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Abstract. Mapping sea ice concentration (SIC) and under-
standing sea ice properties and variability is important, es-
pecially today with the recent Arctic sea ice decline. More-
over, accurate estimation of the sea ice effective temperature
(Teff) at 50 GHz is needed for atmospheric sounding applica-
tions over sea ice and for noise reduction in SIC estimates.
At low microwave frequencies, the sensitivity to the atmo-
sphere is low, and it is possible to derive sea ice parame-
ters due to the penetration of microwaves in the snow and
ice layers. In this study, we propose simple algorithms to
derive the snow depth, the snow–ice interface temperature
(TSnow−Ice) and the Teff of Arctic sea ice from microwave
brightness temperatures (TBs). This is achieved using the
Round Robin Data Package of the ESA sea ice CCI project,
which contains TBs from the Advanced Microwave Scan-
ning Radiometer 2 (AMSR2) collocated with measurements
from ice mass balance buoys (IMBs) and the NASA Opera-
tion Ice Bridge (OIB) airborne campaigns over the Arctic sea
ice. The snow depth over sea ice is estimated with an error
of 5.1 cm, using a multilinear regression with the TBs at 6,
18, and 36 V. The TSnow−Ice is retrieved using a linear regres-
sion as a function of the snow depth and the TBs at 10 or
6 V. The root mean square errors (RMSEs) obtained are 2.87
and 2.90 K respectively, with 10 and 6 V TBs. The Teff at
microwave frequencies between 6 and 89 GHz is expressed
as a function of TSnow−Ice using data from a thermodynam-
ical model combined with the Microwave Emission Model

of Layered Snowpacks. Teff is estimated from the TSnow−Ice
with a RMSE of less than 1 K.

1 Introduction

In situ observations of the variables controlling the sea ice
energy and momentum balance in polar regions are scarce.
One way to overcome this observational gap is to use satel-
lites for measuring sea ice properties. The objective of this
study is to estimate key sea ice variables from satellite remote
sensing to improve current sea ice models and prediction, sea
ice concentration (SIC) mapping in the EUMETSAT Ocean
and Sea Ice Satellite Application Facility (OSISAF) project,
and polar atmospheric sounding applications.

Sea ice thermodynamics is controlled by the regional heat
budget (Maykut and Untersteiner, 1971). In general, sea ice
is covered by snow, which can reach a mean thickness of
up to ∼ 50 cm in the Arctic (Sato and Inoue, 2018). Snow
on sea ice strongly affects the sea ice energy and radiation
balance, with its high insulation of heat and reflectivity of
solar radiation. Snow is a poor conductor of heat: it insulates
the sea ice and reduces the winter ice growth (Fichefet and
Maqueda, 1999). In summer, its high albedo reduces the sea
ice melting rate. The high albedo of snow on sea ice com-
pared to open-water albedo plays an important role in the
sea ice albedo feedback mechanism and Arctic amplification
(Hall, 2004). Sato and Inoue (2018) suggest that the recent
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sea ice growth has been effectively limited by the increase in
snow depth on thin ice during winter. Current sea ice models
include snow schemes (e.g. Lecomte et al., 2011), with the
snow depth and temperature gradient in the snow pack mod-
ulating the sea ice growth and melt. Improved estimates of
snow depth (Ds), as well as snow–ice interface temperature
(TSnow−Ice) from satellite observations would provide valu-
able information on the vertical thermodynamics in the snow
and ice to improve current sea ice models and therefore the
prediction of sea ice growth.

Here we propose using a simple algorithm to retrieve Ds
and TSnow−Ice from passive microwave observations from
the Advanced Microwave Scanning Radiometer 2 (AMSR2),
based on a large data set of collocated in situ and satel-
lite observations. An extensive Round Robin Data Package
(RRDP) (Pedersen et al., 2018, https://figshare.com/articles/
Reference_dataset_for_sea_ice_concentration/6626549, last
access: 15 January 2019) has been developed during the Eu-
ropean Space Agency (ESA) sea ice Climate Change Initia-
tive (CCI) project and the SPICES (Space-borne observa-
tions for detecting and forecasting sea ice cover extremes)
project (http://www.seaice.dk/ecv2/rrdb-v1.1/, last access:
15 June 2017). It contains in situ data from the ice mass
balance buoys (IMBs), and the Operation Ice Bridge (OIB)
airborne campaigns collocated with AMSR2 brightness tem-
perature measurements between 6 and 89 GHz.

Algorithms already exist to retrieve the snow depth from
microwave observations. Markus and Cavalieri (1998) and
Comiso et al. (2003) use the spectral gradient ratio of the 19
and 37 GHz (GR37/19) in vertical polarization to deduce the
snow depth over sea ice. This method has been developed
for dry snow on first-year ice (FYI) in Antarctica, and it is
applicable only to this ice type. Sea ice emissivity depends on
the ice type. At frequencies ≥ 18 GHz, the ice emissivity is
higher for FYI than for multi-year ice (MYI) (Comiso, 1983;
Spreen et al., 2008). The difference of emissivity between the
19 and 37 GHz can be used to retrieve the snow depth or the
sea ice type. Therefore, the snow depth algorithms which use
this gradient ratio (GR37/19) are strongly dependent on the
ice type. Improvements by Markus and Cavalieri (1998) have
been suggested by Markus et al. (2011) and Kern and Ozsoy-
Çiçek (2016). More recently, Rostosky et al. (2018) revisit
the methodology for the Arctic region, using a new gradient
ratio between 7 and 19 GHz (GR19/7) to derive snow depths
over both FYI and MYI. For their study, they use the snow
depths of OIB campaigns obtained in March and April. With
the help of the RRDP, we will extend the methodology to the
full winter (from 1 December to 1 April) for the Arctic region
using the IMB snow depth data.

