillo et al, 2013), although the exact mecha-

nisms by which VLCFA-induced redox imbalance causes neurode-

generation in X-ALD remain unclear (Fourcade et al, 2015). Here,

we examined whether the NRF2 antioxidant pathway could contri-

bute to the increased oxidative damage detected in this disease, in

both the Abcd1� mouse model and the skin fibroblasts derived from

X-ALD patients. We also treated X-ALD mouse models (Abcd1� and

Abcd1�/Abcd2�/� mice) with dimethyl fumarate (DMF, BG-12, Tec-

fidera), an NRF2 activator (Linker et al, 2011; Scannevin et al,

2012), that is a currently approved medication for relapsing-remit-

ting multiple sclerosis (Fox et al, 2012; Gold et al, 2012).

Results

GSK-3b/NRF2 antioxidant pathway is altered in Abcd1� mice

We previously identified a redox dyshomeostasis in X-ALD, charac-

terized by an excess of reactive oxygen species (ROS) production

and repression of key antioxidant enzymes (Fourcade et al, 2008).

Since NRF2 plays a critical role in the antioxidant cellular defence,

we asked whether the NRF2-dependent antioxidant pathway was

altered in the Abcd1 null mouse. We found decreased NRF2 protein

levels in Abcd1� mice spinal cord at 12 months of age (Fig 1A), a

presymptomatic disease stage in this mouse model. Dysregulated

NRF2 protein levels were organ-specific, as we did not observe any

changes in non-affected tissues in the mouse model, such as cere-

bral cortex or liver (Fig EV1). To verify that lower protein levels

had functional consequences, we measured mRNA expression of

NRF2 classical target genes (Hmox1, Nqo1 and glutathione S-trans-

ferase alpha-3, Gsta3) at the same age. We observed a slight but

significant decreased expression of these three NRF2 target genes in

the Abcd1� mouse spinal cord at 12 months of age (Fig 1B), consis-

tent with a downregulated NRF2 pathway.

Several signals can regulate NRF2-dependent responses, in

particular those that modulate GSK-3b activity (Salazar et al, 2006;

Rojo et al, 2008; Rada et al, 2011). We thus examined the activity of

the AKT/GSK-3b pathway in the spinal cord of Abcd1� mice by

measuring the phosphorylation of serine 473 (pSer473) and thre-

onine 308 (pThr308) residues of AKT, which reflects its activation.

We also measured the phosphorylation of serine 9 (pSer9) and tyro-

sine 216 (pTyr216) residues of GSK-3b, which indicate inhibition or

activation of GSK-3b, respectively. We found less AKT activation in

Abcd1� mice spinal cord, as shown by decreased pThr308 AKT rela-

tive to total AKT levels. Defective AKT phosphorylation resulted in

the activation of GSK-3b, indicated by reduced pSer9 GSK-3b
compared with total GSK-3b levels (Fig 1C and D). We did not

observe any changes in pSer473, pTyr216, or in the total levels of

AKT and GSK-3b (Fig 1C and D). These data indicate a dysregulated

AKT/GSK-3b/NRF2 axis in the Abcd1� mouse spinal cord, with

predicted higher activity of GSK-3b upstream of NRF2.

Impaired NRF2-dependent antioxidant pathway is mediated by
GSK-3b in patients’ fibroblasts

Primary fibroblasts from X-ALD patients provide a good surrogate

cell model to dissect disease mechanisms, as they recapitulate the

main disease hallmarks: accumulation of VLCFA (Moser et al,

1980), higher production of free radicals of mitochondrial origin

(Lopez-Erauskin et al, 2013), loss of energetic homeostasis (Galino

et al, 2011), altered proteostasis (Launay et al, 2013, 2015), and

endoplasmic reticulum (ER) stress (van de Beek et al, 2017; Launay

et al, 2017). Using this cell system, we determined whether patients’

fibroblasts exhibited an altered AKT/GSK-3b/NRF2 pathway.

At baseline, we observed equivalent NRF2 protein levels in

patients’ fibroblasts compared with controls (Fig EV1).

We then tested the functionality of the NRF2 pathway, by treat-

ing patients’ and control fibroblasts either with C26:0, the primary

VLCFA accumulated in patients, or with oligomycin, which acts as a

generator of mitochondrial ROS inhibiting complex V (Fourcade

et al, 2008; Paupe et al, 2009). Both compounds produce mitochon-

drial ROS in these fibroblasts (Lopez-Erauskin et al, 2013). We

show that both C26:0 and oligomycin activated NRF2-dependent

responses in control fibroblasts, characterized by both higher NRF2

translocation to the nucleus (Fig 2A and B) and increased expres-

sion of NRF2 target genes (HMOX1, NQO1, and GCLC mRNA;

Fig 2C). However, this physiological response against oxidative

stress was blunted in X-ALD fibroblasts with both ROS-producing

stimuli (Fig 2A–C).
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Moreover, both treatments elicited AKT activation (increased

pSer473 and pThr308) and subsequent GSK-3b inactivation (higher

pSer9 GSK-3b levels) in control fibroblasts (Fig 2D and E). Again,

this physiological response against oxidative stress was impaired in

X-ALD fibroblasts, as phosphorylated levels of AKT and GSK-3b did

not change following C26:0 or oligomycin treatment (Fig 2D and E).

As GSK-3b activation can repress NRF2, we sought to determine

whether this phenomenon was interrelated in the cellular model. For

this, we assessed whether specific GSK-3b inhibitors (CT99021 and

SB216763; Coghlan et al, 2000; Ring et al, 2003) could restore a normal

NRF2-dependent response in X-ALD fibroblasts. Indeed, treatment with

both compounds reactivated the NRF2 pathway, characterized by an

upregulation of the NRF2-target genes HMOX1, NQO1, and GCLC in

patients’ fibroblasts upon incubation with excess of C26:0 (Fig 2F).

Collectively, these data indicate that the aberrant GSK-3b activa-

tion upstream of NRF2 governs the blunted NRF2-dependent

response upon oxidative stress in this disease model.

DMF rescues mitochondrial depletion, bioenergetic failure, and
oxidative damage in Abcd1� mice

To elucidate the impact of a defective NRF2-dependent response in

the pathogenesis of adrenoleukodystrophy, we decided to treat

Abcd1� mice with DMF, a classical activator of NRF2 (Linker et al,

2011; Scannevin et al, 2012). Dimethyl fumarate has therapeutic

efficacy for relapsing-remitting multiple sclerosis (Fox et al, 2012;

Gold et al, 2012) and besides, preclinical tests show success to treat

other neurodegenerative diseases like Huntington’s (Ellrichmann

et al, 2011) and Parkinson’s disease (Ahuja et al, 2016; Lastres-

Becker et al, 2016).

