M. Barczyk, S. Carracedo, D. Gullberg, and . Integrins, Cell Tissue Res, vol.339, pp.269-280, 2010.

J. Jokinen, E. Dadu, P. Nykvist, J. Kapyla, D. J. White et al., Integrin-Mediated Cell Adhesion to Type I Collagen Fibrils, J. Biol. Chem, vol.279, pp.31956-31963, 2004.

D. J. Hulmes and . Collagen-diversity, Synthesis and Assembly. Collagen: Structure and Mechanics, pp.15-48, 2008.

C. Rieu, L. Picaut, G. Mosser, and L. Trichet, From Tendon Injury to Collagen-based Tendon Regeneration: Overview and Recent Advances, Curr. Pharm. Des, vol.23, pp.3483-3506, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533469

M. M. Giraud-guille, G. Mosser, C. Helary, and D. Eglin, Bone Matrix like Assemblies of Collagen: From Liquid Crystals to Gels and Biomimetic Materials. Micron, vol.36, pp.602-608, 2005.

M. Giraud-guille, N. Nassif, and F. M. Fernandes, Collagen-Based Materials for Tissue Repair, from Bio-Inspired to Biomimetic. Materials Design Inspired by Nature: Function through Inner Architecture, The Royal Society of Chemistry, pp.107-127, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01292202

J. F. Cavallaro, P. D. Kemp, and K. H. Kraus, Collagen Fabrics as Biomaterials. Biotechnol. Bioeng, vol.43, pp.781-791, 1994.

V. Kishore, J. A. Uquillas, A. Dubikovsky, M. A. Alshehabat, P. W. Snyder et al., In Vivo Response to Electrochemically Aligned Collagen Bioscaffolds. J. Biomed. Mater. Res. B Appl. Biomater, vol.100, pp.400-408, 2012.

N. Juncosa-melvin, G. P. Boivin, M. T. Galloway, C. Gooch, J. R. West et al., Effects of Cell-to-Collagen Ratio in Mesenchymal Stem Cell-Seeded Implants on Tendon Repair Biomechanics and Histology, Tissue Eng, vol.11, pp.448-457, 2005.

V. Mudera, M. Morgan, U. Cheema, S. Nazhat, and R. Brown, Ultra-Rapid Engineered Collagen Constructs Tested in Anin Vivo Nursery Site, J. Tissue Eng. Regen. Med, 2007.

R. A. Barry, R. F. Shepherd, J. N. Hanson, R. G. Nuzzo, P. Wiltzius et al., Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth, Adv. Mater, vol.21, pp.2407-2410, 2009.

S. Deville, Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues, Adv. Eng. Mater, vol.10, pp.155-169, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01785741

L. J. Chamberlain, I. V. Yannas, A. Arrizabalaga, H. Hsu, T. V. Norregaard et al., Early Peripheral Nerve Healing in Collagen and Silicone Tube Implants: Myofibroblasts and the Cellular Response, Biomaterials, vol.19, pp.1393-1403, 1998.

B. W. Riblett, N. L. Francis, M. A. Wheatley, and U. G. Wegst, Ice-Templated Scaffolds with Microridged Pores Direct DRG Neurite Growth, Adv. Funct. Mater, vol.22, pp.4920-4923, 2012.

M. C. Asuncion, J. C. Goh, .. Toh, and S. , Anisotropic Silk Fibroin/Gelatin Scaffolds from Unidirectional Freezing, Mater. Sci. Eng. C, vol.67, pp.646-656, 2016.

J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes et al., Recommendations for the Characterization of Porous Solids, Pure Appl. Chem, vol.66, pp.1739-1758, 1994.

U. G. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, Biomaterials by Freeze Casting. Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.368, 2010.

K. M. Pawelec, A. Husmann, S. M. Best, and R. E. Cameron, Understanding Anisotropy and Architecture in Ice-Templated Biopolymer Scaffolds, Mater. Sci. Eng. C, vol.37, pp.141-147, 2014.

M. Madaghiele, A. Sannino, I. V. Yannas, and M. Spector, Collagen-Based Matrices with Axially Oriented Pores, J. Biomed. Mater. Res. A, vol.85, pp.757-767, 2008.

