
Formally verified software countermeasures
for control-flow integrity of smart card C code

Karine Heydemanna, Jean-François Lalandeb, Pascal Berthoméc

aSorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
bCentraleSupélec, Univ Rennes, Inria, CNRS, IRISA, UMR 6074, F-35065 Rennes, France
cINSA Centre Val de Loire, University of Orléans, LIFO, EA 4022, 18022 Bourges, France

Abstract

Fault attacks can target smart card programs to disrupt an execution and take control of the data or the embedded
functionalities. Among all possible attacks, control-flow attacks aim at disrupting the normal execution flow. Iden-
tifying harmful control-flow attacks and designing countermeasures at the software level are tedious and tricky for
developers. In this paper, we propose a methodology to detect harmful inter- and intra-procedural jump attacks at the
source code level and automatically inject formally proven countermeasures into a C code. The proposed software
countermeasures protect the integrity of individual statements at the granularity of single C statements. They support
many control-flow constructs of the C language. The countermeasure scheme can detect an attack early either inside a
control-flow construct or only at its exit. The secured source code defeats 100% of attacks that jump over at least two
C source code statements. Experiments showed that the resulting code is also hardened against unexpected function
calls and jump attacks at the assembly code level. Securing a source code automatically and extensively with our
scheme degrades the performance. The performance overhead of our countermeasures on three well-known encryp-
tion algorithms available in C ranged from +41% to +138% on an x86 platform and from +45% to +217% on an
ARM-v7 platform. However, combining code rewriting with hardening of sensitive code regions identified by the
weakness detection step enables an application to be fully hardened while limiting the overhead.

Keywords: physical attacks, smart card, control-flow integrity, code securing, countermeasures

1. Introduction

Smart cards or, more generally, secure elements are es-
sential building blocks for many security-critical applica-
tions. They are used for securing host applications and
sensitive data such as cryptographic keys, biometric data,
and pin counters. Malicious users aim to obtain access to
these secrets by performing physical attacks on the secure
elements. Fault attacks, which the current work focuses
on, consist in disrupting the circuit’s behavior by using
a laser beam or by applying voltage, clock, or electro-
magnetic glitches [1, 2]. The goal is to alter the correct
progress of the algorithm and, e.g., by analyzing the devi-
ation of the corrupted behavior with respect to the original

one, to retrieve the secret information [3].

Many protection schemes have therefore been proposed
to counteract fault attacks. Fault detection is generally
based on spatial, temporal, or information redundancy at
the hardware or software level [4]. Moreover, to render
attacks more difficult, some schemes may add noise, for
example, by inserting dummy operations [5] or by mask-
ing critical internal computations [2].

In practice, developers need knowledge of the target
code vulnerabilities to locate code portions for securing
and limiting the overhead of software protection. Then,
software countermeasures are manually added to the code
in a trial-and-error process: the security of the resulting

1

hardened code is analyzed by simulating or performing
physical attacks. If the system is not considered secure
enough, the code returns to the securing step. The se-
curing process starting with the weakness determination
is time consuming, with a direct impact on the cost and
delivery of the product. Therefore, automation tools are
crucial to substantially reduce the required development
time.

The weakness detection and code securing processes
can be performed at different code levels: source code [6],
any intermediate code such as during the compilation pro-
cess [7, 8], or binary code [9]. Working at the assembly
or binary code level seems to be the most adapted level
when considering physical faults. However, identification
of weaknesses requires determining the faults that have an
impact on the program security to understand their effect
for adding a protection code to counteract them. At these
levels, high-level information such as sensitive variables
and control flow is not directly available owing to loss of
information to code transformations and code optimiza-
tion during the compilation process [10, 11, 9]. Matching
assembly instructions with the source code to retrieve se-
mantics about high-level elements is not trivial; moreover,
sometimes, it is impossible and time consuming if manu-
ally performed. Further, weakness detection first requires
enumerating all potential attacks, which is also a lengthy
process or even virtually impossible to perform by sim-
ulation or with an experimental campaign. Furthermore,
assembly programs are tightly coupled to specific archi-
tectures and simulating attacks at the assembly code level
strongly limits the portability of the analysis. Hence, for
practical and time-to-market reasons, it is more conve-
nient to simulate attacks and perform vulnerability analy-
sis at the source code level. Simulation of attack injection
at the source code level speeds up the detection of weak-
nesses compared to injection at the assembly code level
owing to the smaller number of source statements. It ag-
gregates several physical attacks at a more coarse-grained
level [12, 13]. Faults modeled at this level may not have a
direct correspondence to faults at a lower level. However,
it enables a faster analysis by offering a direct match with
the impacted high-level elements. Thus, developers can
efficiently gain knowledge of code weaknesses to delimit
the code regions to be protected afterward.

Moreover, secure smart cards have strong security re-
quirements that must be certified by an independent qual-

ified entity before being placed on the market. Certifica-
tion is most often based on the review of the code and the
implemented software countermeasures. A full system
certification then relies on a certified source code com-
piled by a certified compiler that runs on a certified hard-
ware target. In this specific case, injecting countermea-
sures at compile time or even later would require either to
review the code produced by the modified compiler or any
tool or to certify the modified compiler or the tool itself.
Despite the recent proposals on hardening approaches at
compile time or at the binary code level [8, 9, 14], for
portability concerns and owing to the difficulty related to
the certification, countermeasures are still preferably de-
signed and inserted at a high code level. Therefore, the
industry is in demand of solutions to reduce the time to
harden a source code.

In this paper, we propose a full methodology to an-
swer these needs. We consider control-flow disruption,
which is a harmful consequence of fault attacks that en-
compass both instruction skip faults and larger jumps that
are easily performed with physical fault injection means.
Such control-flow disruption enables an attacker to re-
trieve secret keys [15, 3], bypass certain implemented
countermeasures [6], or obtain certain unauthorized privi-
leges [16, 17]. Our approach, which is supported by tools
and is illustrated in Figure 1, enables 1) the automatic de-
tection of the weaknesses of native C programs to be em-
bedded into a secure element (weakness detection is per-
formed at the source code level and considers attacks that
disrupt the control flow) and 2) the automatic injection
of formally verified countermeasures at the granularity of
single C statements.

In the first step of our methodology, the set of harm-
ful attacks is determined through an exhaustive search of
weaknesses. This step relies on simulations followed by
a classification of attack effects. The classification uses
a distinguisher to determine whether the functionality de-
livered by an attacked execution of the application could
alter the security. The identified harmful attacks can then
be visualized spatially to identify the affected functions
and to precisely locate the corresponding sensitive code
regions. This weakness detection scheme helps develop-
ers to gain knowledge of their application implementation
and enables them to implement adequate software coun-
termeasures.

In the second step of our methodology, a tool automat-

2

Figure 1: Code securing methodology

statement 1;

statement 2;

if (cond1) {

statement 3;

statement 4;

} else {

statement 5;

while (cond2) {

if (cond1) {

statement 6;

statement 7;

}

statement 8;

}

1jump size: 2

statement 9;

3

P1

P10

P2

P3

P4

P5

P6

P7

P8

P9

P11

P12

P13

P14

P15

P16

int f(...) {

return 0; }

Figure 2: Injection of jump attacks at the C code level

ically injects countermeasures into the code to be pro-
tected without any direct intervention of a developer. The
countermeasure scheme proposed in this paper operates at
the function level and protects the control-flow integrity
(CFI) at the granularity of single C statements. Protec-
tion schemes have been designed for hardening the con-
trol flow of functions (even recursive ones), conditionals
and switch constructs, and even loops with break and con-
tinue statements. Countermeasures rely on counters that
are incremented and verified in a nested way throughout
the execution, enabling an early detection of any attack
that disrupts the control flow by not executing at least two
adjacent statements of the code. A securing scheme with
deferred detection is also proposed to reduce the cost of
detection: counters are still incremented in an imbricated
manner; however, detection is performed at the bound-
aries of control-flow blocks.

The effectiveness of the countermeasures for both early
and deferred detection has been formally verified. These
countermeasures fully defeat any attack that impacts the
control flow by jumping forward or backward by more
than one C statement. Their effectiveness against the
jump attack fault model was confirmed by experimental

results. Nevertheless, they do not deal with data attacks.
Experimental results also showed that 1) attacks are much
more difficult to perform on the secured code; 2) attacks
attempting to call an unexpected function are detected;
and 3) the full methodology enables an application to be-
come robust.

Parts of this work were presented, in preliminary form,
at the 19th European Symposium on Research in Com-
puter Security [18]. This paper provides additional con-
tent compared to the previous one. First, the counter-
measures have been extended to handle more constructs:
loops with break and continue statements, and switch. As
the previous ones, they have been formally verified. New
experiments were conducted on the FISSC benchmark [6]
(two versions of the VerifyPIN code), at both the C code
and the assembly code level.

The rest of the paper is organized as follows. Section 2
discusses the related works. Section 3 provides details on
the detection of weaknesses and visualization. Sections 4
and 5 present the countermeasure schemes for hardening
a code against control-flow attacks and the formal ap-
proach used for verifying their correctness, respectively.
Section 6 presents the results of the experiments on three

3

cryptographic codes, namely AES, SHA, and Blowfish,
as well as of a case study on an authentication code.

2. Related work

Control-flow integrity has been widely studied since
the seminal work of Abadi et al. [19], in various con-
texts of threat, and is still currently a hot topic of re-
search [20, 21, 22, 23]. As we focus on a smart card
subject to physical attacks, it induces a specific attacker
model and requires specific solutions. Thus, we first
present our attacker model, and consequently, the con-
sidered fault model. Then, we briefly discuss previous
research works on weakness detection before presenting
the proposed protection schemes to ensure CFI.

2.1. Physical attacks and fault models

The attacker considered in this work is powerful as he
or she can perform physical attacks on a secure element
such as a smart card. Performing physical attacks and
understanding their precise effects or the way to conduct
them efficiently are active research areas. One part of this
research work is dedicated to fault attacks. Simulating
these faults to evaluate the robustness of a target system
and designing protection schemes subsequently require
fault models. This requires analyzing the consequences
of physical attacks and model them at the desired level
(architectural level, assembly code level, or source code
level).

At the assembly code level, the link between an attack
and its consequences is easier to establish. As an example,
[24] studied the effect of electromagnetic pulse injections
at the architectural level and proposed a fault model at the
assembly code level. They showed that it can provoke
a clock glitch during a transmission on the flash mem-
ory bus, corresponding to an instruction fetch or a data
read. It can be modeled at the assembly code level by
an instruction replacement or an erroneously loaded data
value. In [25], such a model was used with a machine
model for executing an assembly language program in a
model checker to verify whether the detectors can han-
dle the attack. These low-level models help to understand
the consequences of a successful attack, although they are
difficult to use at a high level [12]. For example, a security
expert must understand whether an attack has an impact at

the protocol level or on the cryptographic primitives [26].
This distinction can only be made if the expert has access
to the semantics of the studied program.

Several recent works have studied the consequences
of fault attacks at the program level [12, 7, 27]. For a
corrupted execution, such studies require understanding
which variables or control-flow constructs or conditions
have been impacted. Then, they require to either deduce
a high-level model or to understand a successful attack.
In [12], we discussed the difficulty of understanding the
link between a low-level attack and its consequence at a
high level. Although some fault models are commonly ad-
mitted (e.g., instruction skip, corrupted variable, etc.) and
used at different levels, their link or their feasibility is not
obvious. In [28], the authors proposed a methodology to
infer a fault model by considering the probability of fault
occurrences given the target platform and the attacker’s
equipment. In [29] (pp. 125–126), the author compared
some fault models at a high and a low level. The results
showed that, for each attack considered at a high level,
there was at least one low-level attack that explained it.
The author also reported that attacks with multiple condi-
tional test inversions considered and investigated at a high
level could not be reproduced at a low level owing to the
computational cost. This advocates for high-level mod-
els that can considerably reduce the vulnerability search
space.

Multiple physical faults can be used to perform com-
plex attacks, and recent works have proposed to analyze
multiple injections of faults by simulation [27]. Produc-
ing two faults in a short period of time would eventually
help to attack the program and the countermeasures at the
same time. Nevertheless, it is necessary to have an addi-
tional equipment such as a second laser beam to avoid the
reloading time of the first one. In such a configuration,
handling multiple antennas placed on the same x, y coor-
dinate or using one antenna with a reloading time would
result in additional difficulties for the attacker. Therefore,
in this work, we hypothesize that only one fault is pro-
duced.

2.2. Control-flow attacks

In this work, we focused on physical attacks that im-
pact the control flow of native C programs. Several
works [3, 30] showed that attacks can induce instruction

4

replacements. Such replacements can provoke a control-
flow disruption in the two following cases:

1. A whole instruction is replaced by a jump at any lo-
cation of the program. The executed instruction be-
comes a jump to an unexpected target [31, 3]. The
same effect is obtained if the target address of a jump
is changed by corrupting the instruction encoding or,
in the case of an indirect jump, if the computation of
the target address is disrupted. This also happens if
the program counter (PC) becomes the destination
operand of the replacement instruction [16]; e.g.,
arithmetic-logic unit instructions such as PC = PC
+/- cst are the most likely to succeed into a cor-
rect jump. Moreover, other instruction replacements
can provoke an arbitrary jump into the code [3].

2. The evaluation of a condition is altered by the re-
placement of one instruction involved in the compu-
tation, causing the wrong branch to be taken. In-
verting the test of a conditional branch instruction
by only replacing the opcode in instruction encoding
has the same consequence and is covered by the first
case.

In this work, we considered jump attacks as described
in the first case mentioned above. Jump attacks can be
induced by either the replacement of any instruction by
a jump instruction or the replacement of an operand of
a legacy jump leading to a modification of the target ad-
dress.

2.3. Weakness detection

Code securing techniques can be applied to the entire
application or only to specific parts. Securing only sen-
sitive code regions requires discovering weaknesses that
need to be strengthened for a given fault model. When
considering convenient fault models or when varying in-
puts, tractable static analysis, such as taint analysis, can
be used to infer the impact of a fault on control flow [32]
or detect missing checks [33].

An automatic detection method proposed by Rauzy et
al. focuses on the vulnerability assessment of crypto-
graphic algorithms submitted to fault attacks. In [34], ex-
isting and optimized secured versions of the CRT-RSA
algorithm were studied. The considered fault models in-
cluded fault on data and skip attacks. The authors showed

that, on such a precise code, skip attacks can be detected
by observing the data manipulated by the algorithm.

