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Coastal marine ecosystems experience dynamic fluctuations in seawater

carbonate chemistry. The importance of this variation in the context of

ocean acidification requires knowing what aspect of variability biological

processes respond to. We conducted four experiments (ranging from 3 to

22 days) with different variability regimes (pHT 7.4–8.1) assessing the

impact of diel fluctuations in carbonate chemistry on the early development

of the mussel Mytilus galloprovincialis. Larval shell growth was consistently

correlated to mean exposures, regardless of variability regimes, indicating

that calcification responds instantaneously to seawater chemistry. Larval

development was impacted by timing of exposure, revealing sensitivity

of two developmental processes: development of the shell field, and tran-

sition from the first to the second larval shell. Fluorescent staining

revealed developmental delay of the shell field at low pH, and abnormal

development thereof was correlated with hinge defects in D-veligers.

This study shows, for the first time, that ocean acidification affects larval

soft-tissue development, independent from calcification. Multiple develop-

mental processes additively underpin the teratogenic effect of ocean

acidification on bivalve larvae. These results explain why trochophores

are the most sensitive life-history stage in marine bivalves and suggest

that short-term variability in carbonate chemistry can impact early larval

development.
1. Introduction
Coastal marine ecosystems experience dynamic spatio-temporal variability in

seawater inorganic carbonate chemistry [1]. Short-term variability occurs on

top of baseline changes associated with ocean acidification. Ocean acidifica-

tion causes a decrease in mean seawater pH and aragonite saturation state

(Va) via absorption of anthropogenic carbon dioxide (CO2) emissions [2]. As

ocean acidification progresses, the acidity of naturally occurring low pH

events is enhanced [3]. How the interplay of acidification and coastal pH

variability will impact marine organisms requires understanding what

aspect of pH variability influences biological processes that occur over similar

time frames [4,5].

Fluctuations in coastal carbonate chemistry often occur on a diel period.

Diel fluctuations result from daytime photosynthetic removal of CO2 by phy-

toplankton and benthic photoautotrophs followed by night-time respiration

of the whole community [6]. Depending on habitat characteristics, seagrasses,

macroalgae and kelp forests can induce diel pH fluctuations that span a few
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tenths to a full pH unit [5–8]. These short-term pH fluctu-

ations are of similar magnitude as anthropogenic ocean

acidification (20.4 units pH by end of the century) [9],

which is known to affect a myriad of biological processes

[10]. In addition to baseline changes in carbonate chemistry,

ocean acidification is expected to increase the magnitude of

diel fluctuations [5].

The biological impact of fluctuating carbonate chemistry in

the context of ocean acidification is understudied [11]. A few

recent studies that address this issue show non-generalizable

responses across calcifying taxa and species [11,12]. For

molluscs, one the most studied taxa, growth appears largely

indifferent to variability [13–16] (but see [17]) despite the fact

that exposure to fluctuating conditions may be energetically

costly [18]. Understanding impacts of variability requires

knowing which parameter of carbonate chemistry drives a bio-

logical response and the reaction norm thereof. Given recent

advances in these criteria for molluscs, here we focus on the

early development of bivalve larvae.

The early development of bivalves is completed within

2–3 days after fertilization and is extremely sensitive to

carbonate chemistry [19–22]. Specifically, abnormal develop-

ment and reduced growth of D-veliger larvae occur under

conditions of low Va or low substrate inhibitor ratio

(SIR ¼ [HCO�3 ]=[Hþ]) [23,24], which are tightly coupled in

manipulations using CO2. Previous work suggests that the

first 24 h of development are insensitive to CO2 acidification

and exposure thereafter drives abnormal development [21].

Subsequent shell growth is highly dependent on Va or SIR

[23,24], due to the fact that larvae have limited control

over carbonate chemistry at the site of calcification [25].

These findings suggest that early development of bivalves

is comprised of process-specific sensitivities, and short-

term fluctuations in carbonate chemistry typical of shallow

coastal waters may be important to larval development.