Tonboe et al. (2011) showed from radiative transfer sim-
ulations that there is a high linear correlation between the
TSnow−Ice and the passive microwave observations at 6 GHz.
Preliminary results from Grönfeldt (2015) evidenced the pos-
sibility of deriving the temperature of sea ice from pas-
sive microwave observations using simple regression mod-

els. This work will be extended here to estimate TSnow−Ice
over Arctic sea ice.

Passive microwave satellite observations between 50 and
60 GHz are extensively used to provide the atmospheric tem-
perature profiles in Numerical Weather Prediction (NWP)
centres, with instruments such as the Advanced Microwave
Sounding Unit-A (AMSU-A) or the Advanced Technology
Microwave Sounder (ATMS). For an accurate estimation of
the temperature profile in the lower atmosphere, quantifying
the surface contribution is required. The surface contribution,
i.e. the surface brightness temperature (TB), depends on the
frequency, and it is the product of a surface effective emis-
sivity (eeff) and a surface effective temperature (Teff):

TB= eeff · Teff. (1)

Teff is defined as the integrated temperature over a layer cor-
responding to the penetration depth at the given frequency:
the larger the wavelength, the deeper the penetration into the
medium. In the same way, eeff represents the integrated emis-
sivity over a layer corresponding to the penetration depth. It
depends on the frequency, the incidence angle, and the sub-
surface extinction and reflections between snow and sea ice
layers (Tonboe, 2010). Therefore, estimating the surface con-
tribution is particularly complicated over sea ice due to the
layering and the vertical structure of the snowpack, which af-
fect the microwave emission processes (Mathew et al., 2008;
Rosenkranz and Mätzler, 2008; Harlow, 2009, 2011; Tonboe,
2010; Tonboe et al., 2011), and to the large spatial and tem-
poral variability of sea ice and snow cover (English, 2008;
Tonboe et al., 2013; Wang et al., 2017). The understanding
of the relationship between Teff and the physical temperature
profile is complicated, especially at microwave frequencies
≥ 18 GHz, when scattering occurs, but it has been shown that
from 6 to 50 GHz there is a high correlation between the Teff
and the TSnow−Ice (Tonboe et al., 2011). With TSnow−Ice esti-
mated from the AMSR2 observations, we will deduce the sea
ice Teff at AMSR2 frequencies between 6 and 89 GHz, using
linear regression.

Section 2 describes the data set and the methodology used
in this study. The snow depth retrieval is presented in Sect. 3.
Section 4 reports on the TSnow−Ice retrieval. Finally, mi-
crowave sea ice Teff at 50 GHz is derived for application to
temperature atmospheric sounding (Sect. 5). Section 6 dis-
cusses the snow depth and the TSnow−Ice retrieval results over
a winter in Arctic. Section 7 concludes this study.

2 Material and methods

2.1 The database of collocated satellite observations
and in situ measurements

The RRDP from the ESA sea ice CCI project is
an openly available data set (Pedersen et al., 2018,
https://figshare.com/articles/Reference_dataset_for_sea_
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ice_concentration/6626549, last access: 15 January 2019).
It contains an extensive collection of collocated satellite
microwave radiometer data with in situ buoy or airborne
campaign measurements and other geophysical parame-
ters, with relevance for computing and understanding the
variability of the microwave observations over sea ice. It
covers areas with 0 % and 100 % of SIC and different sea
ice types (thin ice, first-year ice, multiyear ice), for all
seasons including summer melt. In our study, we will focus
on Arctic sea ice during winter in regions with 100 % sea
ice cover. Two different data sets from the RRDP are used:
AMSR2 brightness temperatures (TBs) collocated with
IMB measurements and AMSR2 TBs collocated with OIB
airborne campaign measurements.

AMSR2 is a passive microwave radiometer on board the
JAXA GCOM-W1 satellite (launched on 18 May 2012).
AMSR2 has 14 channels at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5,
and 89 GHz for both vertical and horizontal polarizations and
it observes at 55◦ of incidence angle. In the RRDP, the spa-
tial resolution of each channel is resampled by JAXA to the
6.9 GHz resolution (32×62 km) (see AMSR2 L1R products,
Maeda et al., 2011, 2016) before collocation with buoy or air-
borne campaign measurements (RRDP report, Pedersen and
Saldo, 2016; Pedersen et al., 2018).