Before treating the animals, we tested DMF in control and X-ALD

fibroblasts. We found that DMF reactivated the NRF2-blunted

response upon VLCFA addition (Fig EV2), similar to the GSK-3b
inhibitors used (Fig 2F). Moreover, DMF alone induced HMOX1 and

NQO1 expression in control fibroblasts and also HMOX1 expression

A B

C D

Figure 1. Altered GSK-3b/NRF2 antioxidant pathway in Abcd1� mice.

A Representative immunoblot of NRF2 protein level measured in WT (n = 6) and Abcd1� (n = 6) mice spinal cord at 12 months of age. Protein levels normalized
relative to c-tubulin (c-TUB) and quantification depicted as fold change to WT mice.

B NRF2-dependent antioxidant gene expression (Hmox1, Nqo1, and Gsta3) in WT (n = 8) and Abcd1� (n = 8) mice spinal cord at 12 months of age. Gene expression
normalized relative to mouse Rplp0 and depicted as fold change to WT mice.

C, D Representative immunoblots of pSer473 AKT, pThr308 AKT, AKT, pSer9 GSK-3b, pTyr216 GSK-3b, and GSK-3b protein level in WT (n = 12) and Abcd1� (n = 12) mice
spinal cord at 12 months of age. Protein level normalized relative to corresponding non-phosphorylated proteins or c-TUB (in the case of AKT and GSK-3b).
Quantification depicted as fold change to WT mice.

Data information: In (A, B, and D), data are presented as mean � SD. *P < 0.05 (unpaired Student’s t-test). See the exact P-values in Appendix Table S3.
Source data are available online for this figure.

ª 2018 The Authors EMBO Molecular Medicine 10: e8604 | 2018 3 of 16

Pablo Ranea-Robles et al NRF2 deficient response in X-ALD EMBO Molecular Medicine

Published online: July 11, 2018 



A C

B

E

F

D

Figure 2.

4 of 16 EMBO Molecular Medicine 10: e8604 | 2018 ª 2018 The Authors

EMBO Molecular Medicine NRF2 deficient response in X-ALD Pablo Ranea-Robles et al

Published online: July 11, 2018 



in X-ALD fibroblasts (Fig EV2). Thus, these new data reinforced the

rational for DMF treatment in vivo.

We fed Abcd1� mice with DMF-containing chow at 100 mg/kg,

starting at 8 months of age, for 4 months. First, we verified the effi-

cacy of dietary DMF administration by measuring NRF2 protein

levels and mRNA expression of three classical NRF2-target genes

(Hmox1, Nqo1, and Gsta3). Dimethyl fumarate treatment rescued

both NRF2 protein levels (Fig 3A) and NRF2 targets in Abcd1� mice

spinal cord at 12 months of age (Fig 3B).

Next, we measured the effect of DMF on several quantitative

markers of oxidative damage to lipids and proteins, such as direct

carbonylation of proteins (Aminoadipic semialdehyde: AASA),

glycoxidation (Nɛ-(carboxyethyl)-lysine: CEL and Nɛ-(carboxy-
methyl)-lysine: CML), and protein lipoxidation (Nɛ-malondialde-

hyde-lysine: MDAL; Fourcade et al, 2008). We found an antioxidant

role for DMF in this model, as it normalized AASA, CEL, CML, and

MDAL in Abcd1� mice spinal cord (Fig 3C).

We also examined the effect of DMF on mitochondrial dysfunc-

tion (Morato et al, 2013, 2015). DMF normalized mitochondrial

biogenesis, based on different parameters: mtDNA levels (Fig 3D)

and mRNA expression of sirtuin-1, Sirt1; peroxisome proliferator-

activated receptor gamma coactivator 1-alpha, Ppargc1a; nuclear

respiratory factor-1, Nrf1; and transcription factor A, mitochondrial,

Tfam (Fig 3E; Morato et al, 2013, 2015). We previously reported

decreased levels of ATP in the spinal cord of Abcd1� mice (Galino

et al, 2011), suggesting that deficient energy homeostasis is a key

feature in X-ALD pathology. In this study, we reveal that DMF

prevented bioenergetic failure, as it normalized ATP levels (Fig 3F).

These effects seem to be independent of VLCFA levels, since DMF

treatment did not alter C24:0 or C26:0 levels in the spinal cord of

12-month-old Abcd1� mice (Fig EV3). Altogether, DMF activated

NRF2-dependent antioxidant pathway and prevented mitochondrial

depletion, bioenergetic failure, and oxidative damage in the spinal

cord of the disease mouse model.

DMF treatment prevents inflammatory imbalance in Abcd1� mice

Although patients presenting with pure adrenomyeloneuropathy do

not exhibit overt brain inflammation that induces demyelination,

we previously found low-grade inflammatory dysregulation in the

Abcd1� mouse spinal cord and in adrenomyeloneuropathy patients.

Our functional genomics assay detected activation of the NF-jB-
mediated inflammatory pathway and increased expression of

several pro-inflammatory cytokines in the Abcd1� mouse spinal

cord (Schluter et al, 2012). In adrenomyeloneuropathy patients, we

recently reported a general dysregulation of inflammatory pathways

in peripheral blood mononuclear cells (PBMC) and plasma (Ruiz

et al, 2015).

Since DMF is also a classical immunomodulatory drug (Schilling

et al, 2006; Linker et al, 2011), we examined its effects on mRNA

expression of several inflammation-related genes in the Abcd1�

mice spinal cord. At 12 months of age, Abcd1� mice exhibited a

general imbalance of both pro- and anti-inflammatory markers,

characterized by the induction of pro-inflammatory markers includ-

ing nuclear factor kappa B subunit 2 (Nfkb2), interleukin 1 beta

(Il1b), tumor necrosis factor alpha (Tnfa), tumor necrosis factor

receptor superfamily member 1a (Tnfrsf1a), chemokine (C-C motif)

ligand 5 (Ccl5), chemokine (C-X-C motif) ligand 9 (Cxcl9), chemo-

kine (C-X-C motif) ligand 10 (Cxcl10), and chemokine (C-C motif)

receptor type 6 (Ccr6) (Fig 4A). Also, we observed an upregulation

of some anti-inflammatory markers, such as chitinase-like 3 (Chil3),

chemokine (C-X-C motif) ligand 12 (Cxcl12), insulin-like growth

factor 1 (Igf1), and transforming growth factor, beta 1 (Tgfb1)

(Fig 4B). Interleukin 6 (Il6), resistin like alpha (Retnla, also called

Fizz1), and macrophage migration inhibitory factor (Mif) were

decreased in the Abcd1� mouse spinal cord (Fig 4A and B).