Despite its environmental relevance, only a few studies

have investigated the impact of variable carbonate chemistry

on early development of marine bivalves [13,14], with incon-

sistent outcomes across species [17]. For example, Frieder

et al. [17] found that semi-diel variability enhanced larval

growth in Mytilus galloprovincialis, but not in M. california-
nus. As the aforementioned studies do not control for

timing of fluctuations, it remains unclear how fluctuating

carbonate chemistry affects specific developmental processes

in bivalve larvae.

The aim of this study was to identify what aspects of diel

fluctuations in carbonate chemistry (e.g. timing, magnitude)

are important to the early growth and development of the

mussel M. galloprovincialis. Global aquaculture of M. gallopro-
vincialis largely depends on natural recruitment for seed

supply [26], so natural variability in seawater chemistry in

the context of ocean acidification is highly relevant to the per-

sistence of this industry. The first experiment (Exp. 1) tests the

hypothesis that the magnitude of variability influences larval

growth and development. Results from Exp. 1 informed the

design of Exp. 2 and Exp. 3, which test the hypothesis that

development is influenced by the timing of variable exposures.

A fourth experiment (Exp. 4) was conducted to specifically test

the hypothesis that CO2-acidified seawater alters development

of the trochophore shell field. For two of the four experiments,

larvae from unique parental crosses were cultured in isolation

to explore the biological variation of the response across

parental pairs (Exp. 2 and Exp. 4).
2. Material and methods
For reading simplicity and based on methods of manipulation, we

describe treatments in terms of pH, whereby low pH represents the

full suite of chemical changes brought on by CO2-acidification

under stable temperature and salinity (electronic supplementary

material, table S1). Low pH treatments were chosen to reach

levels of aragonite undersaturation known to induce abnormal

development and reduced larval growth [24].

(a) Experimental design
In the context of ocean acidification in dynamic coastal zones, a

range of variable pH treatments was used (pHT 7.4–8.1). Exp. 1

assessed the impact of stable compared to variable pH treatments

with the same mean pH (figure 1; electronic supplementary

material, table S1). Four treatments were set up: control treatment

of stable pHT 7.8 (pH 7.8—), and three variability treatments

with a mean pHT 7.8 and a diel range of either 0.4 (pH 7.8+
0.2), 0.8 (pH 7.8+ 0.4), or 0.8 offset by 12 h (pH 7.8+0.4), in

order to control for the timing of variability exposures. Embryos

from three unique families, using three males and nine females (1

male � 3 females, replicated three times with unique individ-

uals), were cultured separately in the four treatments (12

cultures total, N ¼ 3 biological replicates). Larvae were sampled

on day 3 (size and morphology), 9 (size) and 22 (size). Treatment

pH 7.8+ 0.2 was discontinued after day 9 for technical reasons.

Variable pH treatments in Exp. 2 and Exp. 3 (figure 2a; elec-

tronic supplementary material, table S1) were designed to assess

the effect of pH exposure at the start of shell morphogenesis,

using a single diel pH fluctuation down from pHT 8.1 (pH

8.1–v– ) or up from pHT 7.4 (pH 7.4–^– ) centred around the

start of calcification, approximately 30 hours post-fertilization

(hpf). Stable pHT exposures were used as controls (pH 8.1—

and pH 7.4—) and larvae were sampled on day 3 (size and mor-

phology). In Exp. 2, embryos from three unique pairs were

cultured separately (12 cultures in total, n ¼ 3 biological repli-

cates per treatment). In Exp. 3, embryos from nine unique pairs

were pooled and then distributed across three replicate cultures

(total of 12 cultures, n ¼ 3 technical replicates). In Exp. 4

(figure 2a), embryos from five unique pairs were cultured separ-

ately in pHT 8.1 and pHT 7.4 (10 cultures in total, n ¼ 5 biological

replicates per treatment) and sampled at two time points: 35 hpf

(fluorescent staining) and 68 hpf on day 3 (size, morphology,

scanning electron microscopy [SEM]).

