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The molecular machinery of regulated cell death
Daolin Tang1,2, Rui Kang2, Tom Vanden Berghe3,4,5, Peter Vandenabeele 3,4,6 and Guido Kroemer7,8,9,10,11,12,13

Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas
RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-
apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically
review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell
death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis.
The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel
therapeutic targets for the avoidance of pathogenic cell loss.

Cell Research (2019) 29:347–364; https://doi.org/10.1038/s41422-019-0164-5

INTRODUCTION
The scientific observation of regulated cell death (RCD) historically
began in 1842 when Karl Vogt noticed dying cells in toads.
However, the surge in RCD research only started when the term
“apoptosis” was coined in 1972 by John Kerr, Andrew Wyllie, and
Alastair Currie1 (Fig. 1). Kerr et al. defined apoptosis as a form of
programmed cell death (PCD) with morphological changes that
differ from necrosis.1 Apoptosis and its dysregulation underlies
various pathological and physiological processes, including cell
homeostasis, tissue remodelling, and tumorigenesis.2 The identi-
fication of CED9 (also known as BCL2 in mammalian cells) and
CED4 (also known as apoptotic peptidase-activating factor 1
[APAF1] in mammalian cells) from the studies of Caenorhabditis
elegans development in the 1990s3–5 marks the beginning of an
era of molecular apoptosis research that triggered the rapid
expansion of RCD research. The molecular mechanisms regulating
apoptosis have been extensively investigated in multiple organ-
isms over the last 30 years. It is now established that apoptosis
consists of two major subtypes, namely extrinsic and intrinsic
apoptosis (Fig. 2). Extrinsic apoptosis is mediated by membrane
receptors, especially by death receptors (e.g., fas cell surface death
receptor [FAS, also known as CD95] and TNF receptor superfamily
member 1A [TNFRSF1A, also known as TNFR1]), and is driven by
initiator caspases CASP8 (also known as caspase 8) and CASP10
(also known as caspase 10).6 Alternatively, dependence receptors
(e.g., unc-5 netrin receptor B [UNC5B, also known as UNC5H2] and
DCC netrin 1 receptor [DCC]) may ignite extrinsic apoptosis via the
activation of the initiator caspase CASP9 or dephosphorylation of
death-associated protein kinase 1 (DAPK1, also known as DAPK)

following the withdrawal of their ligands.7 In contrast, intrinsic
apoptosis is ignited by mitochondrial outer membrane permea-
bilization (MOMP) that leads to the release of the mitochondrial
proteins (e.g., cytochrome C, somatic [CYCS], diablo IAP-binding
mitochondrial protein [DIABLO, also known as Smac], and HtrA
serine peptidase 2 [HTRA2]) and subsequent activation of initiator
caspase CASP9.8 MOMP is tightly controlled by the BCL2 family,
including pro-apoptotic (e.g., BCL2 associated X, apoptosis
regulator [BAX], BCL2 antagonist/killer 1 [BAK1, also known as
BAK]), and anti-apoptotic (e.g., BCL2 and BCL2 like 1 [BCL2L1, also
known as BCL-XL]) members.2,9 Although caspase activation does
not guarantee cell death, CASP3, CASP6, and CASP7 are
considered as important executioners due to their function in
substrate cleavage and the destruction of subcellular struc-
tures10,11 (Box 1), culminating in the acquisition of the apoptotic
morphotype.
Cell death may occur in multiple forms in response to different

stresses, especially oxidative stress (Box 2). The loss of control over
single or mixed types of cell death contributes to human diseases
such as cancer, neurodegeneration, autoimmune diseases, and
infectious diseases.12,13 During the past few decades, many novel
forms of non-apoptotic RCD have been identified. In this review,
we discuss our current understanding of the molecular machinery
of each of the main types of non-apoptotic RCD, including
necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell
death, parthanatos, lysosome-dependent cell death, autophagy-
dependent cell death, alkaliptosis, and oxeiptosis, all of which can
be inhibited by small-molecule compounds or drugs (Table 1).
Finally, we describe the immunogenicity of cell death, which
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affects immune surveillance, inflammatory responses, tissue
regeneration, and tumor therapy.

