A. Chandran, M. Hermanns, N. Regnault, and B. A. Bernevig, Bulk-edge correspondence in entanglement spectra, Phys. Rev. B, vol.84, p.205136, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00648638

J. Cano, Bulk-edge correspondence in (2+1)-dimensional abelian topological phases, Phys. Rev. B, vol.89, p.115116, 2014.

A. Chandran, V. Khemani, and S. L. Sondhi, How universal is the entanglement spectrum, Phys. Rev. Lett, vol.113, p.60501, 2014.

G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nucl. Phys. B, vol.360, pp.362-396, 1991.

J. Dubail, N. Read, and E. H. Rezayi, Edge-state inner products and real-space entanglement spectrum of trial quantum hall states, Phys. Rev. B, vol.86, p.245310, 2012.

E. Grosfeld and K. Schoutens, Non-abelian anyons: when ising meets fibonacci, Phys. Rev. Lett, vol.103, p.76803, 2009.

F. A. Bais and J. C. Romers, The modular s-matrix as order parameter for topological phase transitions, New J. Phys, vol.14, p.35024, 2012.

F. J. Burnell, S. H. Simon, and J. K. Slingerland, Phase transitions in topological lattice models via topological symmetry breaking, New. J. Phys, vol.14, p.15004, 2012.

F. A. Bais, J. K. Slingerland, and S. M. Haaker, Theory of topological edges and domain walls, Phys. Rev. Lett, vol.102, p.220403, 2009.

M. Barkeshli, C. Jian, and X. Qi, Classification of topological defects in abelian topological states, Phys. Rev. B, vol.88, p.241103, 2013.

A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B, vol.845, pp.393-435, 2011.

X. Qi, H. Katsura, and A. W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett, vol.108, p.196402, 2012.

M. D. Schulz, S. Dusuel, K. P. Schmidt, and J. Vidal, Topological phase transitions in the golden string-net model, Phys. Rev. Lett, vol.110, p.147203, 2013.

Y. Hu and C. L. Kane, Fibonacci topological superconductor, Phys. Rev. Lett, vol.120, p.66801, 2018.

M. Levin, Protected edge modes without symmetry, Phys. Rev. X, vol.3, p.21009, 2013.

L. H. Santos, J. Cano, M. Mulligan, and T. L. Hughes, Symmetry-protected topological interfaces and entanglement sequences, Phys. Rev. B, vol.98, p.75131, 2018.

J. May-mann and T. L. Hughes, Families of gapped interfaces between fractional quantum hall states

A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B, vol.845, pp.393-435, 2011.

A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Comm. Math. Phys, vol.313, pp.351-373, 2012.

J. Fuchs, C. Schweigert, and A. Valentino, Bicategories for boundary conditions and for surface defects in 3-d TFT, Comm. Math. Phys, vol.321, pp.543-575, 2013.

K. V. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett, vol.45, pp.494-497, 1980.

T. H. Hansson, M. Hermanns, S. H. Simon, and S. F. Viefers, Quantum hall physics: Hierarchies and conformal field theory techniques, Rev. Mod. Phys, vol.89, p.25005, 2017.

L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Observation of the e/3 fractionally charged Laughlin quasiparticle, Phys. Rev. Lett, vol.79, pp.2526-2529, 1997.

V. J. Goldman and B. Su, Resonant tunneling in the quantum hall regime: measurement of fractional charge, Science, vol.267, pp.1010-1012, 1995.

R. B. Laughlin, Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett, vol.50, pp.1395-1398, 1983.

F. D. Haldane, Fractional quantization of the hall effect: A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett, vol.51, pp.605-608, 1983.

S. A. Trugman and S. Kivelson, Exact results for the fractional quantum hall effect with general interactions, Phys. Rev. B, vol.31, pp.5280-5284, 1985.

C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky, Fractional quantum hall effect in an array of quantum wires, Phys. Rev. Lett, vol.88, p.36401, 2002.

V. Crépel, N. Claussen, B. Estienne, and N. Regnault, Model states for a class of chiral topological order interfaces, Nat. Commun, 2019.

A. C. Balram, C. Töke, A. Wójs, and J. K. Jain, Fractional quantum hall effect in graphene: quantitative comparison between theory and experiment, Phys. Rev. B, vol.92, p.75410, 2015.

F. Amet, Composite fermions and broken symmetries in graphene, Nat. Commun, vol.6, p.5838, 2015.