(b) Larval cultures
Gravid M. galloprovincialis were collected from two sites during

local spawning seasons. The first group was collected from a

dock in Thau Lagoon (43.4158N, 3.6888E), a shallow semi-

enclosed bay in Sète, France on 11 October 2016 (Exp. 1). The

second group was collected from shallow buoy lines in the Bay

of Villefranche-sur-Mer (43.6828N, 7.3198E), France on 9 Febru-

ary 2017 (Exp. 2–4). During the spawning season, pH

variability in Thau Lagoon ranged from pHT 7.80 to 8.10 (L.K.,

2016, unpublished data) and from pHT 8.10 to 8.15 in the Bay

of Villefranche [27]. Adult mussels were kept in a single tempera-

ture-controlled flow-through sea table (approx. 168C) and fed

three times per week a mixture of Instant Algae (Reed Maricul-

ture, Iso 1800 and Shellfish Diet 1800) until spawning.

Experiments were conducted from January through March

2017 (see electronic supplementary material). Spawning was

induced by cleaning the mussels of epibionts and warming sea-

water to 288C. Sperm was kept on ice and eggs were kept at

approximately 168C until fertilization. Test fertilizations were

performed to ensure gamete compatibility prior to batch fertiliza-

tion. Fertilization was performed simultaneously across

biological replicates, except for Exp. 4, which required 30 min
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staggered fertilization by pair to facilitate sampling at precisely

35 hpf. Successful fertilization was determined by greater than

90% presence of polar bodies, after which embryos were trans-

ferred to culture vessels at a density of 14 embryos ml21. All

experiments were run at 14.38C (near February habitat conditions

[27]) to maintain equal developmental rates. In Exp. 1, larvae

were fed 1 � 108 live cells of Tisochrysis lutea (CCAP 92714)

once or twice per day after day 3.

(c) Experimental system and seawater chemistry
Larvae were cultured in a temperature-controlled pH variability

system described in Kapsenberg et al. [28]. Four header tanks

(35 l) were supplied with seawater pumped from 5 m depth in

the Bay Villefranche, filtered to 0.35 mm and UV-sterilized

(FSW). Header tank pH was manipulated via the addition of

pure CO2 gas using a glass pH electrode feedback system (IKS

Aquastar) and constant aeration with CO2-free air. Treatment

water was pumped from header tanks to culture buckets (n ¼ 3

per header tank, see electronic supplementary material for control

of header tank effects) using irrigation drippers (2 l h21). Variable

pH treatments switched header tank pH every 12 h, resulting in

smooth pH oscillations in cultures as documented by Honeywell

Durafet III pH sensors (for performance quality see electronic

supplementary material). Exp. 4 consisted of static cultures

(sourced from two independent header tanks of pHT 8.1 and

pHT 7.4) due to the use of calcein dye. Water samples were col-

lected from each treatment header tank for salinity (Mettler

Toledo SevenEasy Conductivity) and total alkalinity (AT) every
2–3 days for Exp. 1, every 2 days for Exp. 2, every day during

Exp. 3, and once at the start of Exp. 4. Samples for AT were run

in duplicate using open cell titration (Metrohm Titrando 888)

[29]. Accuracy of AT measurements ranged between 27 and

þ5 mmol kg21 as compared to certified reference material

(A. Dickson, Scripps Institution of Oceanography). Precision of

AT measurements was 2 mmol kg21 (mean standard deviation

of all duplicate measurements, n ¼ 68). Va and pCO2 were calcu-

lated from pHT using mean temperature, and header tank salinity

and AT per treatment, per experiment (electronic supplementary

material, table S1). Carbonate system calculations were performed

in RStudio (version 1.0.143) using the seacarb R package [30],

with constants K1 and K2, Kf, and Ks from Lueker et al. [31],

Perez et al. [32] and Dickson [33], respectively.