CLASSIFICATION OF CELL DEATH
Early classifications of cell death modalities depended on the
morphological and structural details of individual tissues and cells.
Accordingly, Schweichel and Merker published in 1973 a
morphological hallmark system for classifying cell death into
types I, II, and III in prenatal tissues treated with various
embryotoxic substances.14 Type I cell death corresponds to
apoptosis, and is characterized by cell shrinkage (pyknosis),
membrane blebbing, apoptotic body formation, DNA fragmenta-
tion (karyorrhexis), and chromatin condensation. Apoptosis was
also termed “shrinkage necrosis,” a form of nonpathologic cell
death, by John Kerr in 1971.15 Type II cell death is often referred to
as autophagy-dependent cell death, with the formation of large-
scale autophagic vacuolization-containing cytosolic materials and
organelles. Although there is no doubt that autophagy promotes

cell survival in most cases,16 autophagy can also cause cell death,
namely autophagy-dependent cell death, in specific circum-
stances.17,18 Type III cell death, namely necrosis, is characterized
by the loss of membrane integrity and swelling of subcellular
organelles (oncosis). Necrosis has long been considered as an
uncontrolled type of cell death. In contrast, regulated types of
necrosis such as necroptosis occur in a controlled manner.12,13,19

The current classification system of cell death has been updated
by the Nomenclature Committee on Cell Death (NCCD), which
formulates guidelines for the definition and interpretation of all
aspects of cell death since 2005.20 The NCCD has released five
position papers dealing with the classification of cell death (2005
and 2009),20,21 the molecular definitions of cell death subroutines
(2012),22 essential versus accessory aspects of cell death (2015),23

and molecular mechanisms of cell death (2018).24 Currently, cell
death can be fundamentally divided into accidental cell death
(ACD) and RCD, based on functional aspects.23 ACD can be
triggered by unexpected attack and injury that overwhelms any
possible control mechanisms. In contrast, RCD involves precise

Fig. 1 Timeline of the terms used in cell death research

Fig. 2 Extrinsic and intrinsic apoptosis. Extrinsic apoptosis is induced by the addition of death receptor ligands or by the withdrawal of
dependence receptor ligands. CASP8 and CASP10 initiate death receptor-mediated extrinsic apoptosis, whereas CASP9 initiates the
withdrawal of dependence receptor ligand-mediated extrinsic apoptosis. Pro-CASP8 and pro-CASP10 are enzymatically inactive until they
interact with FADD (Fas-associated via death domain), which is activated upon binding to cell death receptors responding to their ligands.
DNA damage, hypoxia, metabolic stress, and other factors can induce intrinsic apoptosis, which begins with MOMP and leads to the release of
mitochondrial proteins (e.g., CYCS) into the cytosol. Cytosolic CYCS interacts with APAF1, which recruits pro-CASP9 to form the apoptosome.
MOMP is tightly controlled by the BCL2 family, including its pro-apoptotic and anti-apoptotic members. CASP3, CASP6, and CASP7 are
considered the common effector caspases for both extrinsic and intrinsic apoptosis. In addition, the extrinsic pathway can trigger intrinsic
mitochondrial apoptosis through the generation of truncated BID (tBID) by activated CASP8. tBID can further translocate to mitochondria and
cause MOMP through the activation of BAX and BAK1
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signaling cascades, is executed by a set of defined effector
molecules and has unique biochemical, functional, and immuno-
logical consequences (Table 1). RCD is also known as PCD when it
occurs in physiological conditions.23 Based on its molecular
characteristics, RCD can be classified into multiple subroutines, a
few of which have clear physiological bearing (like necroptosis
and pyropotosis, which are observed during development and/or
in the context of viral infections) while others (like ferroptosis,
entotic cell death, netotic cell death, parthanatos, lysosome-
dependent cell death, autophagy-dependent cell death, alkalip-
tosis, and oxeiptosis) are less well-studied and may actually be
limited to cellular responses to specific toxins that do not reflect
normal physiology. Here, we adopt the viewpoint that cell death
involves some kind of “regulation” (hence “RCD”) as long as
specific genetic or pharmacological manipulations are able to
interrupt the lethal cascade-causing cellular dismantling in
response to external stimuli.