S. R. Caliari, M. A. Ramirez, and B. A. Harley, The Development of Collagen-GAG Scaffold-Membrane Composites for Tendon Tissue Engineering, Biomaterials, vol.32, pp.8990-8998, 2011.

K. M. Pawelec, A. Husmann, S. M. Best, and R. E. Cameron, A Design Protocol for Tailoring Ice-Templated Scaffold Structure, J. R. Soc. Interface, vol.11, 2014.

H. Schoof, J. R. Apel, I. Heschel, and G. Rau, Control of Pore Structure and Size in Freeze-Dried Collagen Sponges, J. Biomed. Mater. Res, vol.58, pp.352-357, 2001.

L. J. Chamberlain, I. V. Yannas, H. Hsu, G. R. Strichartz, and M. Spector, Near-Terminus Axonal Structure and Function Following Rat Sciatic Nerve Regeneration through a Collagen-GAG Matrix in a Ten-Millimeter Gap, J. Neurosci. Res, vol.60, pp.666-677, 2000.

K. M. Pawelec, A. Husmann, R. J. Wardale, S. M. Best, and R. E. Cameron, Ionic Solutes Impact Collagen Scaffold Bioactivity, J. Mater. Sci. Mater. Med, p.91, 2015.

K. M. Pawelec, R. J. Wardale, S. M. Best, and R. E. Cameron, The Effects of Scaffold Architecture and Fibrin Gel Addition on Tendon Cell Phenotype, J. Mater. Sci. Mater. Med, p.5349, 2015.

M. C. Varley, S. Neelakantan, T. W. Clyne, J. Dean, R. A. Brooks et al., Cell Structure, Stiffness and Permeability of Freeze-Dried Collagen Scaffolds in Dry and Hydrated States, Acta Biomater, vol.33, pp.166-175, 2016.

B. Harley, J. Leung, E. Silva, and L. Gibson, Mechanical characterization of collagen-glycosaminoglycan scaffolds, Acta Biomater, vol.3, pp.463-474, 2007.

S. R. Caliari and B. A. Harley, Composite Growth Factor Supplementation Strategies to Enhance Tenocyte Bioactivity in Aligned Collagen-GAG Scaffolds, Tissue Eng. Part A, vol.19, pp.1100-1112, 2013.

C. J. Lowe, I. M. Reucroft, M. C. Grota, and D. I. Shreiber, Production of Highly Aligned Collagen Scaffolds by Freeze-Drying of Self-Assembled, Fibrillar Collagen Gels. ACS Biomater. Sci. Eng, vol.2, pp.643-651, 2016.

M. M. Murray, B. M. Flutie, L. A. Kalish, K. Ecklund, B. C. Fleming et al., The Bridge-Enhanced Anterior Cruciate Ligament Repair (BEAR) Procedure, Orthop. J. Sports Med, 2016.

E. M. Magarian, P. Vavken, S. A. Connolly, A. N. Mastrangelo, and M. M. Murray, Safety of Intra-Articular Use of Atelocollagen for Enhanced Tissue Repair, Open Orthop. J, vol.6, pp.231-238, 2012.

B. C. Fleming, E. M. Magarian, S. L. Harrison, D. J. Paller, and M. M. Murray, Collagen Scaffold Supplementation Does Not Improve the Functional Properties of the Repaired Anterior Cruciate Ligament, J. Orthop. Res, vol.28, pp.703-709, 2010.

A. Tidu, D. Ghoubay-benallaoua, B. Lynch, B. Haye, C. Illoul et al., Development of Human Corneal Epithelium on Organized Fibrillated Transparent Collagen Matrices Synthesized at High Concentration, Acta Biomater, vol.22, pp.50-58, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274330

C. Helary, A. Abed, G. Mosser, L. Louedec, D. Letourneur et al., Evaluation of Dense Collagen Matrices as Medicated Wound Dressing for the Treatment of Cutaneous Chronic Wounds, Biomater. Sci, vol.3, pp.373-382, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274322

L. D. Elliott, The Freezing Point Curve of the System Water-Ammonia, J. Phys. Chem, vol.28, pp.887-888, 1923.

S. Christoph, J. Kwiatoszynski, T. Coradin, and F. M. Fernandes, Cellularized Cellular Solids via Freeze-Casting, Macromol. Biosci, vol.16, pp.182-187, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01286119