IMBs are installed by the Cold Regions Research and En-
gineering Laboratory (CRREL) to measure the ice mass bal-
ance of the Arctic sea ice cover (Richter-Menge et al., 2006;
Perovich and Richter-Menge, 2006). Buoy components in-
clude acoustic sounders and a string of thermistors. The ther-
mistor string extends from the air, through the snow cover
and sea ice, into the water and has temperature sensors lo-
cated every 10 cm along the string. It measures the physical
temperature with an accuracy of 0.1 K. There are two acous-
tic sounders located above the snow surface and below the
sea ice. The acoustic sounders measure the position of snow
and ice surfaces (top and bottom) with a precision of 5 mm,
from which the snow depth is computed. The buoys also in-
clude instruments that measure air temperature, barometric
air pressure, and GPS geographical position (Perovich et al.,
2019). Several IMBs are deployed by the CRREL at different
locations and times during the year. We only use Arctic buoy
data recorded during winter (1 December to 1 April) to avoid
cases where ice starts to melt. The IMBs available for this
study are all located on MYI, with an ice thickness ≥ 1 m. A
summary of buoy information corresponding to these criteria
is given in Table 1 and the IMB locations are shown in Fig. 1.
IMB measurements collocated with AMSR2 TBs used in this
study totalize 2845 observations.

For snow depth retrieval, we also used data from the OIB
airborne campaign. The NASA OIB project has collected
ice and snow depth data in the Arctic during annual flight
campaigns (March–May) since 2009. The data are especially
valuable in this context, since they contain snow depth in-
formation from the snow radar on board the aircraft, not only
from single points but continuously along the flight path. The

Figure 1. Ice mass balance buoy and Operation Ice Bridge (OIB)
flight locations over Arctic sea ice. Squares indicate the position of
IMBs on 1 December and circles indicate the starting points of the
OIB campaigns.

vertical resolution of the OIB snow radar is 3 cm, and the un-
certainty on the snow depth is around 6 cm compared with
in situ measurements (Kurtz et al., 2013). Recent studies evi-
dence larger errors on OIB snow depth (Kwok and Maksym,
2014) with issues to detect snow depth under 8 cm (Kwok
and Maksym, 2014; Holt et al., 2015). These different limi-
tations are summarized in Kwok et al. (2017). In the RRDP,
the snow depth data from OIB snow radar are averaged into
50 km sections to be collocated with AMSR2 observations.
For our study we use the OIB data from the 2013 campaign.
It totalizes 408 observations over 8 d in March and April and
covers FYI and MYI areas. Figure 1 summarizes the loca-
tions of IMBs and OIB campaigns over the Arctic ocean.

It is important to note that there are discrepancies due to
the scale when comparing point measurements from buoys
with the spatially averaged data from satellites or aircrafts
(Dybkjær et al., 2012).

2.2 The database of simulated effective temperature
and brightness temperature from sea ice properties

For the estimation of Teff, we use a microwave emission
model coupled with a thermodynamic model. The emission
model uses the temperature, density, snow crystal and brine
inclusion size, salinity, and snow or ice type to estimate the
microwave emissivity, the Teff, and the TB of sea ice. It is
coupled with a thermodynamic model in order to provide re-
alistic microphysical inputs. The thermodynamic model for
snow and sea ice is forced with ECMWF ERA40 meteoro-
logical data input: surface air pressure, 2 m air temperature,
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Table 1. List of the IMBs used in this study, with the mean snow depth (column 5) and the mean ice thickness (column 6) computed over the
duration of the measurements (column 2).

Buoy Duration of measurements Deployment Position on 1 December Mean snow Mean ice
ID during winter location (lat, long) depth (cm) thickness (cm)

2012G 1 Dec 2012–6 Feb 2013 Central Arctic (85.79◦; −134.88◦) 34.1 162.8
2012H 1 Dec 2012–6 Feb 2013 Beaufort Sea (80.39◦; −129.23◦) 23.2 173.3
2012J 1 Dec 2012–6 Feb 2013 Laptev Sea (82.87◦; 139.09◦) 25.5 100.3
2012L 1 Dec 2012–6 Feb 2013 Beaufort Sea (80.36◦; −138.55◦) 8.5 330.1
2013F 1 Dec 2013–31 Mar 2014 Beaufort Sea (76.15◦; −146.27◦) 50.3 145.7
2013G 1 Dec 2013–31 Mar 2014 Beaufort Sea (75.84◦; −151.46◦) 21.3 249.4
2014F 1 Dec 2014–11 Mar 2015 Beaufort Sea (76.32◦; −143.10◦) 16.1 151.8
2014I 1 Dec 2014–12 Mar 2015 Beaufort Sea (78.52◦; −148.70◦) 22.6 155.3

wind speed, incoming shortwave and longwave radiation, rel-
ative humidity, and accumulated precipitation. It computes
a centimetre-scale profile of the parameters used as inputs
to the emission model. The emission model used here is a
sea ice version of the Microwave Emission Model of Lay-
ered Snowpacks (MEMLS) (Wiesmann and Mätzler, 1999)
described in Mätzler (2006). The simulations were part of an
earlier version of the RRDP and the simulation methodol-
ogy is described in Tonboe (2010). This MEMLS simulation
uses, among its inputs, the snow depth and the TSnow−Ice and
computes Teffs and TBs at different frequencies (from 1.4 to
183 GHz). The data set contains 1100 cases and is called the
MEMLS-simulated data set in the following.

2.3 Methodology

In this study, we propose simple algorithms, using multilin-
ear regressions, to derive the snow depth, the TSnow−Ice, and
the Teff of sea ice from AMSR2 TBs.

The measurements from the IMB 2012G, 2012H, 2012J,
and 2012L, collocated with AMSR2 TBs, are used as the
training data set for the different regressions to retrieve snow
depth and TSnow−Ice. These buoys have been selected because
they are located in different regions across the Arctic and
show a large range of snow depths. The measurements from
IMB 2013F, 2013G, 2014F, and 2014I, which are all located
in the Beaufort Sea, are used as the testing data set.