To the best of our knowledge, no previous work con-
sidered a jump attack fault model for weakness detection.
This fault model faces a potential combinatorial problem:
all possible jumps from one point of the program to an-
other point must be considered. Moreover, jump attacks
may occur at each execution time of the source location.
Thus, the level of threat induced by such attacks is diffi-
cult to statically predict. Nevertheless, simulation of such
attacks can cover a substantial subset of all possible jumps
at the cost of a longer simulation time. In this work, we
modeled faults at the source code level, and thus, there
were fewer attacks to consider. In addition, we leveraged
profiling information to determine a representative subset
of attacks for simulation.

In [35], the authors distinguished between full software
simulation of attacks [12, 7, 27] that provides more con-
trol of the manipulated code and onboard approaches that
model attacks considering the target hardware [36, 35].
Such approaches are not exclusive: in [35], the authors
proposed to simulate a high-level fault, identified at the
source code level, inside a smart card component. If such
a component supports the embedding of a fault injection
mechanism, the simulation occurs on the real target; how-
ever, it is very slow because of the limited available com-
putational power.

Some recent papers [13, 7] studied a subset of all possi-
ble jump attacks where conditional tests can be inverted.
Riviere et al. determined the harmful attacks using a con-
colic analysis of the control-flow graph of the source code.
The proposed approach does not require simulating at-
tacks to evaluate their impact but is limited to small jump
attacks (conditional inversion). The jump attacks we con-
sidered in this work encompassed this case.

2.4. Code integrity and control-flow securing

Protections against control-flow attacks depend on the
nature of the attacks. If the evaluation of a condition in-
volved in a conditional branch is disrupted at runtime, re-
covering techniques must strengthen the condition com-
putation. This can be achieved by temporal duplication
at the software level by executing twice the algorithm or
each instruction of the whole algorithm or of its sensitive
parts [37, 4].

5

Countermeasures that protect against forward jumps of
only one assembly instruction (instruction skip) should
use duplication techniques at the assembly code level [8,
4, 38]. Nevertheless, such solutions require analyzing the
assembly code to find available registers [4, 38]. Barry
et al. showed how a securing compilation pass can help
solve this problem [8]. Such a duplication scheme could
be extended to protect against large skip attacks; however,
this would induce a very high overhead.

Countermeasures designed for ensuring CFI can be
split into two classes depending on the attack model. If
the attacker cannot modify the application code but can
only inject code (shell code) and/or write data, protec-
tion schemes must only ensure the control-flow graph
integrity. In this case, countermeasures typically rely
on checks to ensure the validity of the target address of
jump instructions, particularly of indirect jumps and calls.
Many of the previous and recent works on CFI targeted
code-reuse attacks such as return-oriented attacks [39]
(ROP) and jump-oriented attacks (JOP) [22, 23]. Hence,
they only need to ensure the control-flow graph integrity
such as the seminal method proposed by Abadi et al. [19],
which checks for both the source and the destination of
indirect jumps. This approach relies on a new machine
instruction that manipulates an operand ID used to encode
the legacy of control-flow transfer. Bletsch et al. [40] in-
troduced a new technique for code-reuse attacks called
control-flow locking: before a control-flow transfer, a
code snippet locks a value of the memory and unlocks it
after the jump. Stack canaries and shadow stacks are also
useful for detecting bad return addresses [41], although
not sufficient as a standalone protection for code-reuse at-
tacks [22]. For such attacks, protection schemes have a
low performance overhead because the countermeasures
only need to be inserted at the source and at the target of
possible indirect jumps. These solutions cannot address
the problem of jump attacks from and to points inside ba-
sic blocks.

Code integrity is a security property to guarantee when
an attacker can modify the application code. Protection
schemes are most often based on signature techniques,
which typically rely on an offline computation of a check-
sum for each basic block. At runtime, the protected
code recomputes the checksum of the basic block be-
ing executed and compares it with the expected result.
This extra computation can also be handled by another

software thread or by a dedicated hardware component.
Thus, a control-flow attack that leads to the execution of
only a subpart of a basic block will be detected. Sev-
eral solutions based on dedicated hardware have been
proposed [42, 43, 44, 21, 20]. Although they have a
lower overhead, they require hardware modifications, and
thus, are impractical for smart cards based on off-the-shelf
hardware. Hence, several works address pure software so-
lutions for these types of countermeasures [45, 46, 47].
In [45], the authors performed signature checks at the
destination of jumps between basic blocks using an extra
watchdog thread. The check verifies whether the source
basic block has a valid signature, i.e., if it is known and
has kept its integrity. The YACCA approach [47] for de-
tecting hardware faults relies on specific signature compu-
tations performed throughout the execution and on checks
performed at basic block boundaries for performance rea-
sons. The main drawback of all these solutions is their
inability to detect when a valid target of a conditional
branch is badly taken during execution. The protection
schemes proposed in this paper address this problem by
capturing conditions involved in the control flow and by
using them to detect control-flow attacks.

We identified two previously proposed approaches that
use a step counter to protect a code region [48, 49]. The
former targets computation disruption, whereas the latter
combines counters with a signature approach at the as-
sembly code level to ensure tolerance to hardware faults.
Our approach, based on counters, is similar to the intra-
basic block approach of [49] for securing sequential code
but operates at a higher code level and can harden the
control flow of high-level constructs. Hardening the con-
trol flow at a high level allows to use a certified compiler
and produce a certified binary program. It provides an
important security guarantee for the smart card industry,
to obtain levels of certification, e.g., EAL4+ for mobile
SIM cards that embed payment, TV, and identity appli-
cations [50]. Moreover, in [48, 49], the effectiveness of
the countermeasures was not evaluated. In this work, we
not only formally verified the countermeasures but also
experimentally evaluated their robustness.

Finally, in [51], a CFI countermeasure at the C code
level was presented. Nevertheless, its applicability is lim-
ited to loops with a constant number of iterations. The
countermeasures proposed in this paper can be applied
to any type of loop (e.g., for loop; while loop, possibly

6

with break or continue statements; etc.), if-then-else, and
switch constructs.

In summary, approaches that verify the source or the
target of branches or jumps only harden the CFI at basic
block boundaries. This is not sufficient to cover test inver-
sion of conditional branches and intra-basic block jumps
caused by physical fault attacks. The approach proposed
in this paper enforces the CFI at the granularity of single C
statements. Additionally, in the specific context of smart
cards or secure elements, to the best of our knowledge, no
research work has proposed formally verified and exper-
imentally evaluated countermeasures at the C code level
that ensure CFI during native execution in the presence of
jump attacks.

3. Detection of weaknesses and visualization

In this section, we describe the part of our methodology
that identifies harmful attacks. The identification of weak-
nesses is carried out by simulating, classifying, and visu-
alizing the effects of physical attacks at the source code
level.

3.1. Simulation of attacks

To discover harmful attacks, we simulate jump attacks
by using software hacks at the C code level, as proposed
in [12]. First, we generate a set of so-called attacked
codes as explained below. For each function of the ap-
plication, for each pair of lines (i,j), where i ̸= j, of a
function, we generate a C code corresponding to the orig-
inal source code in which a jump attack from line i to
line j has been injected. Thus, we generate as many at-
tacked codes as all possible intra-procedural jump attacks
that jump backward or forward C statements. Figure 2
illustrates all possible jumps within a function, sorted ac-
cording to their jump distance expressed in statements.
Statements in this context are C statements such as as-
signments, conditional expressions (e.g., if (cond1)
or while(cond2)) and also any bracket or syntactic
elements (e.g., }else{) that have an impact on the con-
trol flow. For example, the bracket between P14 and P15
in Figure 2 corresponds to the return to the beginning of
the while loop (P8-P9). Jumping this bracket or jumping
the }else{ between P16 and P17 breaks the CFI of the
loop or of the if-then-else construct.

Finally, the simulation campaign consists in executing
the generated variant including the intra-procedural jump
attack. As stated in Section 2.3, triggering attacks at any
possible time of the execution would result in an explo-
sion of execution tests. As an example, jump attacks that
come from inside a loop whose execution count depends
on an input could not be fully simulated without any as-
sumption on the input. Thus, to cover a representative
subset of jump attacks that could be triggered at different
moments of the execution, we audit the execution count
of each line of the original program for representative in-
puts. We then generate, for each attack starting from a
line, as many simulations as the number of execution of
this line. Thus, we obtain, for each line i of the code, its
execution counts denoted as Ni. Then, for each line j of
the function where line i belongs to, we simulate an attack
that jumps from line i to line j at Ni different moments of
the execution.

The outputs of all the simulations are provided to the
classification tool. The tool analyzes them according to
a distinguisher to produce the result of the weakness de-
tection, i.e., the set of harmful attacks with corresponding
jump characteristics.

3.2. Classification of simulated attacks

The benefits of an attack differ depending on the ap-
plication and the context of its use. A successful attack
may break data confidentiality (by forcing a leak of sen-
sitive data such as an encryption key or a PIN code) or
may break the integrity of an application (by corrupting
an embedded service). To cover the various benefits for
an attacker in a general way, our methodology requires
a distinguisher to be provided. The distinguisher is used
to separate attacks according to their effects from a secu-
rity point of view, i.e. harmful attacks (the Wrong answer
class) from the harmless one (Effect-less class). A finer
classification of the effects of an attack can be achieved by
providing a more precise distinguisher. In the remainder
of the paper, we consider four different classes, similarly
to [47]:

• Wrong answer (WA): During execution, a benefit has
been obtained by the attacker.

• Effect-less (EL): The behavior of the application re-
mains unchanged.

7

• Error or Timeout (TO): The program does not seem
to have terminated and has to be killed or finished
with an error message or a signal (SIGSEGV, SIGBUS,
etc.), or may have crashed.

• Software detection or killcard (SD): A countermea-
sure has detected an attack and triggered a security
protection.

We assume that no benefit can be obtained by a crash-
ing or endless execution. Thus, both Error and Timeout
cases are distinguished from Wrong answer cases in the
remainder of the paper. If an error is preceded by a gain,
such as a leak of sensitive information, or if an endless
execution provides an advantage to the attacker, the dis-
tinguisher must be able to discriminate between these at-
tack effects and classify the attack into the Wrong answer
class. The class Software detection gathers attacks that
have been detected by a countermeasure. We also call
this class killcard to refer to the fact that an attack detec-
tion usually results in a disabling of the card.

3.3. Weaknesses analysis and visualization

Because our securing scheme operates at the function
level, the detection of weaknesses aims at identifying
harmful attacks at the source code level to identify the
functions to be secured. Thus, any function that, when
attacked, exhibits a Wrong answer case shall be consid-
ered for the countermeasure injection. The tools sup-
porting our methodology offer a visualization tool that
can be used by a security expert or a developer to 1)
quickly understand which variables and functionalities are
involved in the generation of harmful attacks by analyz-
ing the jumped part of the code, 2) gain knowledge of the
vulnerabilities of the code, and 3) decide whether the cor-
responding code is really sensitive, and hence, should be
secured.

The visualization tool builds a graphical representa-
tion of the results of the weakness detection by draw-
ing a square at the coordinate (i = source_line, j =
target_line) using the color associated with its class. If
several attacks i → j triggered at different moments lead
to different classification results from the distinguisher,
we always choose the class with the higher impact on the
security.

An example of the graphical representation, associated
with its source code, is shown in Figure 3. The studied
function was aes_addRoundKey_cpy, an extract of
an implementation of AES-256 [52] in C, used later in the
experiments. In this example, the distinguisher considers
as Wrong answer any execution of the application produc-
ing incorrect encrypted data, representing the attacker’s
ability to disrupt the encryption. On the right-hand side of
Figure 3, the attacks on the diagonal are harmless (green
squares): the corresponding jumps do not jump over any
statement (i → i). The attacks below the diagonal corre-
spond to backward jumps. The attacks above the diagonal
correspond to forward jumps. The orange squares cor-
respond to harmful attacks that jump only one statement,
whereas the red ones stand for attacks that jump more than
two statements. All but one forward jump (that jumps
the whole loop body without any effects on the variables)
generate a Wrong answer case. Analyzing the statements
impacted by these harmful attacks shows that the whole
loop body, and hence, the whole function, must be se-
cured.

4. Countermeasure for securing C code

In this section, we present the countermeasures de-
signed to detect jump attacks with a distance of at least
two C statements. These countermeasures deal with dif-
ferent high-level control-flow constructs such as straight-
line flow, if-then-else, switch, and loops. Countermea-
sures use the macros shown in Figure 4 and are all ex-
panded to only one line of source code. We have two
versions of these countermeasures: countermeasures that
detect jump attacks early (noted as CMED for Counter-
Measures with Early Detection) and countermeasures that
detect jump attacks at basic block boundaries (noted as
CMDD for CounterMeasures with Deferred Detection).
We start by presenting the CMED and will present the
CMDD later in Section 4.7.

4.1. Protection of a function and straight-line flow of
statements

Our securing scheme uses a dedicated counter to secure
the CFI of a whole function or a whole block of straight-
line statements. Each function and each block of straight-
line code have their own counters to ensure their CFI.

8

237 void aes_addRoundKey_cpy(
uint8_t *buf, uint8_t *
key, uint8_t *cpk)

238 {
239 register uint8_t i = 16;
240
241 while (i--)
242 {
243 buf[i] ^= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16+i];
246 }
247 ;
248 } Source line number

D
e

s
ti
n

a
ti
o

n
 l
in

e
 n

u
m

b
e

r
Source line number

D
e

s
ti
n

a
ti
o

n
 l
in

e
 n

u
m

b
e

r
Source line number

D
e

s
ti
n

a
ti
o

n
 l
in

e
 n

u
m

b
e

r

238 240 242 244 246 248 250

238

240

242

244

246

248

250

Wrong Answer (j=1)

Software Detection

(Killcard)

Timeout, Error

Effect−Less

Wrong Answer (j>1)

Figure 3: Result of the weakness detection for the aes_addRoundKey_cpy function

// STRAIGHT-LINE FLOW
#define DECL_INIT(cnt,val) unsigned short cnt = val;
#define CHECK_INCR(cnt,val) cnt = (cnt == val ? cnt + 1 : killcard());
// AFTER A FUNCTION CALL
#define CHECK_INCR_FUNC(cnt1, x1, cnt2, x2) cnt1 = \

((cnt1 == x1) && (cnt2 == x2) ? cnt1 + 1 : killcard());
// IF
#define CHECK_END_IF_ELSE(cnt_then, cnt_else, b, x, y) \

if (! ((cnt_then == x && cnt_else == 0 && b) \
|| (cnt_else == y && cnt_then == 0 && !b)))killcard();

#define CHECK_END_IF(cnt_then, b, x) \
if (! ((cnt_then == x && b) || (cnt_then == 0 && !b)))killcard();

// WHILE
#define CHECK_INCR_COND(b, cnt, val, cond) \

(b = (((cnt)++ != val) ? killcard() : cond))
#define CHECK_END_LOOP(cnt_loop, b, val) \

if (! (cnt_loop == val && !b))killcard();
#define CHECK_LOOP_INCR(cnt, val, b) cnt = (b ? (cnt + 1) : 0);
#define RESET_CNT(cnt_while, val) cnt_while = \

!(cnt_while == 0 || cnt_while == val) ? killcard() : 0;

Figure 4: Security macros used for securing the control flow

Counters have different initial values and evolve in dis-
joint intervals. They are incremented after each C state-
ment of the original source code using the CHECK_INCR
macro. Before any increment, a check of the expected
value of the counter is performed. When a check fails,
a handler called killcard(), which is the one used in
the smart card community, stops the execution.