NECROPTOSIS
Necroptosis, a programmed form of necrosis showing morpholo-
gical features similar to necrosis,25 was first observed in 1996 in
pig kidney cells infected by the cowpox virus that expresses
cytokine response modifier A (CrmA), a viral CASP1 and CASP8
inhibitor.26 In 1998, this observation was extended when L-M cells
(a mouse fibroblast cell line) were found to be strongly sensitized
to tumor necrosis factor (TNF, also known as TNFα)-induced

necrotic cell death, suggesting that CASP8 negatively controls this
type of cell death.27 Today it is known that necroptosis can be
triggered by multiple stimuli, including the activation of death
receptors (e.g., FAS and TNFRSF1A),28 toll-like receptors (e.g., toll-
like receptor 3 [TLR3] and TLR4),29 nucleic acid sensors (e.g., Z-
DNA–binding protein 1 [ZBP1, also known as DAI],30 retinoic acid
receptor responder 3 [RARRES3, also known as RIG1],31 transmem-
brane protein 173 [TMEM173, also known as STING]32,33), and
adhesion receptors.34 The same ligands (e.g., TNF, TNF superfamily
member 10 [TNFSF10, also known as TRAIL], and Fas ligand
[FASLG, also known as FasL or CD95L]) that ignite the extrinsic
apoptosis pathway can trigger necroptosis when CASP8 activation
at the death-inducing signaling complex (DISC) is prevented by
means of caspase inhibitors (such as Z-VAD-FMK) or by the
depletion of fas-associated via death domain (FADD).35

The era of molecular necroptosis research began in 2000 with
the discovery of receptor-interacting serine/threonine kinase 1
(RIPK1) as a regulator of FASLG-induced necroptosis in T cells.28

RIPK1 is indeed a multifunctional signal kinase at the crossroads
between inflammation, immunity, cell stress, cell survival, and cell
death (Box 3). Subsequently, the identification of the pharmaco-
logical RIPK1 inhibitor necrostatin-1 led to the coining of the term
“necroptosis.”36,37 Later, receptor-interacting serine/threonine
kinase 3 (RIPK3) was unravelled as a downstream mediator of
RIPK1 in death receptor-induced necroptosis.38–40 The subsequent
discovery of mixed lineage kinase domain-like pseudokinase
(MLKL) as the effector of necroptosis has largely enhanced our
understanding of the molecular process of necroptosis.41,42

An array of signaling pathways facilitate RIPK3 activation in
several distinct ways (Fig. 3a) involving the homotypic interaction
of RIP homotypic interaction motif (RHIM) domain-containing
receptors, adaptors and kinases (ZBP1, toll-like receptor adaptor

Box 1 Caspases in cell death

Caspases are a family of cysteine-dependent aspartate-specific proteases that
play a critical role in the regulation of cell death, connecting to development,
inflammation, and immunity.10,11 RCD is therefore categorized into two groups:
caspase-dependent (e.g., apoptosis and pyroptosis) and caspase-independent
RCD (e.g., necroptosis, ferroptosis, parthanatos, alkaliptosis, and oxeiptosis). In
mammalian cells, caspases can be divided into four groups: initiator caspases
(CASP2, CASP8, CASP9, and CASP10), effector caspases (CASP3, CASP6, and
CASP7), inflammatory caspases (CASP1, CASP4, CASP5, CASP11, and CASP12),
and the keratinization-relevant caspase (CASP14). Human CASP4 and CASP5 are
functional orthologues of mouse CASP11 and CASP12, respectively. The mouse
genome lacks CASP10.