First, the IMB snow depth is expressed as a function of the
AMSR2 TBs using a multilinear regression (see Sect. 3.1).
The OIB data are used for the forward selection and the IMB
training data set is used to perform the regression. Second,
the TSnow−Ice is expressed as a function of TBs and snow
depth, using linear regressions. An automated method is de-
veloped that detects the position of the snow–ice interface on
the vertical temperature profile measured by the IMB ther-
mistor string (see Sect. 4.1). Then, the IMB training data set
is used to perform the regressions (see Sect. 4.3). For this part
there are two consecutive regressions: the first one is done be-
tween the centred (the average was subtracted) TSnow−Ice and
TBs; the second one is done between the TSnow−Ice corrected

for the TB dependence and the snow depth. Third, the sea
ice Teff at different microwave frequencies is expressed as a
function of the TSnow−Ice (see Sect. 5.2). This final step uses
the simulations from a thermodynamical model and MEMLS
to derive linear regression equations for the Teff at frequen-
cies between 6 and 89 GHz. The Teff at 50 GHz is of special
interest for atmospheric sounding applications.

3 Snow depth estimation

3.1 Multilinear regression to retrieve the snow depth

A forward selection method is used to choose the best
AMSR2 channels to retrieve snow depth. It is a statistical
method to determine the best-predictor combinations (here,
AMSR2 TBs) to retrieve a variable (here, snow depth). We
use the stepwise regression (Draper and Smith, 1998). It is a
sequential predictor selection technique: at each step statistic
tests are computed, and the predictors included in the model
are adjusted. Our training data set for this forward selection is
the OIB snow depth from the 2013 campaign included in the
RRDP. OIB data are chosen for forward selection because the
data cover a large area with a wide range of snow depths. In
addition, the scale of the averaged OIB data is closer to satel-
lite footprint than buoy measurements, increasing the consis-
tency with the satellite observations. Forward selection tests
have also been done with the IMB training data set, but the
results were not satisfactory. We find that the best channel
combination for snow depth retrieval is the combination of
the three channels at 6.9, 18.7, and 36.5 GHz in vertical po-
larization (6, 18, and 36 V).

Then, a multilinear regression is conducted using the IMB
training data set (buoys G, H, J, L in 2012 collocated with
AMSR2 TBs). The snow depth is given as a linear combina-
tion of the TBs at 6, 18, and 36 V:

Ds = 1.7701+ 0.0175 ·TB6 V− 0.0280 ·TB18 V

+ 0.0041 ·TB36 V, (2)
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with Ds the snow depth expressed in metres and TB in kelvin.
This model was trained with snow depths between 5 and
40 cm.

The forward selection has also been tested by constrain-
ing the number of predictors to 2 and 4. The combinations
obtained are 18 and 36 V for two channels and 6, 18, 36,
and 89 V for four channels. Then, the multilinear regression
has been performed using these combinations of two or four
channels. The results show that the three-channel combina-
tion is the best in terms of RMSE and correlation compared
to the two- or four-channel combination (see Sect. 3.2).

3.2 Results of the snow depth retrieval

Figure 2 shows the comparison between the observed snow
depth measured by the acoustic sounder of IMB and the
regressed snow depth computed from AMSR2 TBs with
Eq. (2). The RMSE between the IMB snow depth observa-
tions and our snow depth regression is 12.0 cm and the cor-
relation coefficient is 0.66, using the IMBs 2013F, 2013G,
2014F, and 2014I (which are not in the training data set). The
buoy 2013F observes a large snow depth (> 40 cm), which is
outside the bounds of our snow depth model. Tests are con-
ducted to improve the estimation, including the 2013F buoy
in the training data set, with equal numbers of observations
for different ranges of snow depths: it does not improve the
results. Our model obtained the same snow depth estimation
between buoys 2013G and 2013F. It is consistent because
these buoys are spatially very close. Therefore, we suspect
that the 2013F buoy is located nearby a ridge or hummock,
where the local snow depth is large but not detectable at the
satellite footprint scale. Without including the buoy 2013F
in the computation, the RMSE for our snow depth model is
5.1 cm and the correlation coefficient is 0.61.

We also compare the snow depth retrievals with the mea-
surements of the 2013 OIB campaigns (see Fig. 3) with the
ice type computed from the gradient ratio between 19 and
37 GHz (Baordo and Geer, 2015). Our snow depth regression
(Eq. 2) RMSE is 6.26 cm and the correlation coefficient with
OIB observations is 0.87. Note that the uncertainties on OIB
data for the 2013 campaigns are between 2 and 22 cm with
a mean standard deviation (SD) of 11 cm (OIB snow depth
Dsnow provided in the RRDP). Looking at Fig. 3, our snow
depth regression is applicable to both ice types. The RMSEs
computed for MYI and FYI are 7.2 and 3.9 cm, and the cor-
relations are 0.71 and 0.03. The RMSE is smaller for FYI be-
cause the snow depth variability of FYI is also smaller. The
low correlation obtained for FYI can come from the limited
number of observations and because the snow depth variabil-
ity observed is within the signal noise.