To ensure CFI, we need to nest the checks and incre-
ments of counters. Consider the example in Figure 5,
which illustrates the countermeasure for a function g with
a straight-line control flow composed of N statements.
The dedicated counter cnt_g is declared and initialized
outside the function, i.e., in any function f calling g prior

to each call to g. The initialization associated with the
counter declaration is surrounded by two checks and in-
crements of the counter cnt_f dedicated to the block
of the function f where g is called. A reference to the
counter cnt_g is passed to g as an extra parameter.

Moreover, the initialization value of the counter asso-
ciated with the top-level region of each function is dif-
ferent, and as such, the ranges of counter values for all
functions are separated. Using the same initial value of
a counter for the two functions f and g would enable an
attacker to make a fault when f is called. Before the call,
the address of cnt_f is pushed onto the stack. Then, the
fault could occur by forcing the control flow to execute

9

L1:

L3:

L4:

L7:

L8:

L9:

L6+N:

L7+N:

L2:

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

c
a

ll
to

 g
(&

c
n

t_
g

)

Securing straight−line flow

DECL_INIT(cnt_g, val)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

CHECK_INCR(*cnt_f, val_f)

CHECK_INCR(*cnt_f, val_f + 1)

CHECK_INCR_FUNC(

*cnt_f, val_f + 2)

f

g

cnt_g, val + N+1,

}

void f(){
...

g();

...

}

void g(){

stmt1;

stmt2;

stmtN;

return;

g

f

...

L7

L7+N

L8

stmt2

L6+N

stmtN

re
tu

rn

L2

L3

stmt1

L4c
a

ll
to

 g
()

Flow representation

sequential code

Initial

Figure 5: Securing a function call and a straight-line flow

g instead of f. Function g would pop the address of the
counter off the stack (if the number of parameters of both
functions is identical) without being able to detect the at-
tack if the initialization values of both cnt_g and cnt_f
counters were equal. As shown by the experiment results,
our countermeasures prevented attacks that tried to sub-
stitute a function for another one during a call.

Upon returning from g, our countermeasure performs a
check of the values of both counters cnt_f and cnt_g
to detect any corruption of the flow inside the function
g. This way, any jump to the beginning of the function
g is detected inside the called function g. Any jump to
the end of a called function is caught when the control
flow returns to the calling function. The nesting of counter
checks and increments is at the core of our countermea-
sure scheme to ensure CFI. It ensures in this case that the
call has been correctly performed: any jump over the call
would be detected by one of the checks on cnt_f in f,
and any jump that would try to bypass the check upon
returning from g would also be detected in f, owing to
cnt_f.

4.2. Conditional if-then and if-then-else constructs

High-level conditional control flow refers to if-then
or if-then-else constructs, as illustrated by the exam-
ple on the left-hand side of Figure 6. The securing
scheme for conditional flow is illustrated in the right-
hand side of the figure. For such a construct, our secur-
ing scheme requires two counters, namely cnt_then
and cnt_else, which are used to check the CFI of

e

L10

L8

L9

L1

L2

L10

L8

L9

L1

L2

L3

L1: stmt1;
L2 stmt2;
L3: if (cond) {

 void f() {

L4: then1;

L5; then2;

L6; }

L7: else

L8: else1;

L9: stmt3;

L10: }

Conditional code

stmt2

Secured conditional flow

stmt3

else1

then2

then1

L3

L4

L5

stmt1
CHECK_INCR(*cnt, val+1)

if (CHECK_INCR_COND(b, *cnt, val + 6, cond))

 CHECK_INCR(cnt_then, 1)

 CHECK_INCR(cnt_then, 2)

CHECK_INCR(cnt_then, 3)

CHECK_INCR(cnt_else, 1)

CHECK_INCR(cnt_else, 2)

CHECK_INCR(*cnt, val + 7)
CHECK_END_IF_ELSE(cnt_then, cnt_else, b, 4, 3)
CHECK_INCR(*cnt, val + 8)

CHECK_INCR(*cnt, val)

DECL_INIT(cnt_then, 1)
CHECK_INCR(*cnt, val + 3)
DECL_INIT(cnt_else, 1)
CHECK_INCR(*cnt, val + 4)
DECL_INIT(b, 1)
CHECK_INCR(*cnt, val + 5)

CHECK_INCR(*cnt, val + 2)
stmt2

if (cond)

stmt1

then1

then2

else1

stmt3

L4

L5

Conditional flow

Figure 6: Securing a conditional control flow

each conditional branch, and one extra variable b used
for holding the value of the condition of the conditional
flow. The declarations and initializations of cnt_then,
cnt_else, and b are performed outside the if-then-else
block. Similar to functions or straight-line blocks, these
new statements are interlaced with checks and increments
of the counter cnt used for the control flow of the sur-
rounding block. This is performed by the additional state-
ments in the red bold box on the upper right-hand side of
Figure 6.

The condition evaluation in the secured version is per-
formed through the macro CHECK_INCR_COND: if the
counter cnt for the flow integrity of the surrounding
block holds the expected value, cnt is incremented and
the condition is evaluated. Thus, any jump attack over
the condition evaluation is detected after the if-then-else
construct, when checking the cnt counter. The extra
variable b is set to the value of the condition, to be
able to distinguish, after the execution of the if-then-else
construct, which branch should have been taken. Both
counters dedicated to the conditional branches are then
checked according to the value of b. This is performed
by the CHECK_END_IF_ELSE macro inserted between
two checks of the counter cnt. Again, this interlacing of
checks and increments of a counter and of one of the sur-
rounding blocks is at the core of the effectiveness of our
countermeasure scheme.

10

// Additional macros for switch construct
#define INCR_SW(n_sw, c, cnt, val) n_sw = ((cnt++ == val) ? c : killcard())
#define INCR_ASSIGN(cnt, val, cnt_sw, v1) cnt_sw += (cnt++ == val)? v1 : killcard();
#define CHECK_END_SW(cnt_sw, n_sw, val1, end_val1, val2, end_val2, end_default) \

if (((n_sw == val1) &&(cnt_sw != end_val1))|| ((n_sw == val2) && (cnt_sw != end_val2)) \
|| (((n_sw != val1) && (n_sw != val2)) && (cnt_sw != end_default))) killcard();

// switch construct
// example

stmt_before;
switch(c){

case a:
stmt1_1;
stmt1_2;
break;

case b:
stmt2_1;
stmt2_2;
stmt2_3;

break;
default:
stmt3_1;
break;

}
stmt_after;

// securing example of switch contruct
CHECK_INCR(cnt,v)
stmt_before;
CHECK_INCR(cnt, v+1)
DECL_INIT(cnt_sw, 100)
CHECK_INCR(cnt, v+2)
DECL_INIT(n_sw, -1)
CHECK_INCR(cnt, v+3)
switch(INCR_SW(n_sw, c, cnt, v+4)) {
case a:
INCR_ASSIGN(cnt, v+5, cnt_sw, 1000)
CHECK_INCR(cnt_sw, 1100)
stmt1_1;
CHECK_INCR(cnt_sw, 1101)

stmt1_2;
CHECK_INCR(cnt_sw, 1102) // mandatory for CMDD
break;

case b:
INCR_ASSIGN(cnt, v+5, cnt_sw, 2000)
CHECK_INCR(cnt_sw, 2100)
stmt2_1;
CHECK_INCR(cnt_sw, 2101)
stmt2_2;
CHECK_INCR(cnt_sw, 2102)
stmt2_3;
CHECK_INCR(cnt_sw, 2103) // mandatory for CMDD
break;

default:
INCR_ASSIGN(cnt, v+5, cnt_sw, 3000)
CHECK_INCR(cnt_sw, 3100)
stmt3_1;
CHECK_INCR(cnt_sw, 3101) // mandatory for CMDD
break;

}
CHECK_INCR(cnt, v+6)
CHECK_END_SW(cnt_sw, n_sw, a, 1103 /*end case 1*/, b, 2104 /*

end case 2*/, 3102 /*default*/)
CHECK_INCR(cnt, v+7)
stmt_after;

Figure 7: Principle for securing a switch construct

4.3. Switch

The principle of the securing scheme we designed for
switch constructs is illustrated in Figure 7. As for the
conditional construct, an extra variable and a counter are
needed to protect the control flow of the switch construct.
The extra variable n_sw is assigned to the value of the
variable that controls the switch (macro INCR_SW). In
each case of the switch, the counter cnt_sw is first in-
cremented by a specific value after a check on the sur-
rounding counter, owing to the macro INCR_ASSIGN.
The specific value is chosen for each case to prevent the
ranges of values for the counter cnt_sw in each case
from overlapping with each other. After the switch con-
struct, the macro CHECK_END_SW checks the value of
the counter cpt_sw accordingly to the chosen case held
in the extra variable n_sw (the value a, the value b, or
of any other values in the example). All cases end with
a break statement in the given example, although cases

without a break statement are supported: the expected fi-
nal values of the counter of such cases should be adapted
to perform a correct check (macro CHECK_END_SW); the
securing principle, however, is identical.

4.4. Loop constructs

We also designed a countermeasure scheme for loops.
As all the forms of loops (e.g. for loops or do-while loops)
can be rewritten as a while loop, we only present the while
loops. The left-hand side of Figure 8 shows a while loop
and the corresponding control flow between statements
stmt_1, stmt_2, and stmt_3 of the surrounding se-
quential code. Our countermeasure scheme uses one
counter, cnt_while, for securing the control flow of the
loop body. Similar to conditional constructs, our counter-
measure scheme requires an extra variable b to hold the
value of the loop condition. This variable is needed at
the end of the loop to verify the correct execution of the

11

L1

L2

L3

L4

L5

L6

L7

L8

L9

 ...
L1: stmt1;
L2: stmt2;
L3: while (cond){

 while1;
 while2;
 while3;
}
stmt3;
...

L4:
L5:
L6:
L7:
L8:
L9:
L10: }

void f(){

Loop code

L1

L2

L3

L4

L5

L6

L7

L8

L9

while(cond)

while1

while2

while3

stmt1

stmt2

Loop flow

stmt3

while1

while2

while3

stmt1

stmt2

Securing loop flow

stmt3

CHECK_INCR(*cnt, val)

CHECK_INCR(*cnt, val+1)

CHECK_INCR(*cnt, val+2)
CHECK_INCR(*cnt, val+3)

CHECK_INCR(*cnt, val+4)

CHECK_INCR(*cnt, val+5)

CHECK_INCR(*cnt, val+6)

CHECK_INCR(*cnt, val+7)

DECL_INIT(b, 1)

DECL_INIT(cnt_while, 0)

RESET_CNT(cnt_while, 4)
if (CHECK_INCR_COND(b, cnt_while, 0, cond))

CHECK_LOOP_INCR(cnt_while, 1, b)

CHECK_INCR(cnt_while, 2)

CHECK_INCR(cnt_while, 3)

CHECK_INCR(cnt_while, 4)

CHECK_END_LOOP(cnt_while, b, 1)

Figure 8: Securing a loop control flow

loop body and the correct termination of the loop. This
is performed by the CHECK_END_LOOP macro, which
is surrounded by the CHECK_INCR macro of the counter
cnt. The b variable is declared and initialized outside
the loop like in the other constructs. The initial value
must be true: if an attack jumps over the loop, b holds
true and the CHECK_END_LOOP macro, checking for
b being false after the loop, detects the attack. The
cnt_while counter is reset before each iteration us-
ing the RESET_CNT(cnt_while, val) macro, with
val being the expected final value of the counter after
one complete iteration. The reset is performed only if
cnt_while is equal to 0 or to the value of val. As
a jump from the end of the loop to the beginning of the
body would result in a correct value for cnt_while that
is reset before each new iteration, the first check inside the
loop body of the while counter is guarded with b to detect
such a jump attack, leading to an additional iteration of
the loop. Moreover, evaluation of the condition (that may
update an induction variable) is performed along with a
check and an increment of the counter cnt_while us-
ing the CHECK_INCR_COND macro. Hence, any attack
that jumps over the evaluation of the condition of the loop
will then be detected inside the loop. This combination of
additional statements, as validated by our formal verifica-
tion presented in the next section, enables to ensure that
the right number of iterations, each with a right control
flow, is performed or that an attack is detected.

4.5. Continue and break statements in loops

Figure 10 contains several listings to illustrate the prin-
ciple of the securing scheme for loops containing a con-
tinue or a break statement. Additional macros needed to
protect these constructs are presented in Figure 9. First,
for both cases, the extra Boolean (b-break or b-cont)
used for the if-construct that guards the break or continue
statement is required at the end or at the beginning of the
loop to determine whether the break or the continue state-
ment should have been executed or not. Any break or
continue statement is removed to be able to check the con-
struct that contains such statement (an if construct in the
example, but any other control-flow block in the general
case) and determine whether the statements inside the if-
break or if-continue construct have been rightly executed.
The exit of the loop (break) or the return to the begin-
ning of the loop (continue) is then performed if needed.
Special macros, namely, CHECK_END_IF_CONTINUE
or CHECK_END_IF_BREAK, are devoted to these tasks.
Moreover, for a continue statement, the macro checking
the value of the loop counter in the header of the loop is
changed slightly: it checks the value of the loop counter,
which can be the initialization value, the value at the end
of the body, or the value just before looping back to the
header of the loop. This last case is determined by us-
ing the Boolean b-cont. For a break, at the exit of the
loop, the loop counter value is also checked according
to an extra Boolean b-break. If it holds a true value,
then the counter must have the value set just before the
CHECK_END_IF_BREAK macro.