P. De-sa-peixoto, A. Deniset-besseau, M. Schanne-klein, and G. Mosser, Quantitative Assessment of Collagen I Liquid Crystal Organizations: Role of Ionic Force and Acidic Solvent, and Evidence of New Phases, Soft Matter, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00804597

L. Besseau and M. Giraud-guille, Stabilization of Fluid Cholesteric Phases of Collagen to Ordered Gelated Matrices, J. Mol. Biol, 1995.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson et al., Fibrillogenesis in Dense Collagen Solutions: A Physicochemical Study, J. Mol. Biol, vol.376, pp.1509-1522, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00277303

J. Park, D. Kim, H. Kim, C. J. Wang, M. K. Kwak et al., Directed Migration of Cancer Cells Guided by the Graded Texture of the Underlying Matrix, Nat. Mater, vol.15, pp.792-801, 2016.

Y. Li, A. Asadi, M. R. Monroe, and E. P. Douglas, pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding, Mater. Sci. Eng. C, vol.29, pp.1643-1649, 2009.

L. Picaut, L. Trichet, O. Ronsin, B. Haye, I. Ge?ois et al., Pure Dense Collagen Threads from Extrusion to Fibrillogenesis Stability, Biomed. Phys. Eng, vol.4, p.35008, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01850246

A. Tidu, D. Ghoubay-benallaoua, C. Teulon, S. Asnacios, K. Grieve et al., Highly Concentrated Collagen Solutions Leading to Transparent Scaffolds of Controlled Three-Dimensional Organizations for, Corneal Epithelial Cell Colonization. Biomater. Sci, vol.6, pp.1492-1502, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02124421

M. Geiger, Collagen Sponges for Bone Regeneration with RhBMP-2, Adv. Drug Deliv. Rev, vol.55, pp.1613-1629, 2003.

G. S. Offeddu, J. C. Ashworth, R. E. Cameron, and M. L. Oyen, Multi-Scale Mechanical Response of Freeze-Dried Collagen Scaffolds for Tissue Engineering Applications, J. Mech. Behav. Biomed. Mater, vol.42, pp.19-25, 2015.

B. P. Kanungo and L. J. Gibson, Density-property relationships in collagen-glycosaminoglycan scaffolds, Acta Biomater, vol.6, pp.344-353, 2010.

N. Dagalakis, J. Flink, P. Stasikelis, J. F. Burke, and I. V. Yannas, Design of an Artificial Skin. Part III. Control of Pore Structure, J. Biomed. Mater. Res, vol.14, pp.511-528, 1980.

M. Chvapil, Collagen Sponge: Theory and Practice of Medical Applications, J. Biomed. Mater. Res, vol.11, pp.721-741, 1977.

A. J. Engler, M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney et al., Myotubes differentiate optimally on substrates with tissue-like stiffness, J. Cell Biol, vol.166, pp.877-887, 2004.

J. S. Pieper, T. Hafmans, J. H. Veerkamp, and T. H. Van-kuppevelt, Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects, Biomaterials, vol.21, pp.581-593, 2000.

S. Christoph, A. Hamraoui, E. Bonnin, C. Garnier, T. Coradin et al., Ice-Templating Beet-Root Pectin Foams: Controlling Texture, Mechanics and Capillary Properties, Chem. Eng. J, vol.350, pp.20-28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02124304

C. Helary, L. Ovtracht, B. Coulomb, G. Godeau, and M. Giraud-guille, Dense Fibrillar Collagen Matrices: A Model to Study Myofibroblast Behaviour during Wound Healing, Biomaterials, vol.27, pp.4443-4452, 2006.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Taking Cell-Matrix Adhesions to the Third Dimension, Science, vol.294, pp.1708-1712, 2001.

C. Del-amo, C. Borau, N. Movilla, J. Asín, and J. M. García-aznar, Quantifying 3D Chemotaxis in Microfluidic-Based Chips with Step Gradients of Collagen Hydrogel Concentrations, Integr. Biol, vol.9, pp.339-349, 2017.