Like many proteases, caspases initially exist as inactive zymogens, namely,
procaspases. CASP8 and CASP10 have four domain structures, including the small
subunit, large subunit, caspase activation and recruitment domain (CARD), and
death effector domain (DED). CASP1, CASP2, CASP4, CASP5, CASP9, and CASP12
lack the DED motif, but contain other domains. In contrast, effector caspases
(CASP3, CASP6, and CASP7) and CASP14 require cleavage by other caspases into
small subunits and large subunits that assemble into active enzyme. These
activated caspases can cleave substrates such as downstream caspases, cellular
structural proteins, and immune molecules to cause cell death and inflammation.
Caspases recognize at least four contiguous amino acids in their substrates,
namely P4-P3-P2-P1. These substrates are cleaved by caspases after the C-
terminal residue (P1), usually an Asp residue.

Initiator and effector caspases regulate apoptosis, whereas inflammatory
caspases control pyroptosis. CASP3, CASP6, and CASP7 are essential executioner
caspases in various types of apoptosis. They are usually activated by CASP8 and
CASP9 in the extrinsic and intrinsic pathways, respectively. CASP8 coordinates
the response to TNF in the induction of inflammation, apoptosis, and necroptosis.
TNF is one of the most potent physiological inducers of the NF-κB pathway to
transactivate genes coding for cytokines and pro-survival factors. This effect is
achieved through the TNFRSF1A complex including FADD. Active CASP8
inactivates the TNFRSF1A complex activity by cleaving RIPK1, thus favoring the
activation of CASP3 or CASP7 and subsequent apoptosis. In contrast, the
inhibition of CASP8 by the pan-caspase inhibitor Z-VAD-FMK or genetic
inactivation of either CASP8 or FADD leads to TNF-induced necroptosis via the
activation of the RIPK1-RIPK3-MLKL pathway.19,35 CASP2 and CASP10 are
alternative initiator caspases contributing to RCD under certain conditions, but
the underlying mechanism remains unclear. CASP1, CASP4, CASP5, and CASP11
ignite pyroptosis by cleaving members of the gasdermin family, especially
GSDMD, to induce pore formation and plasma membrane rupture.82,99–103

CASP12 is involved in endoplasmic reticulum stress-associated RCD270 (although
this finding did not result in follow-up papers and has been disputed271) and
functions as an anti-inflammatory regulator partly due to the inhibition of CASP1
inflammasome and the NF-κB pathway.10,11

Box 2 Oxidative stress in cell death

Oxidative stress results from an imbalance between the production of ROS and
the antioxidant capacity. ROS include superoxide anion (O2

•-), hydroxyl radical
(•OH), H2O2, and singlet oxygen (1O2). O2

•- is the one-electron reduction, whereas
H2O2 is the two-electron reduction product of molecular oxygen. •OH, a major
initiator of lipoperoxidation, can be produced from iron-mediated Fenton
reactions or high-energy ionizing radiation. 1O2 is an atypical ROS that is
produced by the irradiation of molecular oxygen in the presence of
photosensitizer pigments. Apart from mitochondria, other subcellular structures
or organelles, including the plasma membrane, endoplasmic reticulum, and
peroxisomes contribute to the production of ROS.

The antioxidant system may rely on enzymatic and non-enzymatic reactions.
The enzymatic system comprises superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPX), and glutathione-S-transferase (GST). SOD iso-
enzymes, which include SOD1 in the cytoplasm and nucleus, SOD2 in
mitochondria, and SOD3 in the extracellular space, catalyse the dismutation of
O2

•- into either O2 or H2O2. CAT is mostly located in peroxisomes and is
responsible for converting H2O2 into water and oxygen. GPX has eight members
(GPX1-GPX8) in mitochondria, cytoplasm, and nuclei, and it functions to reduce
lipid hydroperoxides to alcohols and to reduce H2O2 to H2O. The activity of GPX
relies on the presence of the oligoelement selenium. GST detoxifies xenobiotic
electrophilic substrates by conjugating them to reduced GSH. The major
intracellular non-enzymatic antioxidants include GSH, metal-binding proteins,
melatonin, bilirubin, and polyamines. GSH is considered as the most important
endogenous antioxidant capable of directly interacting with ROS or electrophiles
and by functioning as a cofactor for various enzymes, including GPX.