Dimethyl fumarate prevented most alterations observed in the

inflammatory profile in the Abcd1� mice spinal cord and normalized

mRNA levels of Nfkb2, Il6, Tnfa, Ccl5, Cxcl10, Ccr6 (pro-inflamma-

tory; Fig 4A), and Mif, Cxcl12, Tgfb1, Igf1 (anti-inflammatory;

Fig 4B). However, DMF had no effect on Tnfrsf1a, Cxcl9 (pro-

inflammatory), and Fizz1 (anti-inflammatory) mRNA expression in

the Abcd1� mice spinal cord (Fig 4A and B). DMF exacerbated the

induction of Il1b (pro-inflammatory) and Chil3 (anti-inflammatory),

and induced the expression of interleukin 10 (Il10), an anti-inflam-

matory cytokine, in the Abcd1� mouse spinal cord (Fig 4A and B).

These data demonstrate that DMF normalized the inflammatory pro-

file in Abcd1� mice.

DMF halts axonal degeneration in Abcd1�/Abcd2�/� mice

We then evaluated the effects of DMF on axonal degeneration and

locomotor impairment in X-ALD mouse model. We fed Abcd1�/
Abcd2�/� (DKO) mice with DMF for 6 months, starting at

12 months of age. First, we characterized the immunohistochemical

signs of neuropathology present in DKO mice at 18 months of age,

◀ Figure 2. Impaired AKT/GSK-3b/NRF2 antioxidant response after oxidative stress in X-ALD patients’ fibroblasts.

A, B Representative immunoblots of NRF2 protein translocation to the nucleus upon VLCFA (C26:0, 50 lM, 24 h) or oligomycin (15 lM, 18 h) in control (CTL, n = 5 per
condition, left panels) and X-ALD (n = 5 per condition, right panels) fibroblasts. Protein levels normalized relative to lamin B1 in the nuclear fraction, aldolase A
(ALDOA) in the cytoplasmic fraction, and c-TUB in the total fraction. Quantification depicted as fold change to vehicle-treated (Veh) fibroblasts.

C NRF2-dependent antioxidant gene expression (HMOX1, NQO1, and GCLC) upon oxidative stress in CTL (n = 5 per condition) and X-ALD (n = 5 per condition)
fibroblasts. Gene expression normalized relative to RPLP0. Quantification depicted as fold change to vehicle-treated (Veh) fibroblasts.

D, E Representative immunoblots of pSer473 AKT, pThr308 AKT, AKT, pSer9 GSK-3b, and GSK-3b measured after oxidative stress in CTL (n = 5 per condition) and X-ALD
(n = 5 per condition) fibroblasts. Protein levels normalized relative to corresponding non-phosphorylated proteins or c-TUB (in the case of AKT and GSK-3b).
Quantification depicted as fold change to vehicle-treated (Veh) fibroblasts.

F NRF2-dependent antioxidant gene expression (HMOX1, NQO1, and GCLC) after GSK-3b inhibition in VLCFA-treated CTL (n = 8 per condition) and X-ALD (n = 8 per
condition) fibroblasts. Gene expression normalized relative to RPLP0. Quantification depicted as fold change to vehicle-treated (Veh) fibroblasts.

Data information: In (B, C, E, and F), data are presented as mean � SD. In (B, E, and F), *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA followed by Tukey’s
post hoc test). In (C), #P < 0.05, ##P < 0.01, ###P < 0.001 (one-way ANOVA followed by Dunnett’s post hoc test). In (C and F), $P < 0.01, $$P < 0.01 (non-parametric
Kruskal–Wallis’ test followed by Dunn’s post hoc test). See the exact P-values in Appendix Table S3.
Source data are available online for this figure.
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A B

C D

E F

Figure 3. NRF2 activation by DMF prevents oxidative damage to proteins and lipids, mitochondrial depletion, and bioenergetic failure in Abcd1� mice.

A Representative immunoblot of NRF2 protein levels in WT (n = 6), Abcd1� (n = 6) and DMF-treated Abcd1� mice (Abcd1� + DMF, n = 6) mice spinal cord at
12 months of age. Protein levels normalized relative to c-TUB. Quantification depicted as fold change to WT mice.

B NRF2-dependent antioxidant gene expression (Hmox1, Nqo1, and Gsta3) in WT (n = 8), Abcd1� (n = 8), and Abcd1� + DMF (n = 8) mice spinal cord at 12 months of
age. Gene expression normalized relative to Rplp0. Quantification represented as fold change to WT mice.

C Oxidative lesions to lipids and proteins in WT (n = 5), Abcd1� (n = 5), and Abcd1� + DMF (n = 5) mice spinal cord at 12 months of age. AASA, CEL, CML, and MDAL
levels measured by GC/MS. Quantification represented as fold change to WT mice.

D mtDNA levels in WT (n = 8), Abcd1� (n = 8), and Abcd1� + DMF (n = 8) mice spinal cord at 12 months of age. mtDNA content expressed as the ratio of mtDNA (CytB
levels) to nDNA (Cebpa levels). Quantification depicted as fold change to WT mice.

E Sirt1, Ppargc1a, Nrf1, and Tfam gene expression in WT (n = 8), Abcd1� (n = 8), and Abcd1� + DMF (n = 8) mice spinal cord at 12 months of age. Gene expression
normalized relative to Rplp0. Quantification depicted as fold change to WT mice.

F ATP levels in WT (n = 8), Abcd1� (n = 8), and Abcd1� + DMF (n = 8) mice spinal cord at 12 months of age. Quantification represented as fold change to WT mice.