4.6. Discussion on the limitations of countermeasures

The first limitation concerns the use of function point-
ers. This is a common case in the smart card code or
system code. As recently shown by Arthur et al. [23],
it is possible to rewrite the code to translate any indirect
call (i.e., a call through a function pointer) to a set of di-
rect calls. This requires having the whole set of functions
that may be called at each call site that uses pointers. In
the general case, such analysis would fail statically be-
cause complex codes can even deploy new functions at
execution time. However, for smart card native software,
all functions of the embedded software are identified and
can be statically determined. As a common case, func-
tion pointers are used in smart cards for choosing one of

12

// extra macro for in-loop continue statement
#define RESET_CNT_CONTINUE(cnt, val1, condition, val2, init_value) \
cnt = !(\
cnt == init_value || \
(condition && (cnt == val2)) || \
(!condition && cnt == val1)) ? killcard() : init_value;

#define CHECK_END_IF_CONTINUE(cnt, b, val, initv) \
if ((b || cnt != initv) && (((cnt != val && b) || (!b && cnt != initv)) ? killcard() : 1)) \

goto start_while;
// extra macro for in-loop break statement
#define RESET_CNT_BREAK(cnt_while, val1, val2) \
cnt_while = !(cnt_while == val1 || cnt_while == val2) ? killcard() : val1;

#define CHECK_END_IF_BREAK(cnt, b, val, initv) \
if ((b || cnt != initv) && \

(((cnt != val && b) || (!b && cnt != initv)) ? killcard() : 1)) \
goto end_while;

#define CHECK_END_LOOP_BREAK(cnt_loop, b, val1, b_break, val2) \
if (!(cnt_loop == val1 && !b && !b_break || b && cnt_loop == val2 && b_break))\
killcard();

Figure 9: Extra macro for securing a loop with continue or break statements

the several offered functionalities by setting a pointer in
a switch construct. Thus, this rewriting technique can be
deployed: for example, using pragmas given by the devel-
opers, the process could be automated at the source code
level. Once this technique is applied, our securing scheme
can be deployed. Such rewriting avoids a coarse-grained
CFI approach that would set the same initialization value
for all counters of functions that could be a target of an
indirect call as well as set the same ending value for these
counters [22, 19]. As previously explained and as shown
in a recent work, coarse-grained CFI approaches are not
secure [22].

Another limitation is related to the content or the size
of C statements owing to the statement granularity of our
approach. First, as a C statement can be arbitrarily long,
a single line of C can be compiled into a long sequence of
assembly language instructions. This case reduces the ef-
ficiency of the countermeasures inserted between C lines.
Second, a C statement can contain jumps, e.g., the ex-
pression cond ? a : b. Such conditional expres-
sions would not be addressed by our methodology. Nev-
ertheless, for both cases, a simple solution is to automat-
ically decompose the corresponding C lines into several
ones. This is compatible with the current implementa-
tion, where a C parser inspects recursively any C state-
ment to find function calls that have to be modified to add
a new parameter (the counter). Thus, detecting and rewrit-
ing complex and long C lines that may contain conditional

expressions would be feasible.
Other possible limitations of the countermeasures may

come from the compilation process. As pointed out by re-
cent works [8, 14], enabling compilation optimization that
is too aggressive may damage the countermeasures. To
enable such compiler optimization, developers must use
tricks [14] (as an example, a variable susceptible to being
optimized out can be declared as volatile). Optimizing the
code while ensuring that code relative to security protec-
tion is not optimized out nor degraded is an open challeng-
ing problem that requires revisiting the entire compilation
process. It is out of the scope of this paper. Disabling opti-
mization makes the compiler respect the protection code.
Currently, it is a last resort to compile without any opti-
mization of the parts of the code whose security is a major
concern. In the experiments, we disabled the optimization
and the results showed that the countermeasures were still
effective in the compiled program.

Finally, we reiterate the ability of our countermeasures
to handle control-flow attacks but not data-only attacks.
Thus, several physical attacks that would corrupt the con-
tent of a variable of the program would not be detected.
Such attacks on sensitive variables or values must be pro-
tected with specific protection schemes for data.

4.7. Early and deferred detection
Our securing scheme checks counter values between

each functional statement or extra securing macros.

13

// a loop with continue statement
stmt1;
stmt2;
while (cond ! = 0) {
cond --; // stmt_while1
stmt_while2;
if (continue_condition){
stmt_if_cont1;
continue; }

stmt_while3; }
stmt3;

// securing a loop with a continue statement
CHECK_INCR((*cpt), v)
stmt1;
CHECK_INCR((*cpt), v+1)
stmt2;
CHECK_INCR((*cpt), v+2)
DECL_INIT(b, 0) CHECK_INCR((*cpt), v+3)
DECL_INIT(b_cont, 0) CHECK_INCR((*cpt), v+4)
DECL_INIT(cnt_while, init_val)
CHECK_INCR((*cpt), v+5)
start_while: {
RESET_CNT_CONTINUE(cnt_while, init_val+10, b_cont,

init_val+8, init_val)
if (!CHECK_INCR_COND(b, cnt_while, init_val, (cond

!= 0)))
goto end_while;

CHECK_LOOP_INCR(cnt_while, init_val+1, b)
cond --; // stmt_while1
CHECK_INCR(cnt_while, init_val+2)
stmt_while2;
CHECK_INCR(cnt_while, init_val+3)
INIT(b_cont, 0)
CHECK_INCR(cnt_while, init_val+4)
DECL_INIT(cnt_if_cont, init_cont)
CHECK_INCR(cnt_while, init_val+5)
if (CHECK_INCR_COND(b_cont, cnt_while, init_val+6,

continue_condition)) {
CHECK_INCR(cnt_if_cont, init_cont);
stmt_if_cont1;
CHECK_INCR(cnt_if_cont, init_cont+1);

}
CHECK_INCR(cnt_while, init_val+7) //+8 -- end value

if continue
CHECK_END_IF_CONTINUE(cnt_if_cont, b_cont,init_cont

+2, init_cont)
CHECK_COND_INCR(cnt_while,init_val+8,!b_cont)
stmt_while3;
// mandatory for CMDD:
CHECK_INCR(cnt_while, init_val+9) // +10 -- end

value of loop
goto start_while;

}
end_while:
CHECK_INCR((*cpt), v+6)
CHECK_END_LOOP(cnt_while, b, init_val+1)
CHECK_INCR((*cpt), v+7)
stmt3;

// a loop with a break statement
stmt1;
stmt2;
while (cond ! = 0) {
cond --; // stmt_while1
stmt_while2;
if (break_condition){
stmt_if_break1;
break; }

stmt_while3; }
stmt3;

// securing a loop with a break statement
CHECK_INCR((*cpt), v)
stmt1;
CHECK_INCR((*cpt), v+1)
stmt2;
CHECK_INCR((*cpt), v+2)
DECL_INIT(b, 0) CHECK_INCR((*cpt), v+3)
DECL_INIT(b_break, 0) CHECK_INCR((*cpt), v+4)
DECL_INIT(cnt_while, init_val)
CHECK_INCR((*cpt), v+5)
start_while: {
RESET_CNT_BREAK(cnt_while, init_val, init_val+10)

if (!CHECK_INCR_COND(b, cnt_while, init_val, (cond
!= 0)))

goto end_while;
CHECK_LOOP_INCR(cnt_while, init_val+1, b)
cond --; // stmt_while1
CHECK_INCR(cnt_while, init_val+2)
stmt_while2;
CHECK_INCR(cnt_while, init_val+3)
INIT(b_break, 0)
CHECK_INCR(cnt_while, init_val+4)
DECL_INIT(cnt_if_break, init_break)
CHECK_INCR(cnt_while, init_val+5)
if (CHECK_INCR_COND(b_break, cnt_while, init_val+6,

break_condition)) {
CHECK_INCR(cnt_if_break, init_break);
stmt_if_break1;
CHECK_INCR(cnt_if_break, init_break+1);

}
CHECK_INCR(cnt_while, init_val+7) // +8 -- end

value if break
CHECK_END_IF_BREAK(cnt_if_break, b_break,

init_break+2,init_break)
CHECK_COND_INCR(cnt_while,init_val+8,!b_break)
stmt_while3;
CHECK_INCR(cnt_while, init_val+9) // +10 -- end

value of loop
goto start_while;

}
end_while:
CHECK_INCR((*cpt), v+6)
CHECK_END_LOOP_BREAK(cnt_while, b, init_val+1,

b_break, init_val+8)
CHECK_INCR((*cpt), v+7)
stmt3;

Figure 10: Securing a loop with continue or break statements

#define INCR(cnt) cnt = cnt + 1;
#define INCR_COND(b, cnt, cond) (++cnt && (b = (cond)))

Figure 11: Additional security macros used for securing the control flow

14

Checking the value of counters, to eventually jump to an
appropriate detection handler (e.g. killcard), has a very
high impact on performance. Nevertheless, checking the
counters between each original statement enables to trig-
ger an attack detection handler as soon as possible. We
can relax the frequency of these checks and perform coun-
terchecks only at the boundaries of control-flow blocks.
This approach detects a bad counter value either at the end
of a control-flow block or in the calling function. This op-
timization has also been proposed for hardware fault tol-
erance [47]. In this case, the detection is performed as
late as possible, but the overhead of the countermeasures
is reduced.

Adapting the previous countermeasure scheme to
make it lighter is simple. We just need to remove
the check from two macros used in the early secur-
ing scheme, namely, the CHECK_INCR macro and the
CHECK_INCR_COND macro, which become the INCR
macro and the INCR_COND, respectively, as shown in
Figure 11. However, for switch constructs, the last incre-
ment of the counter in each case must still be performed
with a check (see the comment // mandatory in Fig-
ure 7). This prevents any jump from inside an executed
case to the middle of another one from still matching the
value expected at the end of the correct expected case.
Moreover, for break and continue statements, when they
are used in a deep imbrication of control-flow constructs
inside a loop, all intermediate counters used in these con-
structs must be checked before exiting the loop or looping
to its beginning. All other macros remain unchanged.

4.8. Example of the results for the
aes_addRoundKey_cpy function

Before quantifying the effectiveness of our counter-
measure schemes in Section 6, we qualitatively show in
Figure 12 the impact of our countermeasures compared
with the graph of Figure 3. Note that the number of C
statements has increased because of the countermeasures.
Figure 12 shows that the number of jump attacks of size
greater than or equal to two decreased from 30 to 0. In the
secured version, five out of the eight possible attacks of a
jump distance equal to 1 remained. The five attacks jump
over the following:

395 → 397: register uint8_t i = 16; // initially 239 → 241

407 → 408: buf[i] ^= key[i]; // initially 243 → 244

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

385 390 395 400 405 410 415 420 425 430

385

390

395

400

405

410

415

420

425

430

Wrong Answer (j=1)

Software Detection

(Killcard)

Timeout, Error

Effect−Less

Wrong Answer (j>1)

Figure 12: Weakness detection results for a secured version of the
aes_addRoundKey_cpy function

408 → 407: buf[i] ^= key[i]; // same attack but a backward jump

409 → 410: cpk[i] = key[i]; // initially 244 → 245

411 → 412: cpk[16+i] = key[16 + i]; // initially 245 → 246

We can observe that any statement involved in the en-
cryption that is jumped impacts the global results. As
the statement buf[i] ^= key[i]; is not idempo-
tent, then a backward jump also impacts the result. Se-
curing individual lines requires an extra process such as
line duplication for idempotent ones. Non-idempotent
statements must be first decomposed into idempotent
ones [38]. We use such a process in a case study of au-
thentication process in Section 6.3 and show that it en-
ables to thwart all harmful attacks.

5. Formal verification of countermeasures

In this section, we present the formal verification of our
securing scheme. This verification helped us in designing
effective countermeasures and gives us strong confidence
in their effectiveness against attacks.

We first present the models used for program execution
from a control flow perspective and for jump attacks, as
well as the properties to check to ensure the CFI of a se-
cured program execution even in the presence of attacks.
The verification of the correctness of our countermeasure
schemes is based on an equivalence-checking method be-
tween synthetic codes representing a specific control-flow
construct and the corresponding secured versions.

15

5.1. Code representation and decomposition for CFI ver-
ification

From a control flow perspective, a program execution
can be viewed as the execution of a sequence of state-
ments. A high-level program can be represented as a tran-
sition system whose states are defined by the values of
program variables (contents of the memory) and of the PC
whose value specifies a source code line in the C program.
Any transition mimics the state transformation induced by
the execution of an individual statement: updating the PC
and potentially some variables or the contents of memory.
Figure 14 illustrates the representation of a program as a
transition system.

A program can be decomposed into functions, and any
function body can be decomposed into top-level code re-
gions containing either only straight-line statements or
a single control-flow construct (loops, if-then-else, and
switch). Sequential execution of these regions guarantees
that, if the CFI is ensured at the exit of a code region, the
following code region starts with a correct input from a
control flow perspective. Thus, the integrity of the con-
trol flow of both code regions with a small overlap can
be proven by proving the CFI of each code region. Our
countermeasure scheme relies on securing each control-
flow construct (function call/sequential code, if-then-else,
while constructs only and with continue or break state-
ments, and switch) nested with a few straight-line state-
ments of the surrounding block. Then, our verification
approach verifies separately each control-flow construct
enclosed with straight-line statements of the surrounding
block so that all possible executions of the secured ver-
sion are stopped by a countermeasure in the presence of
harmful attacks or their control flow is upstanding with
respect to the initial code.

As control-flow constructs can be nested, many com-
binations of control-flow constructs could be modeled.
However, any control-flow construct can be viewed as a
single statement that is correctly executed or not. Thus, in
the verification models of our countermeasures, we only
consider straight-line statements inside control-flow con-
structs. The idea is that, if properties hold for each indi-
vidual construct, they hold for all of their combinations
owing to the overlapping of regions considered for per-
forming the verification.

5.2. Models for CFI verification

5.2.1. State machine model
To model and verify the integrity of control flow,

we associate a dedicated statement counter denoted as
cntv_αi with each statement stmt_i of the original
code belonging to a function or to a control-flow con-
struct called α. In the remainder of the paper, we refer to
such counters as statement counters to distinguish them
from counters used in the countermeasures, denoted as
protection counters. We model the execution of a state-
ment stmt_i by incrementing its associated statement
counter cntv_αi.

Then, the execution of a sequence of statements is
modeled by a transition system TS, defined by TS =
{S, T, S0, Sf , L}, where S is the set of states, T is the set
of transitions T : S → S, and S0 and Sf are the subsets
of S containing the initial states and final states, respec-
tively. The final states from Sf are absorbing states. A
state from S is defined by the value of the PC, the value
of statement counters associated with every statement of
the initial code, and the value of the variables involved
in the control flow (e.g., in iteration counts or in a con-
dition). L is a set of labels corresponding to the possible
values of the PC, i.e., line numbers in the source code.
Initial states are states with a PC value equal to the first
line of the modeled code and where all statement counters
hold 0 and all other variables are free; i.e., there will be
an initial state for all combinations of their possible val-
ues. Any transition from T is defined by the effect of the
statement stmt_i associated with the PC value. Transi-
tions change the PC value to the next line number to be
executed and increment the statement counter cntv_αi
associated with stmt_i of the construct α. A jump at-
tack, as considered in this work, can only corrupt the PC.
Thus, for such attacks, modeling the full memory contents
and other machine registers is not relevant.