(d) Shell size, morphology and SEM
Shell size was determined as the maximum shell length parallel

to the hinge, using bright field microscopy and IMAGEJ software

(n � 100 culture21). On day 3, larval morphology was scored

(n � 100 culture21) according to His et al. [34]: normal (D-

shaped shell with a straight hinge), trochophore (undeveloped

larvae, often shell-less), abnormal hinge (concave D-shaped

shell), protruding mantle (D-shaped shell with protruding

tissue or velum), and combined abnormal hinge and protruding

mantle (D-shaped shell with both abnormalities). For SEM ima-

ging, D-veligers were preserved in 100% EtOH. Prior to

imaging (JEOl 6010LV), shells were cleaned (rinses of 2 min tap

water, 5 min R.O. H2O with 1% bleach, 2 min tap water, 5 s
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ddH2O, temporary storage in 100% EtOH), dried at 428C, and

sputter coated with gold.

(e) Fluorescent staining
To visualize the first CaCO3 precipitation, calcein (0.001 M, final

concentration) was added to static cultures of Pair 2 and 4 at

25 hpf in Exp. 4 [35]. Pilot experiments using calcein dye

showed that the first calcification occurred during the early tro-

chophore stage at 30 hpf in 14.38C. Immediately after calcein

addition, motorized paddles were turned on in all culture

vessels, resulting in slight CO2 off-gassing in pHT 7.4. Calcein

culture pH was checked daily using a glass pH electrode

which was compared against a calibrated Durafet (addition of

calcein caused a 0.03 unit pHT increase in the high pH treatment

and 0.10 unit pHT decrease in the low pH treatment).

To visualize the organic matrix of trochophores in Exp. 4,

larvae from all pairs were sampled and stained live with calco-

fluor (Calcofluor White M2R, #F3543 from Sigma-Aldrich) at

35 hpf. Calcofluor is a fluorochrome that binds to chitin (and cel-

lulose) and has been used to study chitin in adult abalone [36].

Its precision for identifying chitin from other matrix molecules

has been debated [37] and the results presented here are restric-

ted to assessing the shape and extent of the organic matrix in

general. Concentrated larvae were stained by calcofluor in FSW

for 5 min (final exposure of 1 : 50 000 w/v by diluting a stock

solution of 1 : 100 w/v in DMSO, stored at 2208C), washed

three times with FSW, fixed with a drop of 4% paraformaldehyde,

and immediately imaged on a confocal microscope (Leica SP8,

electronic supplementary material). Images were 3D rendered

and composite images were rotated for each larva to measure

the area of one valve stained by calcein and calcofluor via

manual drawing using IMAGEJ software (n ¼ 13–42 culture21).

( f ) Statistical analyses
Data analysis was performed in RSTUDIO (v. 1.0.143) [38].

Residuals of larval shell size data were not normally distributed,

violating assumptions required for ANOVAs. For Exp. 1, a two-

factor permutation analysis of variance was used with 1000

permutations in RVAideMemoire R package [39]. Treatment

and age were fixed factors (interaction was not significant and

removed from the final model) and family was used as a block-

ing factor. Size data from the first 100 larval measurements were

used and data from treatment pH 7.8+0.2, stopped after day 9,

was excluded. For Exp. 2–4, a linear regression was used to

assess the impact of mean pH exposure on mean larval size

during the shell growing period (30–68 hpf). Exp. 2–4 had

different biological design (isolating versus pooling larvae from

unique parental pairs), so a linear regression was performed on
overall mean larval size (n � 300 treatment21 experiment21).

Cultures with calcein dye in Exp. 4 were excluded as these cul-

tures did not contain a Durafet by which to calculate the mean

pH exposure. For Exp. 1 and Exp. 2 (family and pair replication),

proportions of larvae with normal development was analysed

using a generalized linear mixed effects model with treatment

as a fixed effect and family or pair as a random effect, using

the lmer R package [40]. Significance of the fixed effect was

tested against the null model using a likelihood ratio test. For

Exp. 3 (bucket replication), treatment effect was assessed using

a one-way ANOVA. Analyses were repeated for Exp. 2 and

Exp. 3 for proportion of larvae with an abnormal hinge (irrespec-

tive of a protruding mantle). All model residuals exhibited a

normal distribution (Shapiro–Wilk normality test) and equal

variance (Levene’s test). Least-squares means were used for

post hoc pairwise contrasts of treatment effects for Exp. 2 and

Exp. 3, using a Bonferroni correction for six comparisons in the

lsmeans R package [41].
3. Results
(a) Shell size responds to mean conditions
The impact of variable carbonate chemistry on shell growth