Data information: Data are presented as mean � SD. *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA followed by Tukey’s post hoc test). In (B), #P < 0.05 (one-way
ANOVA followed by Dunnett’s post hoc test). In (E), $P < 0.05 (non-parametric Kruskal–Wallis’ test followed by Dunn’s post hoc test). See the exact P-values in
Appendix Table S3.
Source data are available online for this figure.
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after DMF treatment. We assessed (i) microgliosis; (ii) astrocytosis;

(iii) axonal degeneration, shown by accumulation of amyloid

precursor protein (APP) and synaptophysin in axonal swellings; (iv)

lipidic myelin debris, shown by Sudan Black staining (Pujol et al,

2004); (v) oxidative damage to DNA, indicated by increased 8-oxo-

7,8-dihydro-20-deoxyguanosine (8-oxo-dG) staining (Lopez-Erauskin

et al, 2011); (vi) unhealthy motor neurons with reduced staining of

SMI-32, an antibody that labels a non-phosphorylated epitope of

neurofilament proteins; and (vii) decreased mitochondrial content

observed by cytochrome c (Cyt C) staining in motor neurons

(Morato et al, 2013; Fig 5A–Y). Dimethyl fumarate reversed

microgliosis and astrocytosis, as it normalized the density of astro-

cytes and microglial cells in DKO mice (Fig 5A–F and Y), prevented

axonal accumulation of APP and synaptophysin (Fig 5G–L and Y),

halted the appearance of myelin debris along the spinal cord

(Fig 5M–O), and reduced DNA oxidative damage shown by 8-oxo-

dG staining (Fig 5P–R) in DKO mice. In addition, motor neuron

health and mitochondrial levels improved with DMF treatment

(Fig 5S–X). Altogether, these data reveal that DMF treatment signifi-

cantly ameliorated the neuropathology in Abcd1�/Abcd2�/� mice.

DMF reverses locomotor deficits in Abcd1�/Abcd2�/� mice

Next, we measured the effect of DMF on the locomotor phenotype of

DKO mice using bar cross and treadmill tests at the end of the treat-

ment. As previously described (Pujol et al, 2004; Lopez-Erauskin et al,

2011), DKO mice at 18 months of age took longer time to cross the bar

and slipped off more times while crossing the bar. However, DMF-

treated DKO mice behaved similar to wild-type (WT) mice. These data

indicate that DMF improved the ability of DKO mice to cross the bar

A

B

Figure 4. DMF treatment restores inflammatory profile in Abcd1� mice.

A Pro-inflammatory (Nfkb2, Il1b, Il6, Tnfa, Tnfrsf1a, Ccl5, Cxcl9, Cxcl10, Ccr6) gene expression profile.
B Anti-inflammatory (Fizz1, Chil3, Cxcl12, Il10, Igf1, Mif, Tgfb1) gene expression profile.

Data information: Gene expression was measured in WT (n = 8), Abcd1� (n = 8), and Abcd1� + DMF (n = 8) mice spinal cord at 12 months of age. Expression of
cytokines, chemokines, and other inflammation-related genes was normalized relative to Rplp0. Quantification depicted as fold change to WT mice. Data are presented
as mean � SD. In (A and B), *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA followed by Tukey’s post hoc test). In (B), $P < 0.05, $$P < 0.01, $$$P < 0.001 (non-
parametric Kruskal–Wallis’ test followed by Dunn’s post hoc test). See the exact P-values in Appendix Table S3.
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Figure 5. DMF treatment halts axonal degeneration and locomotor impairment in Abcd1�/Abcd2�/� mice.

A–X Immunohistological analysis of axonal pathologies performed in 18-month-old WT, Abcd1�/Abcd2�/� (DKO), and DKO mice treated with DMF (DKO + DMF)
(n = 5 per genotype and condition). Spinal cord immunohistological sections processed for (A–C) Iba1, (D–F) GFAP, (G–I) synaptophysin, (J–L) APP, (M–O) Sudan
Black, (P–R) 8-oxo-dG, (S–U) SMI-32, and (V–X) Cyt C. Representative images for (A, D, G, J, M, P, S, V) WT, (B, E, H, K, N, Q, T, W) DKO, and (C, F, I, L, O, R, U, X)
DKO + DMF are shown. Scale bars = 125 lm (A–R) and 25 lm (S–X). Black arrows indicate APP or synaptophysin accumulations (H and K), and myelin debris (N)
in DKO mice.

Y Quantification of GFAP+ and Iba1+ cells per mm2, and synaptophysin and APP accumulations in spinal cord immunohistological sections of WT (n = 5), DKO (n = 5),
and DKO + DMF (n = 5) mice.

Z Bar cross and treadmill tests performed on 18-month-old WT (n = 14), DKO (n = 16), and DKO + DMF (n = 14) mice. In the bar cross, data refer to number of slips
and time (seconds) spent to cross the bar. In the treadmill test, data refer to number of shocks and time of shocks at the last time point measured (7 min and
30 s).

Data information: In (Y and Z), data are presented as mean � SD. In (Y and Z), *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA followed by Tukey’s post hoc test),
$P < 0.05, $$$P < 0.001 (non-parametric Kruskal–Wallis’ test followed by Dunn’s post hoc test). See the exact P-values in Appendix Table S3.
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(Fig 5Z). As earlier described (Morato et al, 2015), DKO mice behaved

worse than WT in the treadmill test, as the total number and duration

of shocks were higher than in WT. Dimethyl fumarate treatment also

ameliorated the performance of DKO mice in this test (Fig 5Z). In

summary, these data indicate that DMF treatment halted the progres-

sion of the locomotor deficits observed in Abcd1�/Abcd2�/� mice.

Discussion

In this work, we uncover an impaired AKT/GSK-3b/NRF2 axis in X-

ALD, composed of a blunted NRF2-dependent response which obeys

an aberrant upstream activation of GSK-3b. This impaired NRF2-

dependent antioxidant response suggests a mechanism by which

excess of C26:0 causes oxidative damage only in patients’ fibroblasts

in contrast with controls, even though both populations present simi-

lar amounts of ROS after C26:0 treatment (Fourcade et al, 2008).