5.2.2. Models with and without countermeasures
To prove that our countermeasure scheme for a con-

struct c is robust against a jump attack and that its secured
version is equivalent to the initial one, we built two tran-
sition systems: one for the initial control-flow construct
called M(c) and another one for the protected version
including the countermeasure called CM(c). Figure 13
shows the building principle using one statement stmt1.

16

L1

L2

L1

L1_0

L2

stmt1 cntv_1++

Secured flow

cntv_1++stmt1

Flow

ju
m

p
 a

tt
a
c
k
 t
ra

n
s
it
io

n
s killcard

CHECK_INCR(*cnt, val)

L1: stmt1;

Statement

Figure 13: Principles of the transition systems C(c) and CM(c)

Note that the states of transition system CM(c) hold the
value for the protection counters and extra variables used
by the protection schemes to be able to simulate an attack
detection.

We aim to prove that the CM(c) model under jump
attacks provides the same global functional property from
a control-flow point of view as the initial model when the
attacks are harmless and that a harmful attack is always
detected. Thus, we must model the jumps attacks into the
CM(c) model (the M(c) model is not subject to attack
and is used as a reference only).

Consequently, in CM(c), we add all possible jump at-
tacks to model the possibilities of the attacker. A jump
attack is equivalent to the modification of the PC with an
unexpected value. As by design, our countermeasures are
effective against attacks that jump at least two C lines;
therefore, we add faulty transitions between every pair of
states of CM(c) separated by at least one line of the C
code. These transitions are represented by the pink dashed
arrow in Figure 13: they correspond to an update of the
PC. As we assume that only a single fault can occur, every
faulty transition is guarded by a Boolean indicating that a
fault has already occurred.

Moreover, in CM(c), the checks of protection coun-
ters, added by our countermeasure schemes, may result
in a call to the attack detection handler killcard().
Hence, there is an additional PC value denoted as
killcard in any CM(c). All states with this PC value
are final (and, therefore, absorbing). All transitions la-
beled with a countermeasure macro performing a check
may change the PC to killcard. They are represented
by a bold red arrow in Figure 13.

5.3. Equivalence checking of CFI

Our formal verification is based on an equivalence-
checking method, i.e., the M(c) model is considered as a

reference to which the executions according to the CM(c)
model are compared. To achieve this comparison, the
model checker builds a product of both models. To prove
the effectiveness of our countermeasures as well as their
correctness (they do not change the program flow), we
query the model checker to verify some properties on ex-
ecution paths (i.e., valid sequences of transitions in each
model) expressed as computation tree logic (CTL) formu-
lae. The model checker analyzes the states of the product
of both models on all possible paths from the initial states
and replies if the properties hold.

An initial state of one individual model corresponds
to a state where 1) the PC is set to the first line of the
corresponding code and 2) the control variables that
influence the execution (e.g., such as the number of
iterations to be performed and the value of the condition
used in an if construct) are set to a specific value. The set
of initial states is then the union of all states with different
values for the control variables (these variables are free).
Leaving this variable free is mandatory to explore all
possible execution paths. To force the model checker to
analyze only the execution paths in the product model
that start from the initial states in M(c) and CM(c) with
the same value for all control variables, we must 1) set
any control variable as input of both models 2) force the
input of both models to be the same. Thus, equivalence
will be verified on execution paths that have the same
values for control variables in their initial states in both
M(c) and CM(c).

5.4. Control-flow integrity properties

To verify the correctness and robustness of the secured
code modeled by CM(c), in the absence or presence of an
attack, we must prove three different properties, namely
P1, P2, and P3, which are described below.

Property P1. The execution eventually terminates. This
is proven by checking that any path in M(c) and CM(c)
reaches a final absorbing state.

Property P2. In CM(c), for execution paths that end in
a correct state, all the program statements must have been
executed as many times as expected. This is proven by
querying the model checker to verify that the statement
counter values in a reached correct final state in CM(c)

17

(with a PC value different from killcard) are equal to
the statement counter values in the corresponding reached
final state in M(c) (which is determined with the input
values).

Property P3. At any time during the execution, the ex-
ecution order of statements must be correct with respect
to the initial program or an attack must eventually be de-
tected. As the correctness of the execution order at any
time during the execution is dependent on the program
control-flow structure, for each control-flow construct, we
designed a formula denoted as right_flow that corre-
lates the value of the statement counters and the control
variable and whose validity at any time and along any ex-
ecution path ensures the right execution order.
As an example, let us consider a straight-line region com-
posed of n statements stmt_i for all i ∈ [1, n]. For
this straight-line flow, the designed right_flow for-
mula expresses that, for all i ∈ [1, n[, the counters
cntv_αi and cntv_α(i+1) for two adjacent state-
ments stmt_i and stmt_i+1 must respect cntv_αi
= cntv_α(i+1) or cntv_αi = cntv_α(i+1) +
1, respectively. In other words, the formula expresses
that the statement stmt_i is always executed before the
statement stmt_i+1. By transitivity, this ensures the
right execution order of all the n statements of the re-
gion. The full Property P3 given to the model checker is a
CTL formula expressing that the formula right_flow
holds in CM(c) at any time and along any path or that the
execution reaches a final detection state (a state with the
killcard value for the PC).

Because Property P3 ensures the right order of exe-
cution of statements, it holds by construction for M(c)
as it is not subject to jump attacks. However, verifying
this property for M(c) is useful to ensure that the refer-
ence model from which CM(c) is derived and Property
P3 for both models are correct. Then, it must be checked
in CM(c), which is subject to at most one jump attack per
execution path.

To ensure the correctness and the robustness of the
countermeasure schemes, with early and deferred detec-
tion, we must verify the same three properties on CM(c)
built for the countermeasures either with early detection
or with deferred detection.

5.5. Verification of the countermeasure schemes

We present and explain in detail in the following sec-
tion both the models and the properties to verify the prod-
uct model for a function call and a straight-line flow in
the called function. We provide insight on the other con-
structs in Section 5.5.2.

5.5.1. Verification for a function call and a straight-line
flow

Figure 14 illustrates a compact representation of both
transition systems for a generic example code with a call
from a function f to a function g composed only of
straight-line statements. In Figure 14, the pink dashed ar-
rows represent a subset of possible attacks. Owing to the
high number of such transitions, only a subset is presented
to keep the figure readable. In CM(c), intra-procedural
jump attacks can occur anywhere in g: in Figure 14, the
pink dashed arrows in g illustrate all possible attacks com-
ing from L8. In f, all jump attacks that do not target the
final correct states are modeled: in Figure 14, the pink
dashed arrows in f represent all possible attacks starting
at L3; states with a PC value equal to Line 4 are not the
target of such attacks. In any CM(c), the final correct
states can be the source, but cannot be the target, of jump
attacks; otherwise, Property P2 could obviously not be
verified. The absence of an attack targeting a final correct
state does not affect the verification objective because the
modeled attacks in CM(c) cover all needed cases to per-
form the verification for the control-flow construct: the
effects of any forward or backward jump over the call are
covered by those that target or come from a point after the
call, e.g., from and to Line 3.

The three properties instantiated for the example of Fig-
ure 14 are presented in Figure 15. For clarity, in the figure
and in the remainder of this paper, we use the notation Be-
fore(cntv_A, cntv_B) to express that cntv_A is equal either
to cntv_B or to cntv_B+1, i.e., that statement A precedes
statement B.

Property P1 (Lines 2 and 3 of Figure 15) ensures the
termination of the execution. Property P2 (Lines 5-7 of
Figure 15) expresses the right execution count of the state-
ments in CM(c) when the execution ends in a final cor-
rect state (where PC is equal to Line 4) by comparing the
statement counter values in both the M(c) and the CM(c)
model.

18

...
void f(){

g();

...

}

L1:

L2:

L3:

L4:

void g(){

stmt1;

stmt2;

return;

}

L7:

L8:

L9:

L2

L4

L3_0

L3

L2_3

L2_1

L2_0

cntv_f2++

L1

Model CM for the secured version

L7

stmt2

stmt1

c
a

ll
to

 g
()

L2

L3

L4

L9

L8

cntv_f1++

c
n

tv
_
f2

+
+

cntv_g1++

cntv_g2++

g

L1

ju
m

p
 a

tt
a
c

k
 t

ra
n

s
it

io
n

s

killcard

call to g(&cnt_g)

cntv_f1++

cntv_f3++

L7

L8

L9

L6_0

L7_0

L8_0

cntv_g2++

stmt1

stmt2

return
cntv_g3++

return cntv_g3++

cntv_g1++cntv_f3++

Model M for the initial codeInitial sequential code

f

DECL_INIT(cnt_g, val)

cnt_g, val + 3, CHECK_INCR(*cnt_g, val+2)

CHECK_INCR(*cnt_g, val+1)

CHECK_INCR(*cnt_g, val)CHECK_INCR(*cnt_f, val_f)

CHECK_INCR(*cnt_f, val_f+1)

CHECK_INCR_FUNC(

*cnt_f, val_f+2)

Figure 14: Compact representation of the transition system for a function call and a straight-line flow

1; P1 : final state reachability in M and CM
2AG(AF(M.pc = L4))
3AG(AF(CM.pc = L4 + CM.pc = killcard))
4; P2 : right statement execution counts in CM and M when the execution reaches a correct final state
5AG(((M.pc = L4) . (CM.pc = L4)) => (M.cntv_f1 = CM.cntv_f1) . (M.cntv_f2 = CM.cntv_f2)
6. (M.cntv_f3 = CM.cntv_f3) . (M.cntv_g1 = CM.cntv_g1)
7. (M.cntv_g2 = CM.cntv_g2) . (M.cntv_g3 = CM.cntv_g3))
8; P3 on CM : right execution order of statements at any time and along any path in CM or attack detection
9AG(right_flow_cm + AF(CM.pc = killcard))
10right_flow_cm = Before(CM.cntv_f1, CM.cntv_f2) . Before(CM.cntv_f2, CM.cntv_f3) ; right order in f
11. Before(CM.cntv_g1, CM.cntv_g2) . Before(CM.cntv_g2, CM.cntv_g3) ; right order in g
12. Before(CM.cntv_f2, CM.cntv_g1) . Before(CM.cntv_g3, CM.cntv_f3) ; right order of the call stmt
13; P3 on M : right execution order of statements at any time and along any path in M
14AG(right_flow_m)
15right_flow_m = Before(M.cntv_f1, M.cntv_f2) . Before(M.cntv_f2, M.cntv_f3) ; right order in f
16. Before(M.cntv_g1, M.cntv_g2) . Before(M.cntv_g2, M.cntv_g3) ; right order in g
17. Before(M.cntv_f2, M.cntv_g1) . Before(M.cntv_g3, M.cntv_f3) ; right order of the call stmt

Figure 15: Model checker properties for a call to a function composed of straight-line statements

For the right execution order of statement, we aim to
prove not only that a straight-line flow is secured by our
countermeasure (in g) but also that a whole function exe-
cution (g) is protected, as well as calls to a function (the
call to g from f). Thus, the verification must ensure the
right execution of the call statement (in f). To this end,
the right_flow_cm formula for CM(c) (Lines 10-12
of Figure 15) ensures the right straight-line flow in f (Line
10), the right straight-line flow in g (Line 11), and the
right flow for the call statement (Line 12). Finally, Prop-
erty P3 for CM(c) (Line 9 in Figure 15) ensures that,
during any execution, either the execution order is as ex-
pected or an attack is detected.

5.5.2. Verification for the other constructs

The same verification (code modeling and expression
of the three properties) process has been applied for the
other constructs as well.

As previously explained, Property P3 differs between
constructs and should be redesigned.

Figure 16 illustrates Property P3 for the CM(c) asso-
ciated with the if-then-else construct of Figure 6. The
variables cntv_* are associated with the statements *
of the example of Figure 6. The right_flow_cm for-
mula specifies that Subproperties P3_1, P3_2a, P3_2b,
and P3_3 must all be valid. P3_1 ensures that the straight-
line flow order before the if construct, condition included,
is correct; P3_2a and P3_2b express the correct straight-

19

; P3: In each state of the CM model, the right execution order or an attack will be detected
AG(right_flow_cm = 1 + AG(AF(CM.pc = killcard)));

right_flow_cm = P3_1 . P3_2a . P3_2b . P3.3;

; P3_1: straight_line flow before the branch
P3_1 = Before(CM.cntv_1, CM.cntv_2) . Before(CM.cntv_2, CM.cntv_cond)

; P3_2a: straight_line flow for the then branch
P3_2a = Before(CM.cntv_cond, CM.cntv_then1) . Before(CM.cntv_then1, CM.cntv_then2)

; P3_2b: straight-line flow for the else branch
P3_2b = Before(CM.cntv_cond, CM.cntv_else1)

; P3_3: straight_line flow of the statement after the branch as well as exclusive and valid execution (with
respect to the condition value) of the last statement of the branch

P3_3 = ((CM.cntv_3 = 0) + ((cond = 0) . (M.cntv_else1 = 1))^((cond = 1) . (M.cntv_then2 = 1)))

Figure 16: Property P3 expressing the right execution order property for the if-then-else construct given in Figure 6

line flow order inside each branch, condition included;
and, finally, P3_3 checks that the statement just after the
if-then-else construct is executed after the last statement
of the right single branch. Note that the conjunction of
Subproperties P3_2a, P3_2b, and P3_3 ensures that the
branches of the CM(c) model are exclusive.

For switch constructs, the straight-line flow order of
each case must be correct and exclusively executed. The
variable n_sw added by the protection scheme is used to
express such an exclusive execution (as performed with
the variable cond for the if-then-else case). Cases with-
out a break statement are also handled.

For a simple loop (with a straight-line flow body with-
out any break nor any continue statement as in the ex-
ample in Figure 8), the right_flow formula expresses
that the statements inside the loop respect the straight-
line flow order (the condition must be executed before the
first statement of the body, and the statements of the body
must be executed in the right order as in a straight-line
flow). Owing to the looping back, the formula also ex-
presses that the condition is executed either as many times
as the last statement or one more time. Additionally, the
right_flow formula also expresses that the execution
order before the loop (condition of the loop included) is
correct and that when the statement after the loop has been
executed, the condition of the loop must have been exe-
cuted exactly one more time than the last statement of the
loop.