Spatial scales are different when comparing satellite mea-
surements or airborne campaign measurements with buoy
measurements. Discrepancies can appear due to the spatial
variability of the snow depth. It can explain that the cor-
relation is higher when comparing snow depth estimated

from AMSR2 TBs with the snow depth observed from OIB
radar. It is also important to note that the OIB campaign
data are from late winter to beginning of spring (March to
April), while IMB measurements are from winter (Decem-
ber to March). With the snow depth regression being devel-
oped on IMB measurements, this small change in season can
contribute to the larger RMSE observed with OIB data.

4 Snow–ice interface temperature estimation

4.1 Automatic interface position detection

During winter, the air temperature is very cold, meaning that
the snow surface temperature is cold compared to ice and
water temperatures. Through sea ice, the temperature profile
is piecewise linear and temperature increases with depth (see
Fig. 4). In the air, the temperature gradient is small because
of turbulent mixing. In the snow, the temperature gradient is
larger due to the thermal properties of snow. Therefore, air–
snow and snow–ice interface positions can be detected by
changes in the temperature gradient. At the air–snow inter-
face, the second derivative of the temperature profile reaches
a maximum. At the snow–ice interface, the temperature gra-
dient being lower in the ice than in the snow, the second
derivative of the temperature profile reaches a minimum. Us-
ing these properties of the sea ice temperature profile, an au-
tomated method is implemented to detect the air–snow and
the snow–ice interface positions in the temperature profile
measured by the buoy thermistor string.

Figure 4 shows an averaged temperature profile through
sea ice during winter, with the air–snow and snow–ice in-
terface positions detected with our automated method. This
method performs best during winter when the air is cold. It
may not be applicable if the snow depth is lower than the ver-
tical resolution of the thermistor string (10 cm) or if sea ice
starts to melt and the temperature profile develops gradually
toward an isothermal state. The method selects the thermis-
tor which is located the closest to the interface. Note that the
real interface position can be located between two thermis-
tors. Therefore, the shift between the real interface position
and the thermistor the closest to the interface can be up to
5 cm. This can introduce uncertainties in our TSnow−Ice re-
gression.

4.2 Correlation between the brightness temperature
and the snow–ice interface temperature

During winter, the vertical position of the snow–ice interface
is fixed with respect to the buoy thermistor string. The ther-
mistor string is frozen into the ice which means that the ther-
mistor at the snow–ice interface will stay at that interface
unless there is surface melt or snow ice formation and this
rarely happens during winter. For each IMB, the snow–ice
interface is detected with our automated method described in
Sect. 4.1.

www.the-cryosphere.net/13/1283/2019/ The Cryosphere, 13, 1283–1296, 2019
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Figure 2. Time series of the comparison between snow depths from IMB observations and our multilinear regression (Eq. 2). The beginning
of the measurements with a new IMB is indicated on the x axis.

Figure 3. Time series of the comparison between snow depths (left y axis) from OIB observations and our multilinear regression (Eq. 2).
The beginning of the measurements with a new OIB campaign is indicated on the x axis. For each measurement, the ice type is indicated
with a dashed grey line (right y axis).

Figure 4. Averaged temperature profile (from December to Febru-
ary) measured by the IMB 2012G, with air–snow and snow–ice in-
terface levels detected with our automated method.

We use a correlation analysis to select the TBs at differ-
ent frequencies describing the variability of the TSnow−Ice.
Figure 5 shows the correlation coefficient between TSnow−Ice
and AMSR2 TBs computed using the data from all IMBs
(Table 1). The 89 GHz TBs are highly correlated with the air

temperature (R > 0.75). The 18.7, 23.8, and the 36.5 GHz
TBs have a low correlation with TSnow−Ice because of mi-
crowave scattering in the snow and/or shallow microwave
penetration into the snow. The 7.3 GHz channel is ignored
because it contains practically the same information as the
6.9 GHz channel. The TBs at 6.9 and 10.65 GHz at verti-
cal polarization have the highest correlation with TSnow−Ice
(R > 0.5). Therefore, the 10.65 and the 6.9 GHz at vertical
polarization (10 and 6 V) channels are selected as inputs to
the linear regression to retrieve the TSnow−Ice.

4.3 Linear regressions to retrieve the snow–ice
interface temperature

To express the TSnow−Ice as a function of the TB at 6 and
10 V, the linear regressions are calculated on centred data
(i.e. the anomaly). For each buoy, the averaged TSnow−Ice is
subtracted from the TSnow−Ice measurements and the same is
done with the TB measurements. Thus, the temperature off-
set between the buoys is removed and the slope of the linear
regression is unchanged:

1TSnow−Ice = a1 ·1TB6 or 10 V⇔ TSnow−Ice

= a1 ·TB6 or 10 V+ offsetbuoy, (3)

The Cryosphere, 13, 1283–1296, 2019 www.the-cryosphere.net/13/1283/2019/
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Figure 5. Correlation coefficient between the TSnow−Ice from IMBs
and the AMSR2 TBs, as a function of AMSR2 frequency.

with 1TSnow−Ice and 1TB describing the centred TSnow−Ice
and TB. Figure 6 shows the linear regression between the
TSnow−Ice and the TB at 6 and 10 V, using the measurements
from buoys 2012G, 2012H, 2012J, and 2012L. The slope co-
efficients (a1) estimated between the TSnow−Ice and the TB at
6 and 10 V are 1.086± 0.020 and 1.078± 0.019.