Indeed, the NRF2 target genes Hmox1, Nqo1, and Gsta3, whose

expression we show is reduced in Abcd1� mice spinal cord, mediate a

cellular defence against toxic, carcinogenic, and pharmacologically

active electrophilic compounds (Lee et al, 2003; Dinkova-Kostova &

Talalay, 2010). We propose that oxidative damage in this disease

may be a consequence of the low activity of these enzymes, incapable

of compensating for the increased ROS production. Inactivation of the

NRF2 pathway is not a phenomenon limited to X-ALD, but is reported

in several neurodegenerative disorders including Alzheimer’s disease

(Ramsey et al, 2007; Kanninen et al, 2008), amyotrophic lateral scle-

rosis (Sarlette et al, 2008), Friedrich’s ataxia (Paupe et al, 2009; Shan

et al, 2013), and experimental autoimmune encephalomyelitis mouse

models (Morales Pantoja et al, 2016). A recent meta-analysis identi-

fied the NRF2 pathway as a common dysregulated hub in Alzheimer’s

and Parkinson’s disease patients (Wang et al, 2017). Moreover, NRF2

can contribute to Parkinson’s and Huntington’s disease pathology

(Johnson & Johnson, 2015). Indeed, NRF2-deficient mice are more

vulnerable to striatal toxicity induced by systemic administration of

3-nitropropionic acid (3-NP) (Calkins et al, 2005), 1-methyl-4-phenyl-

1,2,3,6 tetrahydropyridine (MPTP) (Burton et al, 2006; Chen et al,

2009), or 6-hydroxydopamine (6-OHDA) used to induce basal ganglia

neural dysfunction (Jakel et al, 2007). Of note, NRF2-deficient mice

also develop a more severe myelin oligodendrocyte glycoprotein

(MOG)-induced experimental autoimmune encephalomyelitis with

increased oxidative damage in the CNS, finally leading to enhanced

demyelination and more pronounced axonal loss (Johnson et al,

2010). This provides a direct link between insufficient antioxidant

response and axonal damage. Further, genetic variations in the NRF2

gene have been associated with risk and/or age of onset in amyo-

trophic lateral sclerosis, Alzheimer’s, and Parkinson’s disease (von

Otter et al, 2010a,b; Bergstrom et al, 2014).

Glial cells are involved in the NRF2-mediated neuroprotective

effects. Ex vivo studies and analysis of neurodegenerative models

for motor neuron disorders, Parkinson’s disease, or cerebral

ischemia indicate that NRF2-mediated neuroprotection critically

involves astrocyte-induced effects (Kraft et al, 2004; Shih et al,

2005; Chen et al, 2009). Initial evidence of the importance of NRF2

in glial cells comes from Nrf2 knockout mice, which display

astrogliosis and myelinopathy in the cerebellum (Hubbs et al,

2007). Also, striatum is protected from MPTP toxicity in transgenic

mice which overexpress NRF2 in astrocytes (Chen et al, 2009).

Little is known about the link between AKT/GSK-3b and NRF2 in

neurodegenerative diseases. Exacerbated GSK-3b activity is also

present in other peroxisomal diseases, like rhizomelic chondrodys-

plasia punctata, in which plasmalogen deficiency leads to AKT inac-

tivation and GSK-3b activation (da Silva et al, 2014). Future work

should address and quantify both the functionality of the NRF2

pathway in rhizomelic chondrodysplasia punctata and the AKT/

GSK-3b/NRF2 axis in other peroxisomal disorders, given the possi-

bility of targeted treatments like DMF, for these metabolic diseases.

Increased GSK-3b also occurs in other neurodegenerative condi-

tions, like tauopathies, in which GSK-3b is one of the kinases

responsible for pathological phosphorylation of Tau (Llorens-Martin

et al, 2014); Parkinson’s disease (Duka et al, 2009; Credle et al,

2015) or multiple sclerosis (Beurel et al, 2013).

In the present work, we inhibited GSK-3b in X-ALD fibroblasts

using two different drugs, which restored NRF2 pathway function

and activated transcription of NRF2 target genes upon oxidative

stress. Thus, we reveal GSK-3b inhibition as a new therapeutic strat-

egy in X-ALD, which is currently under investigation for other

neurodegenerative diseases. In the Senescence Accelerated Mouse-

Prone 8 (SAMP8) mouse, an Alzheimer’s disease mouse model, GSK-

3b inhibition caused NRF2 activation and decreased oxidative stress,

together with reduced Tau phosphorylation and improved learning

and memory (Farr et al, 2014). Another study uncovered the thera-

peutic potential of GSK-3b pathway inhibition to restore neurodevel-

opmental defects in hereditary spastic paraplegia (HSP) patients with

SPG11 mutations (Mishra et al, 2016). Pathways that modulate GSK-

3b, such as phosphoinositide 3-kinase (PI3K)/AKT and WNT/b-
catenin, also regulate myelination (Fancy et al, 2009; Guo et al,

2016). Unfortunately, GSK-3 inhibitors have so far met little success

in clinical trials for neurodegenerative diseases. Two phase II clinical

trials with the GSK-3b inhibitor, Tideglusib, showed no clinical bene-

fits in Alzheimer’s disease (Lovestone et al, 2015) and progressive

supranuclear palsy (Tolosa et al, 2014). We therefore chose DMF to

activate NRF2 in our X-ALD preclinical models using a similar dosage

to that administered to human multiple sclerosis patients, paving the

way to clinical translation. DMF treatment is advantageous because it

enhances the NRF2 antioxidant pathway, but also exerts pleiotropic

effects improving proteostasis, mitochondrial function, and neuroin-

flammation (Johnson & Johnson, 2015), cellular responses that also

contribute to the pathogenesis of adrenoleukodystrophy (Fourcade

et al, 2015). Indeed, previous in vitro studies described the effects of

DMF on mitochondrial function (Scannevin et al, 2012; Ahuja et al,

2016; Peng et al, 2016). Here, we describe a positive effect of DMF on

mitochondrial biogenesis and function in the central nervous system

in vivo, characterized by increased mtDNA levels and mitochondrial

biogenesis regulatory gene expression (Sirt1, Ppargc1a, Nrf1, Tfam),

as well as normalized ATP levels in the spinal cord of Abcd1� mice.

These results are supported by recent data in mice and multiple scle-

rosis patients treated with DMF (Hayashi et al, 2017).