The presence of break and continue statements in a

loop body makes Property P3 more intricate as some iter-
ations can be interrupted. However, it remains possible to
express the right execution order whatever the execution
path (the break and continue statements are controlled by
a condition that is used in Property P3 to handle them).

5.5.3. Verification results

We chose the Vis model checker [53] to prove the ef-
fectiveness of our countermeasure schemes. This tool can
take a transition system described using a subset of the
Verilog Hardware Description Language as input. Using
Verilog is convenient to model transition systems as previ-
ously defined. The Vis model checker supports symbolic
model checking techniques, which enable to perform the
proof in a symbolic way.

We modeled all synthetic codes representing the dif-
ferent constructs presented in Section 4 without counter-
measures and with both versions of the countermeasures
(CMED and CMDD). We also expressed all the three
properties required to perform the verification as CTL
properties for all the resulting models. The three prop-
erties hold for all the constructs and for both countermea-
sure schemes. The verification required less than a few
minutes for each construct verification. Figure 17 shows
an example of the output of the verification of the loop
construct protection with early detection.

20

vis> read_verilog main_while.v
vis> init_verify
vis> model_check -i prop_eq_check.ctl
MC: formula passed --- AG(AF(while_c.pc=L9))
MC: formula passed --- AG(AF((while_cm.pc=L9 + while_cm.pc=killcard)))
MC: formula passed --- AG((right_flow=1 + AG(AF(while_cm.pc=killcard))))
MC: formula passed --- AG(right_flow_g=1)
MC: formula passed --- AG(((while_c.pc=L9 * while_cm.pc=L9) -> stmt_exec_count_eq=1))

Figure 17: Output of the verification of the loop construct protection with early detection

6. Experimental results

We implemented all the software components pre-
sented in Figure 1. The current implementation processes
the C code and outputs secured corresponding C versions.
The following constructs are currently supported: func-
tion calls as statement or expressions, even imbricated
ones; if-then-else constructs; and loop constructs (for and
while). Switch cases and loops with break or continue
statements are not fully implemented yet. The results pre-
sented in this section show the capability of our tool to
handle C codes automatically while being a research pro-
totype available online1.

For the experiments, we considered two sets of pro-
grams: the first set consisted of three well-known en-
cryption algorithms available in C (AES [52], SHA [54],
and Blowfish [54]) and the second one was the FISSC
benchmark, which is a recent set of reference programs
for smart cards [6]. In FISSC, we selected the VerifyPIN
benchmark, which simulates the checking of an incorrect
PIN code. VerifyPIN exists in different versions, which
correspond to different levels of software protection. The
protection mechanisms have been manually added at the
C code level by the authors of FISSC [6]. We consid-
ered the two versions of VerifyPIN: verifyPIN_1 and
verifyPIN_7 (protection levels 1 and 7, respectively).
We also considered hand-written C construct templates to
validate the effectiveness of our protection schemes per
construct via simulation.

6.1. Countermeasure effectiveness

First, we simulated all the intra-procedural transient
jump attacks from line i to line j at the C code level for
each function (such as in Figure 2). In all our experiments,
the distinguisher classified as Wrong answer any attack
that let the program finish with a corrupted output even if
a corrupted output did not necessarily imply the existence
of an exploit for the cryptographic algorithm we consid-
ered. This classification aims at judging the capability of
our securing scheme to protect a control flow.

Table 1 shows the results of jump attack simulations
at the source code level. The second column of Table 1
shows that, as formally verified, all attacks with a jump
distance greater than or equal to two C statements were
captured by our countermeasures designed for this fault
model. For example, 32 811 jump attacks were harmful
for SHA, whereas there was none for both its secured ver-
sions (SHA + CMED and SHA + CMDD). Similar re-
sults were obtained for the VerifyPIN benchmark and the
C construct templates.

Moreover, as there is no one-to-one correspondence be-
tween the high-level fault models and the low-level ones,
we simulated all possible intra-procedural jump attacks
at the assembly code level, considering as a target an
ARM Cortex-M3 processor. We used the Keil ARM-
MDK debugger and Keil simulator [55] for the replace-
ment of every instruction during execution by a jump any-
where into the same function. We considered only two
functions of the AES benchmarks (aes_encrypt and
mix_column) owing to a very long simulation time (up

1The source code of our framework is published online under the
GPL license and is available at http://cfi-c.gforge.inria.
fr/

21

http://cfi-c.gforge.inria.fr/
http://cfi-c.gforge.inria.fr/

Table 1: Source code jump attack effect classification for original version, early detection (+CMED) and deferred detection (+CMDD)
(WA: Wrong Answer; EL: Effect Less; SD: Software Detection; TO: Error or Timeout)

WA WA EL SD: KILLCARD TO TOTAL
C JUMP ATTACKS size > 1 size = 1
C construct templates Attacking all functions at C level for all transient rounds

if-then-else 9 37 % 2 8.3% 13 54 % 0 0 24
if-then-else + CMDD/CMED 0 4 0.9% 85 19 % 334 75% 17 3.9% 440
while 50 41 % 27 22 % 43 35 % 0 0 120
while + CMDD/CMED 0 23 1.5% 206 13 % 1245 83% 26 1.7% 1500
switch case 46 32 % 8 5.6% 89 62 % 0 0 143
switch case + CMDD/CMED 0 9 0.8% 494 42 % 652 56% 0 1155
continue (loop) 227 55 % 47 11 % 117 28 % 0 16 3.9% 407
continue (loop) + CMED 0 41 0.7% 604 10 % 4971 88% 1 0.0% 5617
continue (loop) + CMDD 0 41 0.7% 1096 17 % 4971 81% 1 0.0% 6109
break (loop) 141 65 % 31 14 % 44 20 % 0 0 216
break (loop) + CMED 0 30 0.7% 608 14 % 3462 84% 0 4100
break (loop) + CMDD 0 30 0.7% 731 17 % 3462 81% 0 4223
Fibonacci (recursivity test) 212 48 % 58 13 % 160 36 % 0 10 2.3% 440
Fibonacci + CMED 0 59 0.9% 282 4.1% 6478 94% 37 0.5% 6856
Fibonacci + CMDD 0 59 0.8% 637 8.4% 6623 87% 238 3.1% 7557

Ciphering Attacking all functions at C level for all transient rounds

AES 7835 29 % 1104 4.2% 17,323 65 % 0 108 0.4% 26,370
AES + CMED 0 603 0.2% 18,339 6.7% 255,614 93% 1 0.0% 274,557
AES + CMDD 0 603 0.2% 37,334 13 % 236,619 86% 1 0.0% 274,557
SHA 32,811 75 % 1527 3.5% 8531 19 % 0 405 0.9% 43,274
SHA + CMED 0 1143 0.3% 5015 1.3% 368,941 98% 290 0.1% 375,389
SHA + CMDD 0 1144 0.3% 5015 1.3% 368,736 98% 494 0.1% 375,389
Blowfish 70,318 32 % 3553 1.7% 134,360 62 % 0 5490 2.6% 213,721
Blowfish + CMED 0 2468 0.2% 312,745 25 % 887,364 73% 6852 0.6% 1,209,429
Blowfish + CMDD 0 2467 0.2% 312,745 25 % 869,690 71% 24,527 2.0% 1,209,429

FISSC Attacking all functions at C level for all transient rounds

VerifyPIN_1 49 7.4% 2 0.3% 600 90 % 0 13 2.0% 664
VerifyPIN_1 + CMED 0 2 0.0% 1229 11 % 9525 88% 16 0.1% 10,772
VerifyPIN_1 + CMDD 0 2 0.0% 1285 11 % 9392 87% 93 0.9% 10,772
VerifyPIN_7 187 2.4% 3 0.0% 4483 57 % 3094 39% 17 0.2% 7784
VerifyPIN_7 + CMED 0 2 0.0% 39,624 32 % 82,598 67% 0 122,224
VerifyPIN_7 + CMDD 0 2 0.0% 39,624 32 % 82,598 67% 0 122,224

to 3 weeks per simulation), highlighting the benefits of
performing the attack simulation at the source code level.
The considered functions have a different control flow:
aes_encrypt consists of a loop with an if construct
and several function calls, whereas mix_column only
contains a straight-line flow inside a loop. The results are
presented in Table 2. For the aes_encrypt function,
the total number of harmful attacks in the secured ver-
sion with early detection (respectively with deferred de-
tection) represented only 30.8% (482/1566) (respectively
22.7%) of those in the original code: our countermeasures
were able to defeat 68.4% (respectively 76.3%) of the at-
tacks on this function. For the mix_column function,
the countermeasure with deferred detection (respectively
with early detection) defeated 69.2% (respectively 57.6%)
of the harmful attacks on the original code. The difference
between the number of remaining harmful attacks with

early and deferred detection was owing to the additional
instructions added by the checks necessary for the early
detection. Some of these instructions add a few starting
points for harmful jump attacks. The attack surface was
significantly reduced as only less than 1.99% of the at-
tacks provided an advantage to the attacker.

Finally, we simulated attacks that call an unexpected
function instead of the expected one for all the bench-
marks using the Keil simulator. Such attacks are a spe-
cific case of inter-procedural attacks. However, a harmful
inter-procedural jump attack (i.e., leading to a jump from
the middle of a function to the middle of another one) re-
quires the induced jump to come from a point where the
stack, the protection counters, and extra variables have
a consistent and expected state at the destination of the
jump. Hence, the probability of any inter-procedural jump
to succeed is very low. Hence, we focused on attacks

22

Table 2: Classification of the effects of an assembly code jump attack for the original version, early detection (+CMED), and deferred detection
(+CMDD) (WA: Wrong Answer; EL: Effect Less; SD: Software Detection; TO: Error or Timeout)

WA WA EL SD: KILLCARD TO TOTAL
size > 1 size = 1

AES Jump attacks at the assembly code level for the first transient round

aes_encrypt 1566 82.8 % 36 1.9 % 179 9.5 % 111 5.9 % 1892
aes_encrypt + CMED 482 0.3 % 24 0.01 % 19,895 11.1 % 155,639 87.3 % 2466 1.3 % 178,506
aes_encrypt + CMDD 355 0.4 % 24 0.02 % 6088 6.5 % 82,902 88.8 % 3961 4.2 % 93,330
aes_mixcolumn 2042 86.8 % 45 1.9 % 200 8.5 % 65 2.8 % 2352
aes_mixcolumn + CMED 834 1.3 % 51 0.08 % 7592 11.6 % 56,547 86.6 % 256 0.4 % 65,280
aes_mixcolumn + CMDD 615 1.9 % 29 0.09 % 7329 23 % 22,012 69.1 % 1877 5.9 % 31,862

corresponding to a wrong function call. The results, pre-
sented in Table 3, showed that all harmful attacks were
captured and many harmless attacks were also detected.
Thus, our countermeasures are also effective against un-
expected function calls.

6.2. Overhead

In this section, we discuss the overhead induced by
our countermeasures. We compare both countermeasure
schemes. We chose to apply a full code securing, which
often implies high overheads [38, 49] and gives an idea of
the upper bound of the overheads.

Table 4 shows the code sizes as well as the execu-
tion times of the original version and the secured ones
(+CMED or +CMDD) for an x86 target machine and a
Cortex-M3 processor. For the x86 platform, the execu-
tion time overhead ranged from +41% (Blowfish) up to
+81% (AES) for the deferred detection. Of course, early
detection that performed a check of the counter value be-
tween each C statement increased the overheads, which
ranged from +56% (Blowfish) up to +138% (AES). For
the embedded ARM processor, the overhead was higher.
This was primarily due to the simpler processor design,
which does not exploit instruction-level parallelism and
does not have branch prediction. The highest overhead
was incurred for AES (+219%). The results also showed
that deferred detection reduced the overhead for both code
size and performance. However, early detection may be
more appropriate if a fault could provide benefits to the
attacker in the presence of deferred detection, as it can be
the case of combined side channel and fault attacks [56]

The performance of the secured benchmarks depended
on the presence of IO operations and their speed. In the
considered use cases, AES did not use input files, whereas
SHA and Blowfish did. For example, the multiple file

reads in Blowfish limited the measured performance over-
heads on the x86 platform. In the ARM-v7 simulation
platform, the performance was different because we had
to remove some IO operations (those manipulating a file
as a read from a file).

The overhead of our countermeasure scheme is not neg-
ligible; however, critical routines are only a subset of the
whole software embedded in a smart card. Thus, based
on the weakness detection, a security expert could decide
which functions must be secured to ensure security while
reducing the impact on performances without sacrificing
security.

6.3. VerifyPIN use case

To illustrate the proposed methodology for weakness
detection and code hardening as well as the effectiveness
of the proposed protection scheme even if deployed at the
C code level, we considered the VerifyPIN benchmark [6].
This small benchmark is mainly composed of two func-
tions: verify_pin and byte_compare. The func-
tion verify_pin is in charge of the authentication and
calls the byte_compare function, which performs a
comparison between a given pin code and a hard-coded
one. A harmful attack corresponds to an authentication
success whereas the entered pin code is wrong.

We first simulated all possible jump attacks at the as-
sembly code level for the function verify_pin. The re-
sults in Table 5 show that, without any protection, in ver-
sion 1 (FISSC) there were 189 harmful jump attacks
(187 with a distance greater than one and two instruction
skips). When secured with our protection scheme, the
total number of harmful attacks decreased to 74, which
still represents 39.1% of the initial set of harmful at-
tacks. This result shows that our protection schemes,
while adding code, are effective in reducing the attack

23

Table 3: Classification of the effects of an assembly bad call attack for the original version and early detection
(WA: Wrong Answer; EL: Effect Less; SD: Software Detection; TO: Error or Timeout)

WA EL SD: KILLCARD TO TOTAL
ASSEMBLY CALL ATTACKS Attacking all function calls at the assembly code level for the first transient round

AES 249 59.3% 139 33.1% 32 5 % 420
AES + CMED 0 21 5 % 398 94.8% 1 0.2% 420
SHA 35 48.7% 13 18 % 24 33.3% 72
SHA + CMED 0 8 11.1% 61 84.7% 3 4.2% 72
Blowfish 9 21.4% 18 42.9% 15 35.7% 42
Blowfish + CMED 0 18 42.9% 17 40.5% 7 16.6% 42

Table 4: Size and overhead for the original version, early detection (+CMED), and deferred detection (+CMDD)
(WA: Wrong Answer; EL: Effect Less; SD: Software Detection; TO: Error or Timeout)

X86 ARM-V7M
Simulation Size Execution time Size Execution time
time Bytes Overhead Time Overhead Bytes Overhead Time Overhead

AES 22 min 18,016 0.77 ms 4224 62.18 ms
AES + CMED 8 h 40 min 38,552 +113% 1.83 ms +138% 13,472 +219% 186.7 ms +200%
AES + CMDD 6 h 05 min 30,360 +68% 1.39 ms +81% 9732 +110% 131 ms +110%
SHA 58 min 13,528 1.04 µs 3184 504.3 µs
SHA + CMED 12 h 34 min 21,776 +60% 2.10 µs +102% 7032 +121% 851.36 µs +69%
SHA + CMDD 9 h 37 min 17,680 +30% 1.79 µs +72% 5272 +66% 730.4 µs +45%
Blowfish 4 h 39 min 30,352 0.67 µs 5546 4.55 ms
Blowfish + CMED 2 days 0 h 44 min 46,784 +54% 1.05 µs +56% 14,668 +164% 14.46 ms +217%
Blowfish + CMDD 1 day 14 h 30 min 38,592 +32% 0.89 µs +41% 10,820 +95% 13.01 ms +186%

surface. The manually protected C version of the func-
tion (7 (FISSC)) includes redundancy checks and uses
step counters all the way to detect control-flow disruption.
However, simulating jump attacks at the assembly code
level on this function revealed 279 harmful attacks. This
demonstrates the difficult task of protecting source code
as well as a side effect of adding protection mechanisms:
as the code grows, it may contain more weaknesses than
that without any protection.