The offset (offsetbuoy) in the linear regression equations
between TSnow−Ice and the TB is different for each buoy, be-
cause it depends on the snow depth. The TSnow−Ice depen-
dence on snow depth can be explained by the thermal insu-
lation of snow (Maaß et al., 2013; Untersteiner, 1986). Here,
we establish an empirical relationship between the TSnow−Ice
corrected for the TB linear dependence at 10 or 6 V, and the
snow depth as follows:

TSnow−Ice− a1 ·TB10 or 6 V = a2 · f (Ds)+ a3, (4)

with f (Ds) a function of snow depth.
Three different linear regressions have been tested to relate

the TSnow−Ice using the snow depth directly, the inverse of the
snow depth, and the logarithm of snow depth. Figure 7 shows
the TSnow−Ice corrected from TB dependence as a function
of snow depth. The different regressions are tested using the
training data set (IMB G, H, J, and L in 2012). The regression
showing the best results uses the logarithm of the snow depth
(solid black line in Fig. 7). The linear regression using the
snow depth directly (dashed red line in Fig. 7) leads to an
overestimation of the TSnow−Ice for large snow depth. The
regression using the inverse of the snow depth (red dotted
line in Fig. 7) leads to an underestimation for small snow
depth. The RMSEs obtained on the TSnow−Ice are compared
and the relation using the logarithm of snow depth shows the
lowest RMSE. Based on these results, the final equations to
relate the TSnow−Ice to the snow depth and the TB at 10 and
at 6 V are as follows:

TSnow−Ice = 1.078 ·TB10 V+ 5.67 · log(Ds)− 5.13 (5)

TSnow−Ice = 1.086 ·TB6 V+ 3.98 · log(Ds)− 10.70, (6)

where TSnow−Ice and TB are expressed in kelvin, and Ds is
expressed in metres.

4.4 Results of the snow–ice interface temperature
retrieval

Figure 8 shows the comparisons between the observed
TSnow−Ice and the regressed TSnow−Ice using the 10 and 6 V
TBs (Eqs. 5 and 6), and the in situ snow depth measured
by the acoustic sounder of IMB. The RMSEs are computed
using the IMB 2013F, 2013G, 2014F, and 2014I. The regres-
sion of the TSnow−Ice using the in situ snow depth with the
10 V TBs (Eq. 5) is slightly better (RMSE= 1.78 K) than
the regression with the 6 V TBs (Eq. 6) (RMSE= 1.98 K).
The variability due to the snow depth is better described with
the regression using the 10 V TBs. Figure 9 is the same as
Fig. 8 but with our snow depth estimation (Eq. 2). The RM-
SEs are 2.87 K for the 10 V regression and 2.90 K for the
6 V regression. The results are degraded because of the snow
depth regression, especially for the buoys with thick snow
(∼ 50 cm) or thin snow (∼ 5 cm) (e.g. buoy 2013F and buoy
2012L). Note that the regression is tested with IMBs, which
are all located on MYI. However, using our algorithm to de-
rive the TSnow−Ice is also applicable over FYI areas, as our
snow depth algorithm is applicable to both ice types and
our TSnow−Ice algorithm uses the channels 10 or 6 V, which
have limited sensitivity to the ice type (Comiso, 1983; Spreen
et al., 2008).

5 Sea ice effective temperature estimation

5.1 Bias between the model and the observations

Teff is related to the frequency and the incidence angle of the
satellite observations. It is not a geophysical variable that we
can measure directly as an in situ parameter. A microwave
emission model has to be used to computed the Teffs from the
geophysical parameters. The Teff used here is available from
a simulated data set using a thermodynamical model and the
microwave emission model, MEMLS. The model set-up and
the simulations are described in Tonboe (2010). In this data
set, the TBs and the Teffs are simulated using the TSnow−Ice
and the input snow and ice profiles from the thermodynami-
cal model. Even though the simulated TB data are compara-
ble to observations in terms of mean and standard deviation,
both the thermodynamical model and the emission model are
based on physical equations and are not tuned to observa-
tions. TBs simulated with MEMLS are not fitted to AMSR2
TBs, meaning that a bias is expected between the TSnow−Ice
of the MEMLS-simulated data set (TSnow-Ice MEMLS) and the
TSnow−Ice estimated with our regression.
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Figure 6. Centred TSnow−Ice expressed as a function of the centred TBs at 10 V (a) and 6 V (b). Data from the IMBs are in different colours
depending on the buoy, and the linear regression is the solid black line.

Figure 7. TSnow−Ice corrected for the 10 V TB (a) and of the 6 V TB (b) dependence as a function of snow depth. Data from the IMBs are
represented by different colours, the regression using the snow depth is shown by the dashed red line, the regression using the inverse of
snow depth by the dotted red line, and the regression using the logarithm of the snow depth by the solid black line.

The bias obtained is the mean value of the difference be-
tween the TSnow-Ice MEMLS, and the TSnow−Ice regressed from
Eqs. (5) and (6) using the TBs of the MEMLS-simulated
data set as inputs. Biases of 3.97 and 4.01 K are estimated
for the regressions with 10 and 6 V respectively. The RMSEs
computed between the TSnow-Ice MEMLS and the TSnow−Ice re-
gressed and corrected for the biases at 10 and 6 V are 2.7 and
2.07 K.