Neuroinflammation is another common feature of neurodegener-

ative diseases. In this study, we observed normalization in the gene

expression of Nfkb2 transcription factor and pro-inflammatory

cytokines like Tnfa, Ccl5, Cxcl10, and Ccr6, concomitant with an

increase in the anti-inflammatory cytokines Il10 and Chil3. This

DMF effect is consistent with previous reports showing an in vivo

anti-inflammatory effect in the experimental autoimmune

encephalomyelitis animal model (Schilling et al, 2006). We also
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show that DMF prevented microgliosis and astrocytosis in Abcd1�/
Abcd2�/� mice, consistent with results from recent studies in

Parkinson’s disease mouse models (Jing et al, 2015; Lastres-Becker

et al, 2016). NRF2 activation also occurs in PBMC and glial cells

from multiple sclerosis patients treated with DMF from the DEFINE

and CONFIRM studies (Gopal et al, 2017). Yet, the immunomodula-

tory effect of DMF in the nervous system can be NRF2-dependent

(Linker et al, 2011) or independent (Brennan et al, 2016). G

protein-coupled receptor 109A (GPR109A), also known as the

hydroxycarboxylic acid receptor 2 (HCA2), is another DMF target

(Parodi et al, 2015). Future studies on the role of HCA2 in X-ALD

and other demyelinating diseases will further enlighten the mecha-

nism of action of DMF in the neuroinflammatory axis.

In view of these data, DMF exhibits a great potential to treat X-

ALD and other neurodegenerative diseases with an overall good

safety profile (Fox et al, 2012; Gold et al, 2012). However, some

precautions need to be observed with this drug, as side effects need

to be monitored and evaluated carefully. The most important is

lymphocytopenia (Fox et al, 2016). Of > 230,000 patients treated

with DMF in the period of 3 years following commercial availability,

five cases of progressive multifocal leukoencephalopathy (PML)

have been reported, in the setting of moderate to severe prolonged

lymphocytopenia (Pardo & Jones, 2017). As a consequence, FDA

and EMA (EMA/627077/2015) recently issued updated safety recom-

mendations to minimize PML risk, which include regular blood

counts. Recent reports indicate that a reduction in T cells rather than

a general reduction in lymphocyte count may be associated with

these cases (Gieselbach et al, 2017), which still represent a very low

percentage of all the patients treated with fumaric acid esters.

In summary, our data uncover a novel role of GSK-3b/NRF2 in

the physiopathogenesis of X-ALD. By identifying the mechanism

impaired in the endogenous antioxidant response in this disease, we

reveal a novel therapeutic intervention using DMF treatment to

overcome the molecular pathogenesis and clinical signs of

adrenoleukodystrophy in the mouse. Our data provide strong ratio-

nale to propose phase II clinical trials with DMF in adrenoleukodys-

trophy patients.

Materials and Methods

Reagents and antibodies

The following chemicals were used: DMF (Ref. 242926), hexa-

cosanoic acid (C26:0, Ref. H0388), and oligomycin (Ref. O4876)

were purchased from Sigma-Aldrich (Steinheim, Germany). GSK-

3b inhibitors CHIR99021 (6-[[2-[[4-(2,4-dichlorophenyl)-5-(5-

methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyri-

dinecarbonitrile; Ref. 361559) and SB216763 (3-(2,4-dichloro-

phenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione; Ref. 1616)

were purchased from Calbiochem (Billerica, MA, USA) and Tocris

Biosciences (Bristol, UK), respectively. Detailed information on

antibodies is summarized in Appendix Table S1.

Mouse experiments

We used male mice of a pure C57BL/6J background. All methods

employed in this study were in accordance with the ARRIVE

guidelines, the Guide for the Care and Use of Laboratory Animals

(Guide, 8th edition, 2011, NIH) and European (2010/63/UE) and

Spanish (RD 53/2013) legislation. Experimental protocols were

approved by IDIBELL, IACUC (Institutional Animal Care and Use

Committee), and regional authority (3546 DMAH, Generalitat de

Catalunya, Spain). IDIBELL animal facility is accredited by The Asso-

ciation for Assessment and Accreditation of Laboratory Animal Care

(AAALAC, Unit 1155). Animals were housed at 22°C on specific

pathogen-free conditions, in a 12-h light/dark cycle, and ad libitum

access to food and water. Cages contained three to four animals.

We used two X-ALD mouse models in this study. We evaluated

the biochemical signs of adult X-ALD in Abcd1� mice at 12 months

of age. These mice present oxidative stress (Fourcade et al, 2008)

and energetic homeostasis impairment (Galino et al, 2011) before

the first clinical signs of adrenomyeloneuropathy-like pathology

(axonopathy and locomotor impairment) appear at 20 months

(Pujol et al, 2002).

To address the therapeutic effect of DMF, we assessed the clinical

signs of adrenomyeloneuropathy in Abcd1�/Abcd2�/� (DKO) mice,

which display increased VLCFA accumulation in the spinal cord

(Pujol et al, 2004), higher levels of oxidative damage to proteins

(Fourcade et al, 2008; Galino et al, 2011), and a more severe

adrenomyeloneuropathy-like pathology with an earlier onset at

12 months of age (Pujol et al, 2004). These mice are the preferred

X-ALD mouse model for therapeutic testing (Mastroeni et al, 2009;

Lopez-Erauskin et al, 2011; Morato et al, 2013, 2015; Launay et al,

2015, 2017).

For biochemical analysis, we euthanized the mice and stored the

tissues at �80°C after snap-freezing them in liquid nitrogen. For

histological analysis, spinal cord was harvested from 18-month-old

mice after perfusing them with 4% paraformaldehyde (PFA; Sigma-

Aldrich, Ref. 441244) in 0.1 M phosphate buffer pH 7.4. Histological

and behavioral experiments were performed in a blind manner with

respect to the animal’s genotype and the treatment administered.

DMF administration to mice

Dimethyl fumarate was mixed into AIN-76A chow from Dyets

(Bethlehem, PA, USA) to provide a dose of 100 mg/kg/day. Human

equivalent dose would be 8 mg/kg/day (240 mg in a typical 60 kg

person). This is equivalent to the starting dose of BG-12/Tecfidera

for multiple sclerosis patients, 120 mg twice a day (EMA/204830/

2013).

To characterize biochemical signs in adult X-ALD mice, 8-month-

old animals were randomly assigned to one of the following dietary

groups for 4 months. Group I: WT mice received normal AIN-76A

chow (n = 12); group II: Abcd1� mice received normal AIN-76A

chow (n = 12); group III: Abcd1� mice received AIN-76A chow

containing DMF (n = 12). To evaluate the effect of DMF on the clini-

cal signs of adrenomyeloneuropathy-like pathology, 12-month-old

animals were randomly assigned to one of the following dietary

groups for 6 months. Group I: WT mice received normal AIN-76A

chow (n = 14); group II: Abcd1�/Abcd2�/� mice received normal

AIN-76A chow (n = 16); and group III: Abcd1�/Abcd2�/� mice

received AIN-76A chow containing DMF (n = 14). DMF had no

effect on weight or food intake under any treatment protocol, and

none of the mice administered with DMF experienced any adverse

events or death during the treatment.
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Human samples

Primary human fibroblasts were prepared from skin biopsies

collected from healthy individuals (n = 8) and adrenomyeloneu-

ropathy patients (n = 8) according to the IDIBELL guidelines for

sampling, including informed consent obtained from the persons

involved or their representatives according to the Declaration of

Helsinki and approved by the ethical committee of IDIBELL.