was analysed by comparing shell length of larvae reared

under treatments of either constant pHT 7.8 or mean pHT

7.8 with a total diel range of 0.4 or 0.8 units pHT in Exp. 1

(figure 1). Shell length was not significantly affected by a

0.8 unit pHT diel variation over the course of a three-week

exposure (figure 1c; treatment effect: F1,2 3.33, p ¼ 0.093;

shell size increased over time, F1,2 1712.68, p , 0.001),

which suggests that shell length is a function of mean

exposures. This was empirically tested and verified in

Exp. 2–4, using a combination of stable and variable treat-

ments spanning a range of mean exposures (figure 2). Shell

length was significantly correlated to mean exposures

during the shell growing period, 30 hpf until the sampling

time on day 3 (for pH: F1,8 119.6, p , 0.0001; for Va: F1,8

92.57, p , 0.0001). Mean pHT (Va) explained 93% (91%) of

the variance in average shell size of larvae across treatments,

respectively (figure 2b). This correlation was independent of

developmental effects (abnormal larvae are smaller than

normal D-veligers in low pH treatments; electronic supple-

mentary material, figure S1 and table S2) as the correlation

was maintained for larvae in the top 10th percentile size

class (for Va, F1,8 32.27, p , 0.001, R2
adj ¼ 0:78).
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(b) Larval development depends on timing of exposure
to acidified seawater

In Exp. 1, abnormal development increased with the magni-

tude of the diel pH range (figure 3a; p-value , 0.007 for all

pairwise comparisons, electronic supplementary material,

table S3). The increase in abnormal development across treat-

ments with diel cycles offset by 12 h (pH 7.8+ 0.4 versus pH
7.8+0.4; p ¼ 0.0013) suggests that the timing of low pH con-

ditions was an important factor for developmental outcomes.

This was empirically tested and verified in Exp. 2 and Exp. 3

(electronic supplementary material, tables S4 and S5). In both

Exp. 2 and Exp. 3, the most striking result was that �95% of

larvae developed normally in both pH 8.1— and pH 7.4–^–

(figure 3a), whereas larvae in pH 8.1–v– exhibited 76–88%

normal development, mostly due to the presence of abnormal
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hinge phenotypes. In pH 7.4—, only 56–64% of larvae exhib-

ited normal development due to frequent observations of

larvae with protruding mantles and abnormal hinges.

Larvae with both an abnormal hinge and protruding

mantle were most prevalent in pH 7.4— (5.1% in Exp. 2,

and 9.8% in Exp. 3), wherein 60–70% of larvae with a

hinge abnormality also exhibited a protruding mantle. The

combination of an abnormal hinge and a protruding mantle

was observed in less than 1% of larvae in pH 8.1–v– (due

to few protruding mantles), and never in pH 8.1— and pH

7.4–^– (due to absence of abnormal hinges). The temporal

partitioning of unfavourable seawater chemistry exposure

and associated abnormal phenotypes suggests that abnor-

malities in the hinge and mantle are additive. This additive

effect was also apparent in the shell size of these phenotypes

(electronic supplementary material, figure S1): larvae with an

abnormal hinge, protruding mantle or both are 1, 4 and 6%

smaller, respectively, than normal D-veligers from the

same low pH treatment (electronic supplementary material,

table S2).

(c) Abnormal development of the shell field is
correlated to hinge abnormalities

In both Exp. 2 and Exp. 3, the proportion of larvae with an

abnormal hinge (irrespective of a protruding mantle) was sig-

nificantly greater in treatments that experienced low pH

conditions around 30 hpf (7–8% in Exp. 2, 16–18% in

Exp. 3, in pH 7.4— and 8.1–v– ) compared to those that

experienced high pH at this time (less than 1% in pH 8.1—

and pHT 7.4–^– ; pairwise comparisons p-values �0.004;

electronic supplementary material, tables S6 and S7) and

equal between treatments which experienced the same pH

at that time ( p-values ¼ 1.0; electronic supplementary

material, tables S6 and S7). Therefore, hinge abnormalities

were induced by exposure to unfavourable low pH con-

ditions around 30 hpf (27–35 hpf), independent of prior or

later exposures. Larvae exposed to unfavourable carbonate

chemistry during this period frequently exhibited irregular

texture and scarring in the centre of the first larval shell

(PDI, prodissoconch I) (e.g. figure 3b; in pH 7.4— and pH

8.1–v– in Exp. 3). In contrast, D-veliger shells of larvae

reared in pH 8.1— and pH 7.4–^– were indistinguishable

(figure 3b).