Figure 10 shows the TSnow−Ice from the MEMLS-
simulated data set as a function of TB at 10 and 6 V, and the
TSnow−Ice computed from our regressions (Eqs. 5 and 6), with
and without the bias correction. We can see that the slopes of
our linear regressions are consistent with the data simulated
from MEMLS.

5.2 Linear regression between the effective
temperature and the snow–ice interface
temperature

The Teff near 50 GHz in vertical polarization is correlated
with the TSnow−Ice (Tonboe et al., 2011) and it can be ex-
pressed as a linear function of the TSnow−Ice:

Teff(freq, pol) = b1(freq, pol) · TSnow-Ice MEMLS+ b2(freq, pol), (7)

with Teff, b1, and b2 depending on the frequency (freq) and
on the polarization (pol). We use the MEMLS-simulated data
set to calculate the linear regression between the TSnow−Ice
and the Teff at 6.9, 10.65, 18.7, 23.8, 36.5, 50, and 89 GHz
in vertical polarization. Teffs at vertical and horizontal polar-
izations are about the same. Only the vertical polarization is
considered here, because TBs measurements are noisier at
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Figure 8. Time series of the comparisons between TSnow−Ice observations from IMBs (black line), and TSnow−Ice regressions with TBs at
10 V (blue line) and at 6 V (red line). The snow depth used in Eqs. (5) and (6) is the snow depth observed by the IMB sounder. The beginning
of the measurements with a new IMB is indicated on the x axis.

Figure 9. Same as Fig. 8, using the regressed snow depth (Eq. 2) in place of in situ snow depth

horizontal polarization due to the variability of sea ice emis-
sivity at this polarization.

Figure 11 shows the Teff at 50 V as a function of TSnow−Ice.
The linear regressions between the TSnow−Ice and the Teff at
different frequencies are computed. The coefficients b1 and
b2 of Eq. (7) are given in Table 2. The slope coefficient of the
regression increases with frequency, meaning that the sen-
sitivity of the Teff to the TSnow−Ice is increasing with fre-
quency between 6 and 89 GHz. A slope coefficient lower than
1 means that the penetration depth at the given frequency is
deeper than snow–ice interface. At 50 GHz the slope coeffi-
cient is near to 1, meaning that the penetration depth is close
to the depth of the snow–ice interface. The RMSEs are be-
low 1 K, with the regression of Teff at 50 V showing the low-
est RMSE (0.33 K), and at 89 V showing the highest RMSE
(0.92 K).

These linear regressions between the Teff and the
TSnow-Ice MEMLS (Eq. 7) are the final step in retrieving the Teff
of sea ice at microwave frequencies as a function of TBs, us-
ing the work in the previous sections to express the TSnow−Ice
as a function of TBs (Eqs. 2, and 5 or 6). The biases be-
tween the AMSR2 observations and the MEMLS-simulated

Table 2. Regressions of the Teff for different frequencies at vertical
polarization as a function of the TSnow−Ice (see Eq. 7) using the
MEMLS-simulated data set.

Frequency Slope Offset RMSE
(GHz) coefficient (K) (K)

b1 b2

6.9 0.888 30.2 0.89
10.7 0.901 26.6 0.75
18.7 0.920 21.5 0.63
23.8 0.932 18.4 0.57
36.5 0.960 10.9 0.41
50 0.989 2.96 0.33
89 1.06 −16.4 0.92

data set are taken into account, replacing TSnow-Ice MEMLS by
TSnow−Ice estimated from AMSR2 TBs with a bias correction
(see Table 2):

Teff(freq, pol) = b1(freq, pol) · (TSnow−Ice− 3.97)+ b2(freq, pol),

for the regression using 10 V TB (8)
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Figure 10. Comparisons between the TSnow-Ice MEMLS from the MEMLS-simulated data is shown with blue points, the regressed TSnow−Ice
(Eqs. 5 and 6) with a dashed black line, and the regressed TSnow−Ice debiased to fit the MEMLS simulations with a solid black line at 10 V (a)
and 6 V (b) channels.

Figure 11. Regression of the Teff as a function of TSnow−Ice at
50 GHz in vertical polarization. The data from the MEMLS simu-
lations are in blue points and the linear regression is the solid black
line.

Teff(freq, pol) = b1(freq, pol) · (TSnow−Ice− 4.01)+ b2(freq, pol),

for the regression using 6 V TB. (9)

6 Discussion

For days in November, January, and April, Fig. 12 shows the
maps of the snow depth estimated with our multilinear re-
gression (Eq. 2), the TSnow−Ice estimated with our multilinear
regression (Eq. 5), and the MYI concentration products from
the University of Bremen (https://seaice.uni-bremen.de, last
access: 1 November 2018). Maps of the MYI concentra-
tion from University of Bremen are derived from AMSR2
and from the Advanced SCATterometer (ASCAT) with the
method of Ye et al. (2016a, b). To perform our regressions,

we use the AMSR2 TBs (Level L1R) provided by JAXA
and the SIC from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis Interim (ERA-
Interim) data. Only the areas with 100 % SIC are considered
to compute the snow depth on sea ice and the TSnow−Ice with
our method.

The results show that the snow depth is larger (40 cm)
in the north of Greenland (Warren et al., 1999; Shalina and
Sandven, 2018) due to the presence of drift snow caused by
the numerous pressure ridges present in this area (Hanson,
1980), as anticipated. We can observe that the snow depth is
larger in areas with larger MYI concentrations. The variabil-
ity of the snow cover is low during winter, as the snow depth
reaches a maximum by December and remains relatively un-
changed until snowmelt (Sturm et al., 2002).