Many implementation flaws were detected in the source
code of the function verify_pin in both versions 1
(FISSC) and 7 (FISSC): the Boolean true value,
even if associated with a specific value, is assigned in dif-
ferent places to the variable holding the authentication re-
sult. This makes attacks easier to be performed as any
jump to one of these assignments results in an authen-
tication success. We changed the source code to avoid
these programming flaws in a new version denoted as 2
(new) in Table 5. As a result, no harmful jump attacks
exist in the function of this version (2 (new)). There-
fore, writing the C code in a secure manner is crucial.

We also analyzed the byte_compare function
shown in the left-hand side of Figure 18. Without any pro-
tection, there were 16 harmful attack points. We changed

BOOL byteArrayCompare(
UBYTE* a1, UBYTE* a2
, UBYTE size) {

int i;
BOOL ret = BOOL_TRUE;
i = 0;
while(i < size)
{
if(a1[i] != a2[i])
{
ret = BOOL_FALSE;

}
i++;

}

return ret;
}

BOOL
byteArrayCompare_pinsize(

UBYTE* a1, UBYTE* a2
) {

int i, tmp, n;
BOOL ret = BOOL_FALSE;
n = 0; i = 0;
while(i < PIN_SIZE) {
if(a1[i] == a2[i]) {
n++;

} i++;
}
if (PIN_SIZE == n) {
if (PIN_SIZE == n) {
ret = BOOL_TRUE;

}}
return ret;

}

Figure 18: The byte_compare function: the original (1) and the new
version (2_dup)

the function to avoid the default assignment of the re-
turned value to a true value at the beginning of the func-
tion, which offers by default many ways to force the func-
tion to return a Boolean true value. Then, we used our
methodology and simulated all jump attacks at the C code
level for the new version. We analyzed the weaknesses

24

Table 5: Classification of the effects of an assembly code jump attack for the original version, early detection (+CMED), and deferred detection
(+CMDD) (WA: Wrong Answer; EL: Effect Less; SD: Software Detection; TO: Error or Timeout)

WA WA EL SD: KILLCARD TO TOTAL
VERIFYPIN size > 1 size = 1

Version Function Jump attacks at the assembly code level for the first transient round

1 (FISSC) verify_pin 187 15.7 % 2 0.17 % 939 79 % 61 5.1 % 1189
1 (FISSC) verify_pin + CMDD 72 0.18% 2 0.005% 8801 22.7 % 29,410 75.8 % 526 1.35% 38,809
7 (FISSC) verify_pin 277 3.04% 2 0.02 % 4482 49.14% 4275 46.88% 84 0.92% 9120
2 (new) verify_pin 0 0 % 0 0 % 1089 97.5 % 33 2.95% 1122
1 (FISSC) byte_compare 13 6.22% 3 1.43 % 165 98.95% 28 13.39% 209
2_dup (new) byte_compare + CMDD 0 0 % 0 0 % 18,383 55.8 % 14,020 42.56% 539 1.64% 32,942
2_dup (new) byte_compare + partial 0 0 % 0 0 % 4054 50.61% 3759 46.93% 197 2.46% 8010

using our visualization tool: one statement was at the tar-
get of all harmful attacks, i.e., the one that set the return
value to true. The condition of the if statement protecting
this assignment may be successfully corrupted as our pro-
tection scheme cannot protect against intra C-line jump
attacks. We then duplicated the if-statement line (which
was idempotent) to evaluate the condition twice on differ-
ent lines. The corresponding source code, called 2_dup
(new), is shown in the right-hand side of Figure 18.
The results of the simulations of jump attacks at the as-
sembly code level considering this new version (2_dup
(new)) protected with our deferred detection protection
scheme showed that the new version is fully protected,
as reported in Table 5. This demonstrates the importance
of our source code weakness visualization tool in detect-
ing the sensitive parts and the effectiveness of our protec-
tion scheme in detecting any jump attacks at the assem-
bly code level. Note that even single-instruction skips are
harmless.

Moreover, as only a small part of the code of the en-
tire new version of VerifyPIN is sensitive, we only needed
to protect the code partially. Thus, we query our tool to
harden only a portion of the code (from line 10 to 14
in the right-hand side of Figure 18) as well as the call
to the byte_compare function from verify_pin.
All functions are minimally secured, as explained at the
end of the previous section (Section 6.2). The resulting
code, called version 2_dup (new) byte_compare
+ partial in Table 5, is still fully protected. Code
size and performance degradation are also far less im-
pacted. The execution of the initial version requires 3.43
µs, whereas the new version runs in 3.54 µs; both have
the same code sizes. The slowdown of the fully secured
version is really high (+317%), whereas the partially se-
cured one runs only 60% slower. The size increase for the

fully secured version is 118%, whereas it is only 40.5%
for the partially secured one. Although this benchmark
represents a small but a critical part of a smart cards func-
tionalities, these results show that our approach can ef-
ficiently secure a smart card C code against control-flow
disruption at the source code level. Moreover, its over-
head can be mitigated by securing only the sensitive re-
gions.

In practice, as presented in this section, developers and
security experts choose the code regions inside a func-
tion to be secured. Our approach automates the process
from weakness detection to code security. It is possible to
extend it, and thus, extend our tools to adapt the counter-
measure injection for targeting only specific regions in-
side functions to reduce the overhead. Automatic finer
selection of code regions to be secured will be studied in
a future work.

7. Conclusion

This paper presented a methodology to automatically
secure, at the source code level, any C applications with-
out a goto statement, supported by formally verified coun-
termeasures. Three main contributions can be empha-
sized. First, we set up a methodology to analyze and visu-
alize the vulnerabilities of a C code that is subject to phys-
ical faults disturbing the control flow. Second, we pro-
posed countermeasures to detect control-flow attacks that
jump more than two C lines of the code. Third, we for-
malized and verified the countermeasure schemes. This
approach is original and can be adapted for new counter-
measures that security researchers or experts would like
to verify. Finally, we automated the injection of the coun-
termeasures and the simulated attacks to secure any regu-
lar C code or to experiment with the effect of a physical

25

fault. The developed tools are open source and can be
freely downloaded from the Web.

Experimental results showed that the proposed coun-
termeasures defeated 100% of C jump attacks with a dis-
tance of two statements or beyond. Moreover, our coun-
termeasures were able to capture all unexpected function
calls. They were also able to significantly reduce the num-
ber of attacks injected at the assembly code level and can
even be used in combination with benchmark rewriting to
defeat all attacks, given a fine classification of harmful at-
tacks. The overhead is high; however, in a smart card,
the code that needs to be fully protected represents only a
small part of all the embedded software.

Our future work will address the optimization of coun-
termeasure injection according to the weakness detection
step. If harmless attacks are found inside a function, in-
jection of countermeasures might be adapted accordingly
to reduce their cost while preserving their effectiveness.
Working on the compatibility of countermeasures against
data fault attacks with the presented work is also a promis-
ing research direction.

References

[1] S. Bhasin, P. Maistri, F. Regazzoni, Malicious wave: A
survey on actively tampering using electromagnetic glitch,
in: International Symposium on Electromagnetic Compat-
ibility, 2014, pp. 318–321.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whe-
lan, The sorcerer’s apprentice guide to fault attacks, Pro-
ceedings of the IEEE 94 (2) (2006) 370–382. doi:
10.1109/JPROC.2005.862424.

[3] A. Dehbaoui, A.-P. Mirbaha, N. Moro, J.-M. Dutertre,
A. Tria, Electromagnetic Glitch on the AES Round
Counter, in: 4th International conference on Construc-
tive Side-Channel Analysis and Secure Design, Vol. 7864,
Springer Berlin / Heidelberg, Paris, France, 2013, pp. 17–
31. doi:10.1007/978-3-642-40026-1_2.

[4] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, F. Regaz-
zoni, Countermeasures against fault attacks on software
implemented AES: effectiveness and cost, in: 5th Work-
shop on Embedded Systems Security, ACM, New York,
NY, USA, 2010, pp. 1–10. doi:10.1145/1873548.
1873555.

[5] S. Yen, S. Kim, S. Lim, S. Moon, A countermeasure
against one physical cryptanalysis may benefit another at-
tack, in: K. Kim (Ed.), 4th International Conference on
Information Security and Cryptology, Vol. 2288 of LNCS,
Springer, Seoul, Korea, 2001, pp. 414–427. doi:10.
1007/3-540-45861-1_31.

[6] L. Dureuil, G. Petiot, M.-L. Potet, A. Crohen, P. D.
Choudens, FISSC: a Fault Injection and Simulation Se-
cure Collection, in: International Conference on Com-
puter Safety, reliability and Security, Vol. 9922 of LNCS,
Springer Berlin / Heidelberg, Trondheim, Norway, 2016,
pp. 3–11. doi:10.1007/978-3-319-45477-1_1.

[7] M.-L. Potet, L. Mounier, M. Puys, L. Dureuil, Lazart: A
Symbolic Approach for Evaluation the Robustness of Se-
cured Codes against Control Flow Injections, in: 7th Inter-
national Conference on Software Testing, Verification and
Validation, IEEE, Cleveland, OH, USA, 2014, pp. 213–
222. doi:10.1109/ICST.2014.34.

[8] T. Barry, D. Couroussé, B. Robisson, Compilation of a
Countermeasure Against Instruction-Skip Fault Attacks,
in: 3rd Workshop on Cryptography and Security in Com-
puting Systems, ACM Press, Prague, Czech Republic,
2016, pp. 1–6. doi:10.1145/2858930.2858931.

[9] R. D. Keulenaer, J. Maebe, K. D. Bosschere, B. D.
Sutter, Link-time smart card code hardening, Int. J.
Inf. Sec. 15 (2) (2016) 111–130. doi:10.1007/
s10207-015-0282-0.

[10] S. S. Muchnick, Advanced Compiler Design and Imple-
mentation, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1997.

[11] A. W. Appel, M. Ginsburg, Modern Compiler Implemen-
tation in C, Cambridge University Press, New York, NY,
USA, 2004.

[12] P. Berthomé, K. Heydemann, X. Kauffmann-
Tourkestansky, J.-F. Lalande, High level model of control
flow attacks for smart card functional security, in: 7th In-
ternational Conference on Availability, Reliability and Se-
curity, IEEE Computer Society, Prague, Czech Republic,
2012, pp. 224–229. doi:10.1109/ARES.2012.79.

[13] L. Riviere, M.-L. Potet, T.-H. Le, J. Bringer, H. Cha-
banne, M. Puys, Combining High-Level and Low-Level
Approaches to Evaluate Software Implementations Ro-
bustness Against Multiple Fault Injection Attacks, in: 7th
International Symposium on Foundations & Practice of

26

http://dx.doi.org/10.1109/JPROC.2005.862424
http://dx.doi.org/10.1109/JPROC.2005.862424
http://dx.doi.org/10.1007/978-3-642-40026-1_2
http://dx.doi.org/10.1145/1873548.1873555
http://dx.doi.org/10.1145/1873548.1873555
http://dx.doi.org/10.1007/3-540-45861-1_31
http://dx.doi.org/10.1007/3-540-45861-1_31
http://dx.doi.org/10.1007/978-3-319-45477-1_1
http://dx.doi.org/10.1109/ICST.2014.34
http://dx.doi.org/10.1145/2858930.2858931
http://dx.doi.org/10.1007/s10207-015-0282-0
http://dx.doi.org/10.1007/s10207-015-0282-0
http://dx.doi.org/10.1109/ARES.2012.79

Security, Vol. 8930, IEEE, Montreal, Canada, 2015, pp.
92–111. doi:10.1007/978-3-319-17040-4_7.

[14] J. Proy, K. Heydemann, A. Berzati, A. Cohen, Compiler-
assisted loop hardening against fault attacks, ACM Trans.
Archit. Code Optim. 14 (4) (2017) 36:1–36:25. doi:10.
1145/3141234.

[15] D. Boneh, R. A. DeMillo, R. J. Lipton, On the impor-
tance of eliminating errors in cryptographic computations,
Journal of Cryptology 14 (2) (2001) 101–119. doi:
10.1007/s001450010016.

[16] N. Timmers, A. Spruyt, M. Witteman, Controlling PC on
ARM Using Fault Injection, in: Fault Diagnosis and Tol-
erance in Cryptography Workshop, IEEE, Santa Barbara,
CA, USA, 2016, pp. 25–35. doi:10.1109/FDTC.
2016.18.

[17] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson,
E. Encrenaz, Experimental evaluation of two software
countermeasures against fault attacks, in: International
Symposium on Hardware-Oriented Security and Trust
(HOST), IEEE, Arlington, VA, USA, 2014, pp. 112–117.
doi:10.1109/HST.2014.6855580.

[18] J.-F. Lalande, K. Heydemann, P. Berthomé, Software
Countermeasures for Control Flow Integrity of Smart Card
C Codes, in: M. Kutylowski, J. Vaidya (Eds.), 19th Euro-
pean Symposium on Research in Computer Security, Vol.
8713 of LNCS, Springer International Publishing, Wro-
claw, Pologne, 2014, pp. 200–218. doi:10.1007/
978-3-319-11212-1_12.

[19] M. Abadi, M. Budiu, Ú. Erlingsson, J. Ligatti, Control-
flow integrity principles, implementations, and applica-
tions, ACM Transactions on Information and System Se-
curity 13 (1) (2009) 1–40. doi:10.1145/1609956.
1609960.