The developmental process underpinning the abnormal

shell development was investigated in Exp. 4. In pHT 7.4 at

35 hpf, the organic matrix of some larvae exhibited an inden-

tation along the hinge line (figure 4a). In contrast, in pHT 8.1,

this chitinous isthmus was straight and well developed.

The proportion of larvae with an indented matrix at 35 hpf

was highly correlated to the proportion of D-veligers with

an abnormal hinge at 68 hpf (figure 4b; F1,8 ¼ 47.89, p ¼
0.0001, R2

adj ¼ 0:84). Larvae from Pair 1 exhibited greater

than 99% normal development in pHT 7.4 at both trocho-

phore (35 hpf) and D-veliger stage (68 hpf), with normal

flat shell matrices in both pHT 8.1 and pHT 7.4 at 35 hpf

(figure 4c). In contrast, 55% of larvae from Pair 2 exhibi-

ted matrix indentations in pHT 7.4 (n ¼ 12, of 22 larvae),

and 35% of D-veligers exhibited hinge abnormalities by

day 3 (n ¼ 42, of 121 larvae). While some variation in the

correlation between phenotypes at 35 and 68 hpf may be

related to sample size, these data, along with results

from Exp. 2 and 3, provide strong evidence that matrix
indentations persists throughout development and cause

hinge abnormalities in D-veligers.

Matrix indentations occurred in the presence and absence

of CaCO3 (electronic supplementary material, figure S2),

suggesting that abnormal shell field development is a

phenotype that is fixed prior to calcification. At 35 hpf, only

87% of pHT 7.4 larvae had started calcification (n ¼ 40 out

of 46). Shell abnormalities in pHT 7.4 were visible as

keyhole-shaped indentations near the hinge, indicating no

calcification in that region by 35 hpf (figure 4a). In pHT 8.1,

this abnormality was not observed and all larvae exhibited

substantial shell growth (n ¼ 58). Both the organic matrix

and larval shell were larger for larvae reared in pHT 8.1

compared with those in pHT 7.4 at 35 hpf (electronic sup-

plementary material, figure S3), regardless of the normal

or abnormal developmental trajectory of the larval cohort

(visually apparent in figure 4a,c).

(d) Protruding mantle indicates sensitivity of the PDI-II
transition

The protruding mantle phenotype occurred during the early

D-veliger stage around 40 hpf. In Exp. 2 and 3, larvae with

protruding mantles (irrespective of an abnormal hinge)

were associated with low pH exposure, with approximately

30% observed in pH 7.4— and �1% in pH 8.1—

(figure 3a). In contrast, treatments pH 7.4–^– and pH

8.1–v– induced a low occurrence of protruding mantle

(respectively, 2.3 versus 3.5% in Exp. 2; 4.3 versus 6.1% in

Exp. 3) indicating that this phenotype was induced by low

pH at a time when pH in both treatments were similar.

There are only two periods where this occurs, near 27 and

40 hpf. The most relevant time-point is 40 hpf, as embryos

are resistant to CO2 acidification during the first day of devel-

opment [21], and developmental processes around 40 hpf

relate to the shell–mantle interface at the transition from

the first (PDI) to the second larval shell (PDII).
4. Discussion
The aim of this study was to identify which aspect of mussel

larval development is influenced by temporal variability of

carbonate chemistry. By using a range of variability treat-

ments, we show that shell growth responds to mean

exposures while development depends on time-sensitive

exposures (Exp. 1–4), and these processes additively contrib-

ute to overall D-veliger phenotypes. Based on timing of

unfavourable conditions, sensitive developmental processes

were identified and linked to specific abnormal phenotypes

(Exp. 2–3), with mechanistic evidence at the tissue layer

(Exp. 4). Electronic supplementary material, figure S4 details

the developmental timeline and windows of sensitivity.