O. Moreno-arotzena, C. Borau, N. Movilla, M. Vicente-manzanares, and J. M. García-aznar, Fibroblast Migration in 3D Is Controlled by Haptotaxis in a Non-Muscle Myosin II-Dependent Manner, Ann. Biomed. Eng, vol.43, pp.3025-3039, 2015.

S. R. Caliari, D. W. Weisgerber, W. K. Grier, Z. Mahmassani, M. D. Boppart et al., Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical Cues for Osteotendinous Junction Engineering, Adv. Healthc. Mater, vol.4, pp.831-837, 2015.

S. R. Caliari and B. A. Harley, The Effect of Anisotropic Collagen-GAG Scaffolds and Growth Factor Supplementation on Tendon Cell Recruitment, Alignment, and Metabolic Activity, Biomaterials, vol.32, pp.5330-5340, 2011.

E. A. Gonnerman, D. O. Kelkhoff, L. M. Mcgregor, and B. A. Harley, The Promotion of HL-1 Cardiomyocyte Beating Using Anisotropic Collagen-GAG Scaffolds, Biomaterials, vol.33, pp.8812-8821, 2012.

W. K. Grier, E. M. Iyoha, and B. A. Harley, The Influence of Pore Size and Stiffness on Tenocyte Bioactivity and Transcriptomic Stability in Collagen-GAG Scaffolds, J. Mech. Behav. Biomed. Mater, vol.65, pp.295-305, 2017.

M. T. Lam, S. Sim, X. Zhu, and S. Takayama, The Effect of Continuous Wavy Micropatterns on Silicone Substrates on the Alignment of Skeletal Muscle Myoblasts and Myotubes, Biomaterials, vol.27, pp.4340-4347, 2006.

J. Gingras, R. M. Rioux, D. Cuvelier, N. A. Geisse, J. W. Lichtman et al., Controlling the Orientation and Synaptic Differentiation of Myotubes with Micropatterned Substrates, Biophys. J, vol.97, pp.2771-2779, 2009.

N. F. Huang, R. J. Lee, and S. Li, Engineering of aligned skeletal muscle by micropatterning, Am. J. Transl. Res, vol.2, pp.43-55, 2010.

S. Chen, N. Kawazoe, and G. Chen, Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Porous Scaffolds, Tissue Eng. Part C Methods, vol.23, pp.367-376, 2017.

W. Bian and N. Bursac, Engineered Skeletal Muscle Tissue Networks with Controllable Architecture, Biomaterials, vol.30, pp.1401-1412, 2009.

S. Hinds, W. Bian, R. G. Dennis, and N. Bursac, The Role of Extracellular Matrix Composition in Structure and Function of Bioengineered Skeletal Muscle, Biomaterials, vol.32, pp.3575-3583, 2011.

C. A. Powell, B. L. Smiley, J. Mills, and H. H. Vandenburgh, Mechanical Stimulation Improves Tissue-Engineered Human Skeletal Muscle, Am. J. Physiol.-Cell Physiol, vol.283, pp.1557-1565, 2002.

M. T. Lam, Y. Huang, R. K. Birla, and S. Takayama,

, Microfeature Guided Skeletal Muscle Tissue Engineering for Highly Organized 3-Dimensional Free-Standing Constructs, Biomaterials, vol.30, pp.1150-1155, 2009.

H. Takahashi, T. Shimizu, M. Nakayama, M. Yamato, and T. Okano, The Use of Anisotropic Cell Sheets to Control Orientation during the Self-Organization of 3D Muscle Tissue, Biomaterials, vol.34, pp.7372-7380, 2013.

S. Swasdison and R. Mayne, Formation of Highly Organized Skeletal Muscle Fibers in Vitro. Comparison with Muscle Development in Vivo, J. Cell Sci, vol.102, pp.643-652, 1992.

M. F. Goody, R. B. Sher, and C. A. Henry, Hanging on for the Ride: Adhesion to the Extracellular Matrix Mediates Cellular Responses in Skeletal Muscle Morphogenesis and Disease, Dev. Biol, vol.401, pp.75-91, 2015.

S. S. Rayagiri, D. Ranaldi, A. Raven, N. I. Mohamad-azhar, O. Lefebvre et al., Basal Lamina Remodeling at the Skeletal Muscle Stem Cell Niche Mediates Stem Cell Self-Renewal, Nat. Commun, vol.9, p.1075, 2018.