For TSnow−Ice, in January and April when the air tempera-
ture is cold (between−20 and−30 ◦C over the whole Arctic,
on 5 January and 5 April 2016 from ERA-Interim air temper-
ature), the areas with large snow depth show larger TSnow−Ice
because of the thermal insulation power of the snow. It is dif-
ferent in November: the air temperature is warmer (∼−5 ◦C
near Kara Sea, ∼−15 ◦C near Laptev Sea, and ∼−25 ◦C in
the central Arctic and Beaufort seas, on 5 November 2015
from ERA-Interim air temperature) and the areas with thin-
ner snow show larger TSnow−Ice which are close to the air
temperature (Perovich and Elder, 2001). Note that we can
observe low TSnow−Ice in some locations near the sea ice mar-
gins due to the presence of open ocean in the satellite foot-
print. As the brightness temperature of open water is low,
the total brightness temperature measured is decreased and it
impacts our TSnow−Ice estimation.

Visually the TSnow−Ice shows a high correlation with the
distribution patterns of multiyear ice concentration on the
same days: the highest values are found in the north of
Greenland and in the Canada Basin, with some branches
of higher values extending from there towards the Siberian
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Figure 12. Maps of the snow depth (a, b, c) and the TSnow−Ice (d, e, f) estimated from our multilinear regression using AMSR2 TBs, with
multi-year ice (MYI) concentration products (g, h, i) from the University of Bremen on 5 November 2015 (a, d, g), 5 January 2016 (b, e, h),
and 5 April 2016 (c, f, i).

coast, marking the Beaufort Gyre of the Arctic sea ice
drift (see the animations for the same year at https://seaice.
uni-bremen.de/multiyear-ice-concentration/animations/, last
access: 1 November 2018). The main differences between
FYI and MYI are, on average, the higher thickness of MYI
and its higher snow load. Both effects will influence the
TSnow−Ice. Under the same conditions, a higher ice thickness
will lead to a lower TSnow−Ice. In contrast, it will be higher
if only the snow depth is increased. The positive correlation
between MYI concentration and TSnow−Ice suggests that the
influence of the higher snow depth on MYI outbalances that
of the higher ice thickness on the TSnow−Ice, emphasizing the
important role of snow on sea ice in its thermodynamic bal-
ance.

The similar patterns observed between the maps of the
TSnow−Ice and the MYI concentration on Fig. 12 are encour-

aging and give confidence in the methodology developed
here, as these MYI concentration products are from indepen-
dent work done at the University of Bremen and distributed
daily to users. However it should be noted that the input chan-
nels of both methods overlap in some AMSR2 channels, and
even different channels show some covariance (Scarlat et al.,
2017).

7 Conclusions

We derive simple algorithms to estimate sea ice parameters
such as the snow depth, the TSnow−Ice, and the Teff of sea ice
at microwave frequencies, from AMSR2 channels. This is
achieved using the ESA RRDP, which contains AMSR2 data
collocated with IMB data and OIB campaign data. In addi-
tion, simulated TB outputs from a sea ice version of MEMLS
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are used for the regression of the Teff. All the equations used
to retrieve these sea ice parameters are derived using several
linear and multilinear regressions.

Our regression to retrieve the snow depth over winter Arc-
tic sea ice uses the TBs at 6.9, 18.7, and 36.5 GHz in verti-
cal polarization. A RMSE of 5.1 cm is obtained between the
estimated and the IMB snow depths using an independent
IMB test data set. This snow depth retrieval is applicable to
FYI and MYI, with lower uncertainties for FYI than for MYI
(3.9 cm compared to 7.2 cm). To retrieve the TSnow−Ice, two
relations are derived using two different AMSR2 channels
(10 or 6 V) and the estimated snow depth. The two regres-
sions show similar results. The errors are 2.87 and 2.90 K at
10 and 6 V. This TSnow−Ice retrieval has been tested only for
MYI. It can also be applied to FYI, as the 6 and 10 V chan-
nels have limited sensitivity to the ice type (Comiso, 1983;
Spreen et al., 2008). Finally the Teffs at 6.9, 10.65, 18.7, 23.8,
36.5, 50, and 89 GHz in vertical polarization are retrieved as
a function of TSnow−Ice using linear regressions. At the final
step, the RMSEs of the linear regressions between the sim-
ulated TSnow−Ice and the Teff for all channels are lower than
1 K, with a minimum value of 0.33 K at 50 GHz, which is
a key frequency for atmosphere temperature retrieval. The
methodology used to estimate snow depth and TSnow−Ice has
been applied to several days during winter. It shows consis-
tent results with MYI concentration estimates obtained inde-
pendently.

These algorithms can be used to create snow depth and
TSnow−Ice products which can improve the study of sea ice
variability (e.g. sea ice growth). Information on the TSnow−Ice
may help in sea ice models by constraining the sea ice tem-
perature gradient and the thermodynamical ice growth. The
Teff estimations can be used in atmospheric radiative transfer
calculations and to reduce noise in SIC retrieval algorithms
(Tonboe et al., 2013) (e.g. EUMETSAT OSISAF global SIC
product).
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