(a) Mussel larval growth and development
Larval shell growth was driven by mean exposures regard-

less of variability regimes (figures 1c and 2b). This reflects

the instantaneous nature of Va-dependent precipitation kin-

etics in bivalve larvae [42], whereby the benefit of high Va

is neutralized by the negative effect of low Va. This has

also been observed in other mollusc larvae, including aba-

lone, hard clams, oysters and scallops [13–15], although

oddly not for M. galloprovincialis from California [17]. Frieder
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et al. [17] found that M. galloprovincialis larvae increased

growth in low pH treatments when semi-diurnal fluctuations

were included. Culture temperatures and larval growth rates

in control treatments in their study and ours are comparable

(approx. 125 mm; day 8 in Va 1.9 at 15.78C versus day 9 in Va

1.7 at 14.48C in our study). As Frieder et al. [17] conducted a

single experiment with few replicate measurements, further

experiments will be necessary to identify the source of

these contrasting observations.

In terms of development, we identified two processes

that, when they occur during conditions of low pH (low Va

and SIR), give rise to abnormal D-veligers: (i) formation of

the shell field prior to calcification around 30 hpf, and (ii)

velum retraction around 40 hpf prior to the transition from

PDI to PDII.

Exposure to low pH conditions around 30 hpf produced

D-veligers with an abnormal hinge (figure 3, Exp. 2 and 3).

The major developmental process occurring at this time is

the formation of the shell field during the mid-trochophore

stage (electronic supplementary material, figure S4). This

process is initiated in the early trochophore stage by the inva-

gination of a group of ectoderm cells, which create a pore.

This brings together a rosette of outer surface cells that secrete

what appears to eventually become the periostracum [43].

The pore closes and deeper invaginated cells then evaginate

back to the surface epithelium where, under control con-

ditions, they create a flat region that expands via mitotic

division, under the expanding periostracum [43–45].

During this process, shell field cells exude a chitin-based

organic matrix wherein calcification takes place [43,46,47].

In low pH treatments, the organic matrix often exhibited a

central indentation at the site of the shell field invagination

(figure 4). At 35 hpf, the lack of calcification in this area

and scarring in the centre of PDI on D-veligers suggests a

treatment effect on cells associated with the shell field evagi-

nation (figure 3b). Larvae in pH 7.4–^– calcified smooth

shells, despite being in unfavourable carbonate chemistry

from approximately 40 hpf onward. This indicates that

the effect of unfavourable carbonate chemistry at the start

of calcification (approx. 30 hpf), which generated abnormal
shell texture, is different from the effect of low Va that

drives the rate of linear, but smooth, extension of the

shells after this period [24]. Similar distortions in PDI have

previously been observed in oyster larvae of Ostrea edulis
and linked to the process of the shell field evagination,

although this was not in the context of environmental

conditions [48]. Hinge abnormalities may result from abnor-

mal or incomplete restructuring of the ectoderm during

development of the shell field, probably prior to calcification.

The resulting abnormal trochophore body shape alters the

calcification blueprint, whereby the shell simply takes on

the shape of the cellular landscape over which the organic

matrix is exuded, thereby producing D-veligers with an

indented hinge.

Within low pH treatments, the abnormal hinge pheno-

type is only 1% smaller than normal D-veligers (electronic

supplementary material, figure S1). In Exp. 1, abnormal

hinge larvae were still present on day 9 (L.K. 2017, personal

observation). By day 22, however, curvature of the shell

masked the angle of the shell hinge, so there is no evidence

to infer the effect of the abnormal hinge phenotype on

larval fitness.