The fibroblasts were grown in Dulbecco’s modified Eagle’s

medium (Gibco, Thermo Fisher Scientific Inc., Rockford, IL, USA)

containing 10% fetal bovine serum (Cultek, Ref. 91S1800; Madrid,

Spain), 100 U/ml penicillin, and 100 lg/ml streptomycin (Pen

Strep; Gibco, Ref. 15140-122) and maintained at 37°C in a humidi-

fied 95% air/5% CO2 incubator. The compounds tested were added

at 80–90% cell confluence. 15 lM oligomycin and 50 lM C26:0

were diluted in ethanol and added for 18 and 24 h, respectively.

DMF (20 lM), dissolved in ethanol, and GSK-3b inhibitors

(CHIR99021 at 3 lM and SB216763 at 10 lM), dissolved in

dimethylsulfoxide (DMSO), were added 18 h after C26:0 treatment

for 6 h. All experiments were performed with fibroblasts at passage

10–20.

Nuclear-cytoplasmic fractionation in human fibroblasts

We performed subcellular fractionation to study NRF2 translocation

to the nucleus, using a non-ionic detergent lysis method with slight

modifications (Abmayr et al, 2006). Briefly, cells grown in 100 mm

diameter dishes (Nunc Dish, Thermo Fisher Inc.) were washed in

ice-cold phosphate buffer saline (PBS) pH 7.4 and collected by

trypsinization (0.25% Trypsin-EDTA Solution A; Biological Indus-

tries USA, Cromwell, CT, USA) in a 15-ml falcon tube. After

centrifugation and a new ice-cold PBS wash, the cell pellet was

resuspended with 140 ll of lysis buffer (0.1% Nonidet P-40 in PBS,

plus proteases (Complete Mini, Ref. 11836153001; Roche Diagnos-

tics GmbH; Mannheim; Germany) and phosphatases (PhosSTOP,

Ref. 04906845001; Roche Diagnostics GmbH) inhibitors) and

scratched 20 times to lyse the cells. After 10-min incubation on ice,

we centrifuged at 300 g during 5 min at 4°C in an Eppendorf�

microcentrifuge. Supernatant was collected as cytoplasmic fraction.

Then, we added 70 ll of RIPA buffer (50 mM Tris pH 8.0, 150 mM

NaCl, 12 mM deoxycholic acid, and 1% Nonidet P-40; comple-

mented with protease/phosphatase inhibitors) to the pellet to obtain

the nuclear fraction. After homogenizing the pellet through a

syringe with a 25G needle and 30 min of shaking at 4°C, we centri-

fuged for 10 min at 16,100 g at 4°C. Supernatant was collected as

nuclear fraction. Then, we performed immunoblot procedures as

described below. Lamin B1 and aldolase A were used as markers for

nuclear and cytoplasmic fraction, respectively.

Quantitative real-time PCR

RNA extraction and retrotranscription into cDNA, DNA extraction

and quantitative RT–PCR analysis were performed as previously

described (Morato et al, 2013). Total RNA was extracted from

human fibroblasts and mouse tissues using RNeasy Kit (Qiagen,

Hilden, Germany). Total DNA was extracted from mouse spinal cord

using Gentra Puregene Tissue Kit (Qiagen, Hilden, Germany). The

expression of the genes of interest was analyzed by Q–PCR using

TaqMan� Gene Expression Assays (Thermo Fisher Scientific Inc.)

and standardized TaqMan� probes (Appendix Table S2) on a Light-

Cycler� 480 Real-Time PCR System (Roche Diagnostics GmbH).

Relative quantification was carried out using the “Delta-Delta Ct”

(DDCt) method with Rplp0 as endogenous control. To quantify

mouse mitochondrial DNA (mtDNA) content, primers for mouse

cytochrome b (Cytb) were designed (Custom TaqMan Gene Expres-

sion Assays; Thermo Fisher Scientific Inc.). The sequences for Cytb

primers were as follows: ATGACCCCAATACGCAAAATTA (for-

ward) and GGAGGACATAGCCTATGAAGG (reverse), and the

FAM-labeled probe sequence was TTGCAACTATAGCAACAG.

Quantification of mtDNA was referred to nuclear DNA (nDNA),

determined by the amplification of the intron-less mouse nuclear

gene Cebpa (Morato et al, 2013). Transcript quantification was

performed in triplicate for each sample.

Immunoblot

Human fibroblasts and mouse tissues were homogenized in RIPA

buffer and then sonicated, centrifuged, and heated for 10 min at

70°C after adding 4X NuPAGE� LDS Sample Buffer (Invitrogen,

Thermo Fisher Scientific Inc.). 20–50 lg of proteins was loaded onto

8% Novex NuPAGE� SDS–PAGE gel system (Invitrogen, Thermo

Fisher Scientific Inc.) and run for 60–90 min at 120 V in NuPAGE�

MOPS SDS Running Buffer (Invitrogen, Thermo Fisher Scientific

Inc.) supplemented with 5 mM sodium bisulfite (Ref. 243973,

Sigma-Aldrich). SeeBlue� Plus2 Pre-stained (Invitrogen, Thermo

Fisher Scientific Inc.) was used as a ladder.

Regarding the different AKT or GSK-3b phosphorylations, we run

the same quantity of samples (processed at the same time) in

several gels in parallel, always performing Ponceau staining and Y-

tubulin immunoblotting to confirm equal loading. Resolved proteins

were transferred onto nitrocellulose membranes using iBlot� 2 Gel

Transfer Device (Invitrogen, Thermo Fisher Scientific Inc.). After

blocking in 5% bovine serum albumin (BSA, Sigma-Aldrich) in

0.05% TBS-Tween (TBS-T) for 1 h at room temperature,

membranes were incubated with corresponding diluted primary

antibodies (Appendix Table S1) in 5% BSA in 0.05% TBS-T over-

night at 4°C. Following incubation with diluted secondary antibody

(Appendix Table S1) in 0.05% TBS-T for 1 h at room temperature,

proteins were detected with ECL Western blotting analysis system

(GE Healthcare, Buckinghamshire, UK), followed by exposure to

CL-XPosure Film (Thermo Fisher Scientific Inc.) as earlier described

(Galino et al, 2011). It is worth noting that the correct band for

NRF2 is at 100 kDa, not at the predicted 68 kDa (Lau et al, 2013).