[20] R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang,
P. Maene, K. D. Bosschere, B. Preneel, B. D. Sutter,
I. Verbauwhede, SOFIA: software and control flow in-
tegrity architecture, in: L. Fanucci, J. Teich (Eds.), Design,
Automation & Test in Europe Conference & Exhibition,
IEEE, Dresden, Germany, 2016, pp. 1172–1177.

[21] M. Werner, E. Wenger, S. Mangard, Protecting the
control flow of embedded processors against fault at-
tacks, in: N. Homma, M. Medwed (Eds.), 14th Inter-
national Conference Smart Card Research and Advanced
Applications, CARDIS, Vol. 9514 of LNCS, Springer,

Bochum, Germany, 2015, pp. 161–176. doi:10.1007/
978-3-319-31271-2_10.

[22] M. Payer, A. Barresi, T. R. Gross, Fine-grained control-
flow integrity through binary hardening, in: 12th Confer-
ence on Detection of Intrusions and Malware, and Vulner-
ability Assessment, Springer, Milan, Italy, 2015, pp. 144–
164. doi:10.1007/978-3-319-20550-2_8.

[23] W. Arthur, B. Mehne, R. Das, T. Austin, Getting in
control of your control flow with control-data isolation,
in: 13th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, IEEE Computer So-
ciety, San Francisco, CA, USA, 2015, pp. 79–90. doi:
10.1109/CGO.2015.7054189.

[24] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson,
E. Encrenaz, Electromagnetic Fault Injection: Towards
a Fault Model on a 32-bit Microcontroller, in: Work-
shop on Fault Diagnosis and Tolerance in Cryptography,
Ieee, Santa Barbara, CA, USA, 2013, pp. 77–88. doi:
10.1109/FDTC.2013.9.

[25] K. Pattabiraman, N. M. Nakka, Z. T. Kalbarczyk, R. K.
Iyer, SymPLFIED: Symbolic Program-Level Fault Injec-
tion and Error Detection Framework, IEEE Transactions
on Computers 62 (11) (2013) 2292–2307. doi:10.
1109/TC.2012.219.

[26] I. Verbauwhede, The fault attack jungle - A classification
model to guide you, in: Fault Diagnosis and Tolerance
in Cryptography, IEEE Computer Society, Tokyo, Japan,
2011, pp. 3–8. doi:10.1109/FDTC.2011.13.

[27] M. Puys, L. Riviere, J. Bringer, T.-H. Le, High-Level Sim-
ulation for Multiple Fault Injection Evaluation, in: 3rd In-
ternational Workshop on Quantitative Aspects in Security
Assurance, Vol. 8872 of LNCS, Springer Berlin / Heidel-
berg, Wroclaw, Poland, 2015, pp. 293–308.

[28] L. Dureuil, M. Potet, P. de Choudens, C. Dumas,
J. Clédière, From code review to fault injection attacks:
Filling the gap using fault model inference, in: N. Homma,
M. Medwed (Eds.), 14th International Conference Smart
Card Research and Advanced Applications, CARDIS, Vol.
9514 of LNCS, Springer, Bochum, Germany, 2015, pp.
107–124. doi:10.1007/978-3-319-31271-2_7.

[29] L. Riviere, Securing software implementations against
fault injection attacks on embedded systems, Ph.D. thesis,
Ecole doctorale EDITE de Paris, Paris, France (9 2015).

27

http://dx.doi.org/10.1007/978-3-319-17040-4_7
http://dx.doi.org/10.1145/3141234
http://dx.doi.org/10.1145/3141234
http://dx.doi.org/10.1007/s001450010016
http://dx.doi.org/10.1007/s001450010016
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/HST.2014.6855580
http://dx.doi.org/10.1007/978-3-319-11212-1_12
http://dx.doi.org/10.1007/978-3-319-11212-1_12
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1007/978-3-319-31271-2_10
http://dx.doi.org/10.1007/978-3-319-31271-2_10
http://dx.doi.org/10.1007/978-3-319-20550-2_8
http://dx.doi.org/10.1109/CGO.2015.7054189
http://dx.doi.org/10.1109/CGO.2015.7054189
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1109/TC.2012.219
http://dx.doi.org/10.1109/TC.2012.219
http://dx.doi.org/10.1109/FDTC.2011.13
http://dx.doi.org/10.1007/978-3-319-31271-2_7

[30] J. Balasch, B. Gierlichs, I. Verbauwhede, An in-depth and
black-box characterization of the effects of clock glitches
on 8-bit MCUs, in: L. Breveglieri, S. Guilley, I. Koren,
D. Naccache, J. Takahashi (Eds.), 8th Workshop on Fault
Diagnosis and Tolerance in Cryptography, IEEE Com-
puter Society, Nara, Japan, 2011, pp. 105–114. doi:
10.1109/FDTC.2011.9.

[31] G. Bouffard, J. Iguchi-Cartigny, J.-L. Lanet, Combined
software and hardware attacks on the java card control
flow, in: 10th Smart Card Research and Advanced Ap-
plication IFIP Conference, Springer Berlin / Heidelberg,
Leuven, Belgium, 2011, pp. 283–296. doi:10.1007/
978-3-642-27257-8_18.

[32] D. Ceara, Detecting Software Vulnerabilities - Static Taint
Analysis, Bsc thesis, Universitatea Politehnica Bucuresti,
Verimag (2009).

[33] F. Yamaguchi, C. Wressnegger, H. Gascon, K. Rieck,
Chucky: exposing missing checks in source code for vul-
nerability discovery, in: A.-R. Sadeghi, V. D. Gligor,
M. Yung (Eds.), Conference on Computer and Communi-
cations Security, ACM Press, Berlin, Germany, 2013, pp.
499–510. doi:10.1145/2508859.2516665.

[34] P. Rauzy, S. Guilley, Countermeasures against high-order
fault-injection attacks on CRT-RSA, in: Workshop on
Fault Diagnosis and Tolerance in Cryptography, IEEE
Computer Society, Busan, South Korea, 2014, pp. 68–82.
doi:10.1109/FDTC.2014.17.

[35] L. Riviere, J. Bringer, T.-H. Le, H. Chabanne, A novel sim-
ulation approach for fault injection resistance evaluation
on smart cards, in: 6th international Workshop on Secu-
rity Testing, no. Sectest, IEEE Computer Society, Graz,
Austria, 2015, pp. 1–8. doi:10.1109/ICSTW.2015.
7107460.

[36] G. A. Kanawati, N. A. Kanawati, J. A. Abraham, FER-
RARI: a flexible software-based fault and error injection
system, IEEE Transactions on Computers 44 (2) (1995)
248–260.

[37] A. Barenghi, L. Breveglieri, I. Koren, D. Naccache,
Fault injection attacks on cryptographic devices: Theory,
practice, and countermeasures, Proceedings of the IEEE
100 (11) (2012) 3056–3076. doi:10.1109/JPROC.
2012.2188769.

[38] N. Moro, K. Heydemann, E. Encrenaz, B. Robis-
son, Formal verification of a software countermeasure

against instruction skip attacks, Journal of Cryptographic
Engineering 4 (3) (2014) 1–12. doi:10.1007/
s13389-014-0077-7.

[39] H. Shacham, The geometry of innocent flesh on the bone,
in: 14th Conference on Computer and communications se-
curity, ACM Press, Alexandria, USA, 2007, pp. 552–561.
doi:10.1145/1315245.1315313.

[40] T. Bletsch, X. Jiang, V. Freeh, Mitigating code-reuse at-
tacks with control-flow locking, in: 27th Annual Com-
puter Security Applications Conference, ACM Press, Or-
lando, Florida, USA, 2011, pp. 353–362. doi:10.
1145/2076732.2076783.

[41] L. Szekeres, M. Payer, T. Wei, D. Song, Sok: Eternal war
in memory, in: Symposium on Security and Privacy, SP,
IEEE Computer Society, Berkeley, CA, US, 2013, pp. 48–
62. doi:10.1109/SP.2013.13.

[42] A. M. Fiskiran, R. B. Lee, Runtime execution monitoring
(REM) to detect and prevent malicious code execution, in:
International Conference on Computer Design: VLSI in
Computers and Processors, IEEE Computer Society, San
Jose, California, 2004, pp. 452–457. doi:10.1109/
ICCD.2004.1347961.

[43] H. Chen, B. Zang, CFIMon: Detecting violation of control
flow integrity using performance counters, in: IEEE/IFIP
International Conference on Dependable Systems and Net-
works, IEEE Computer Society, Boston, USA, 2012, pp.
1–12. doi:10.1109/DSN.2012.6263958.

[44] J. Danger, S. Guilley, T. Porteboeuf, F. Praden, M. Tim-
bert, HCODE: hardware-enhanced real-time CFI, in:
M. D. Preda, J. T. McDonald (Eds.), 4th Program Pro-
tection and Reverse Engineering Workshop, ACM, New
Orleans, USA, 2014, pp. 6:1–6:11. doi:10.1145/
2689702.2689708.

[45] N. Oh, P. P. Shirvani, E. J. McCluskey, Control-flow check-
ing by software signatures, IEEE Transactions on Reli-
ability 51 (1) (2002) 111–122. doi:10.1109/24.
994926.

[46] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha,
M. H. Jakubowski, Oblivious hashing: A stealthy soft-
ware integrity verification primitive, in: 5th International
Workshop on Information Hiding, Springer-Verlag Berlin
Heidelberg, Noordwijkerhout, The Netherlands, 2003, pp.
400–414. doi:10.1007/3-540-36415-3_26.

28

http://dx.doi.org/10.1109/FDTC.2011.9
http://dx.doi.org/10.1109/FDTC.2011.9
http://dx.doi.org/10.1007/978-3-642-27257-8_18
http://dx.doi.org/10.1007/978-3-642-27257-8_18
http://dx.doi.org/10.1145/2508859.2516665
http://dx.doi.org/10.1109/FDTC.2014.17
http://dx.doi.org/10.1109/ICSTW.2015.7107460
http://dx.doi.org/10.1109/ICSTW.2015.7107460
http://dx.doi.org/10.1109/JPROC.2012.2188769
http://dx.doi.org/10.1109/JPROC.2012.2188769
http://dx.doi.org/10.1007/s13389-014-0077-7
http://dx.doi.org/10.1007/s13389-014-0077-7
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/2076732.2076783
http://dx.doi.org/10.1145/2076732.2076783
http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1109/ICCD.2004.1347961
http://dx.doi.org/10.1109/ICCD.2004.1347961
http://dx.doi.org/10.1109/DSN.2012.6263958
http://dx.doi.org/10.1145/2689702.2689708
http://dx.doi.org/10.1145/2689702.2689708
http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1007/3-540-36415-3_26

[47] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Vi-
olante, Improved software-based processor control-flow
errors detection technique, in: Annual Reliability and
Maintainability Symposium, IEEE Computer Society,
Alexandria, VA, USA, 2005, pp. 583–589. doi:10.
1109/RAMS.2005.1408426.

[48] G. Bouffard, B. N. Thampi, J.-L. Lanet, Detecting Laser
Fault Injection for Smart Cards Using Security Automata,
in: International Symposium on Security in Computing
and Communications, Vol. 377, Springer Berlin / Heidel-
berg, Mysore, India, 2013, pp. 18–29. doi:10.1007/
978-3-642-40576-1_3.

[49] B. Nicolescu, Y. Savaria, R. Velazco, SIED: Software Im-
plemented Error Detection, in: 18th International Sym-
posium on Defect and Fault Tolerance in VLSI Systems,
IEEE Computer Society, Boston, MA, USA, 2003, pp.
589–596. doi:10.1109/DFTVS.2003.1250159.

[50] SFR, (u)sim java card platform protection profile basic
and scws configurations, Tech. rep., SFR and AFOM and
Trusted Labs (2010).

[51] M.-L. Akkar, L. Goubin, O. Ly, Automatic Integration
of Counter-Measures Against Fault Injection Attacks, in:
Proceedings of E-Smart’2003, Nice, 2003, pp. 1–13.

[52] I. Levin, A byte-oriented AES-256 implementation (2007).
URL http://www.literatecode.com/aes256

[53] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Kha-
tri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sar-
wary, T. R. Staple, G. Swamy, T. Villa, VIS: A system for
verification and synthesis, in: R. Alur, T. A. Henzinger
(Eds.), Computer Aided Verification, Vol. 1102 of LNCS,
Springer, Heidelberg, New Brunswick, USA, 1996, pp.
428–432. doi:10.1007/3-540-61474-5_95.

[54] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, R. B. Brown, MiBench: A free, commercially
representative embedded benchmark suite, in: 4th Annual
Workshop on Workload Characterization, IEEE Computer
Society, Austin, TX, 2001, pp. 3–14. doi:10.1109/
WWC.2001.990739.

[55] Keil, Keil uVision for ARM processors (2012).

[56] F. Amiel, K. Villegas, B. Feix, L. Marcel, Passive and
active combined attacks: Combining fault attacks and
side channel analysis, in: Proceedings of the Workshop

on Fault Diagnosis and Tolerance in Cryptography, IEEE
Computer Society, Washington, DC, USA, 2007, pp. 75–
79. doi:10.1109/FDTC.2007.10.

29

http://dx.doi.org/10.1109/RAMS.2005.1408426
http://dx.doi.org/10.1109/RAMS.2005.1408426
http://dx.doi.org/10.1007/978-3-642-40576-1_3
http://dx.doi.org/10.1007/978-3-642-40576-1_3
http://dx.doi.org/10.1109/DFTVS.2003.1250159
http://www.literatecode.com/aes256
http://www.literatecode.com/aes256
http://dx.doi.org/10.1007/3-540-61474-5_95
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1109/FDTC.2007.10

	Introduction
	Related work
	Physical attacks and fault models
	Control-flow attacks
	Weakness detection
	Code integrity and control-flow securing

	Detection of weaknesses and visualization
	Simulation of attacks
	Classification of simulated attacks
	Weaknesses analysis and visualization

	Countermeasure for securing C code
	Protection of a function and straight-line flow of statements
	Conditional if-then and if-then-else constructs
	Switch
	Loop constructs
	Continue and break statements in loops
	Discussion on the limitations of countermeasures
	Early and deferred detection
	Example of the results for the aes_addRoundKey_cpy function

	Formal verification of countermeasures
	Code representation and decomposition for CFI verification
	Models for CFI verification
	State machine model
	Models with and without countermeasures

	Equivalence checking of CFI
	Control-flow integrity properties
	Verification of the countermeasure schemes
	Verification for a function call and a straight-line flow
	Verification for the other constructs
	Verification results

	Experimental results
	Countermeasure effectiveness
	Overhead
	VerifyPIN use case

	Conclusion