Regardless of normal or abnormal shell field develop-

ment, the organic matrix and calcified area at 35 hpf was

consistently smaller in low pH treatments, which we interpret

as developmental delay. Developmental delay likely occurs

from exposures during the early trochophore stage (electronic

supplementary material, figure S4). The energetic cost of

building the protein-rich organic matrix is much greater

than the cost of external calcification [49,50]. In oyster

larvae, low pH causes a decrease in the protein deposition

efficiency [51]. Developmental delay of the shell field may

thus stem from protein production issues associated with

building the organic matrix. Consequently, this could also

delay the onset of calcification.

Exposure to low pH conditions near 40 hpf was linked to

increased frequency of D-veligers with protruding mantle

tissue or velum (irrespective of an abnormal hinge). At this

time, the extension of the calcified PDI shell has caught up

with the leading edge of the expanding organic matrix, which
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then both fully cover the larval body (L.K. 2017, personal obser-

vation). Around 47 hpf, larvae gain the ability to retract their

velum and close their shell (a behavioural response to ethanol

exposure; L.K. 2016, personal observation). Shell closure marks

the transition from PDI growth to concentric growth lines distinc-

tive of PDII (electronic supplementary material, figure S5) [48].

Protruding tissue is evidence of either abnormal tissue develop-

ment or inability to retract the velum. It is likely that these larvae

cannot progress in development to PDII growth. Such a develop-

mental arrest is evident in shell size. D-veligers with protruding

tissue tend to be 4–6% smaller than normal D-veligers (electronic

supplementary material, figure S1). Previous experiments

showed that protruding mantle phenotypes of M. galloprovincialis
lacked PDII growth, even after a 5-day exposure to Va 0.49 [21],

which suggests that this phenotype is terminal.

From this study, it is clear that CO2-acidified seawater

impacts development of the larval body in multiple ways,

independent from impacts on calcification (electronic sup-

plementary material, figure S4). This study raises the

question as to how seawater CO2-acidification disrupts

tissue development in mussel larvae and highlights the

need to identify mechanisms of ocean acidification impacts

at a cellular level.

(b) Environmental and global change context
Our results suggest that developmental success of mussel

larvae will be unpredictable in habitats with high variability

in carbonate chemistry. Cues that determine the moment of a

spawning event in the field are not well understood. The

mussel population in Villefranche appears to spawn out

during storms, and mussels have spawned in a bucket on

the boat, which suggests that the final trigger may be physical

and unrelated to time of day. Temperature-dependent devel-

opmental rates could also influence when a given larval

cohort will be sensitive to carbonate chemistry. As shell

growth depends on mean conditions, areas with high mean

Va, regardless of variability regimes, may significantly benefit

normally-developed D-veliger larvae, if larvae are retained in

this body of water throughout their pelagic phase.

Normal larval development in pHT 7.4 ranged from 30%

to 99% across unique parental pairs (electronic supplemen-

tary material, figures S6 and S7). Such biological variation

is common among bivalves and may facilitate adaptation to

global change [52,53]. Consequently, as ocean acidification

progresses, dormant genotypes previously unselected for in

natural populations may be favoured via new natural

selection pressures operating on early development [54].
Although we did not test for this, evidence for adaptation

can be found via population comparisons between sites

with different pH regimes [55]. Overall, future recruitment

of M. galloprovincialis is likely to increase in variance as emer-

ging factors such as local carbonate chemistry variability,

timing of spawning, parental effects, and other co-occurring

global change stressors gain importance in determining

successful development of a larval cohort.
5. Conclusion
By controlling the timing of low pH events, this study par-

titions the effect of ocean acidification on mussel larval

growth from that on development. Larval growth is a func-

tion of mean exposures. This extends previous research on

the Va-dependency of calcification in bivalve larvae [23,24]

by demonstrating that calcification responds instantaneously

to changes in seawater chemistry. Independent from calcifica-

tion, abnormal development was driven by sensitivity to low

pH conditions during specific soft-tissue developmental pro-

cesses: (i) formation of the shell field and (ii) transition from

PDI to PDII. This is the first study documenting ocean acid-

ification sensitivity in soft tissues of bivalve larvae and how

formation thereof determines D-veliger morphology. These

additive and short-lived processes explain why trochophores

are the most sensitive life-history stage in marine bivalves.
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