Immunoblots were quantified by densitometry using ImageJ v1.50i

(U. S. National Institutes of Health, Bethesda, MD, USA).

ATP

ATP levels were measured by a chemiluminescence system using

ATPlite 1step (PerkinElmer, Inc., Waltham, MA, USA), as already

described (Galino et al, 2011).

Evaluation of oxidative lesions

AASA, CML, CEL, and MDAL concentrations in total proteins from

spinal cord homogenates were measured by gas chromatography/
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mass spectrometry (GC/MS), as reported (Fourcade et al, 2008).

The amounts of products were expressed as the ratio of micromole

of AASA, CML, CEL, or MDAL per mol of lysine.

Measurement of very long-chain fatty acids

Content of very long-chain fatty acids in total lipids from spinal cord

was analyzed as methyl ester derivative by gas chromatography, as

described before (Morato et al, 2013). Briefly, separation was

performed by a DBWAX capillary column (30 m × 0.25 mm ×

0.20 lm) in a GC System 7890A with a Series Injector 7683B and a

FID detector (Agilent Technologies). The injection port was main-

tained at 220°C, and the detector at 250°C; the temperature program

was 5 min at 145°C, then 2°C/min to 240°C with a hold of 10 min,

then 0.5°C/min to 250°C, and finally hold at 250°C for 5 min. Identi-

fication of fatty acid methyl esters was made by comparison with

authentic standards (Sigma and Larodan Fine Chemicals). Results

are represented as fold change to WT mice.

Immunohistochemistry

Spinal cords were embedded in paraffin, and serial sections (4 lm
thick) were cut in a transversal or longitudinal (1 cm long) plane

after perfusion with 4% PFA. Immunohistochemistry (IHC) studies

performed in WT, Abcd1�/Abcd2�/� (DKO), and Abcd1�/Abcd2�/�

mice treated with DMF (DKO+DMF) were carried out using the

avidin–biotin peroxidase method, as reported earlier (Launay et al,

2015).

After primary antibody incubation, the sections were incubated

with the Labelled Streptavidin-Biotin2 System (LSAB2, Ref. K0675,

Dako). Staining was visualized after incubation with 3,30-diamino-

benzidine (DAB) substrate chromogen (Ref. D5637, Sigma-Aldrich),

which results in a brown-colored precipitate at the antigen site.

After dehydrating the sections, slides were mounted with DPX (Ref.

06522, Sigma-Aldrich).

Images were acquired using Olympus BX51 microscope (20x/

N.A 0.50 Ph 1 UPlan FL N; Olympus Corporation, Tokyo, Japan)

connected to an Olympus DP71 camera and Cell^B software (Olym-

pus Corporation). The researcher was blinded to both genotype and

treatment of the sample when analyzing the results. The number of

GFAP+ cells (astrocytes) and Iba1+ cells (microglia) per mm2 was

determined in the spinal cord’s ventral horn of WT, Abcd1�/
Abcd2�/�, and DMF-treated Abcd1�/Abcd2�/� mice (n = 5). The

number of brown-colored cells was considered and counted with

Cell Counter ImageJ plugin. Data are presented as an average of two

20× images per animal for each group.

Analysis of locomotion

Locomotor deficits were assessed with the bar cross test and the

treadmill test, as already described (Morato et al, 2013).

Statistical analysis

Sample size was chosen according to previous experience in the

laboratory, in similar experiments with long-term oral treatments

that were performed with the same animal model. No animals were

excluded from analysis. Animals and samples were allocated to

different treatment groups by randomization. Researchers were

blinded to the group assignment and to the animal number when

performing the locomotor experiments until the data were processed

for statistical analysis.

The values were expressed as the mean � standard deviation

(SD). The significant differences when comparing two groups were

determined by a two-tailed unpaired Student’s t-test (*P < 0.05,

**P < 0.01, ***P < 0.001). When comparing more than two groups,

significant differences were determined by one-way ANOVA

followed by Tukey’s/Dunnett’s post hoc tests (*/#P < 0.05,

**/##P < 0.01, ***/###P < 0.001) or Kruskal–Wallis non-parametric

test followed by Dunn’s post hoc test ($P < 0.05, $$P < 0.01,
$$$P < 0.001), after verifying normality (Shapiro–Wilk test). Statis-

tical analyses were performed using SPSS for Windows version 12.0.

Expanded View for this article is available online.
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Problem
X-linked adrenoleukodystrophy (X-ALD) is a rare disease that met the
public eye in the early 90s thanks to the movie Lorenzo’s Oil which
has, despite recent advances in gene therapy, still no satisfactory
treatment for most cases. The underlying genetic defect causes the
malfunction of the fatty acid transporter ABCD1. Because early hall-
marks of X-ALD are oxidative damage and bioenergetic impairment,
here we evaluated the endogenous antioxidant response seeking for
suitable drug targets.

Results
Using mouse models of X-ALD and cells obtained from the skin of X-
ALD patients, we uncovered an impaired NRF2 antioxidant response
caused by aberrant activity of GSK-3b, a kinase upstream in this
cascade. We found that GSK-3b inhibitors reactivated the blunted
NRF2 response in patients’ fibroblasts. In the mouse models (Abcd1�

and Abcd1�/Abcd2�/� mice), oral administration of dimethyl fumarate
(DMF/BG12/Tecfidera), an FDA-approved NRF2 activator, normalized
molecular defects relative to ABCD1 deficiency such as (i) oxidative
damage, (ii) mitochondrial depletion and bioenergetic failure, and (iii)
neuroinflammation. Moreover, DMF halted axonal degeneration and
locomotor disability in the mouse model.

Impact
This preclinical study identifies a druggable pathway underlying
axonal degeneration in X-ALD and paves the way to use dimethyl
fumarate in phase II clinical trials. The study highlights as well the
potential of drugs targeting the GSK-3b/NRF2 axis for other axonal
disorders with shared pathomechanisms.
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