Oxidative damage is not only a cause, but also a consequence of various types
of cell death. Excessive ROS can result in lipid peroxidation and damage to
proteins and DNA. Peroxidation of membrane lipids not only leads to functional
changes, but also causes structural damage, which finally results in cell rupture.
Beyond its implication in apoptosis, lipid peroxidation is involved in various types
of RCD such as ferroptosis,117 pyroptosis,105 necroptosis,137 autophagy-
dependent death,272 parthanatos,273 and netotic cell death.274 DNA damage by
oxidation is a major reason for genomic instability in the development of age-
associated diseases. Apoptosis13 and parthanatos180 are usually associated with
DNA damage. ROS may stimulate cell death pathways and trigger inflammation,
resulting in inflammasome activation and pyroptosis.275 Therefore, the suppres-
sion of ROS could have crucial anti-inflammatory effects.
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molecule 1 [TICAM1, also known as TRIF], RIPK1, and RIPK3). These
RHIM domains of RIPK1 and RIPK3 mediate the formation of large
hetero-amyloid signaling complexes that are initiated by different
ligands.43,44 First, death receptor ligands induce the RHIM-
mediated binding of RIPK1 to RIPK3, triggering the formation of
specific signaling complexes, the “necrosomes,” ultimately result-
ing in MLKL activation.38–40 This process requires protein
posttranslational modifications that are regulated by the ubiquitin
ligase STIP1 homology and u-box containing protein 1 (STUB1,
also known as CHIP),45 the aurora kinase A (AURKA),46 the protein
phosphatase Mg2+/Mn2+-dependent 1B (PPM1B, also known as
PP2CB),47 and the deubiquitinase TNF alpha-induced protein 3
(TNFAIP3, also known as A20).48 Second, TICAM1, but not RIPK1, is
required for RIPK3-MLKL–dependent necroptosis in response to
TLR ligands.29 Third, certain viruses can directly bind to RIPK349 or
promote the binding of the host protein ZBP1 to RIPK3 and
subsequent MLKL activation.30 Fourth, RIPK3 activation by
interferon alpha receptor or adhesion receptor occurs through
an alternative pathway that does not require RIPK1, TICAM1 nor
ZBP1.34,50,51

The phosphorylation of MLKL by RIPK3 at different residues in
the C-terminal pseudokinase domain (S345/S347/T349 in mouse
and S357/T358 in human) results in a conformational change and
binding of inositolhexaphosphate (IP6) with positively charged
patches in the N-terminal part of MLKL, followed by its
recruitment to phosphatidylinosites, and insertion and multi-
merization in the plasma membrane, resulting in plasma
membrane permeabilization.41,42,52–56 MLKL oligomerization and
translocation to the plasma membrane can be enhanced byTa
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Box 3 Regulation of RIPK1 in survival and cell death function

When cells undergo cellular stress (endoplasmic reticulum stress, oxidative stress,
DNA damage, pro-inflammatory stimuli) the default outcome is an adaptive
response involving de novo expression of numerous genes and posttranslational
modifications of target proteins (proteolysis, phosphorylation, and ubiquitylation) to
maintain homeostasis or to induce cell death if the cellular stress remains
unmitigated. RIPK1 is a central hub downstream of many cellular stress and
immune receptor pathways such as TLR and TNF receptor family members, where it
regulates the induction of pro-survival genes (e.g., BCL2, XIAP, and FLIP),
inflammatory genes (cytokines and chemokines), and cell death through kinase-
independent and kinase-dependent mechanisms.276 RIPK1 has two major faces. As
a scaffold it recruits in an ubiquitylation-dependent way factors that initiate the
activation of NF-κB and the MAPK cascade, and prevents CASP8-dependent
apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase following its
enzymatic activation, RIPK1 induces CASP8-mediated apoptosis and RIPK3/MLKL-
mediated necroptosis. Transgenic knockin mice of kinase dead RIPK1 do not show a
spontaneous phenotype but are resistant to TNF-induced systemic inflammatory
response syndrome and show decreased pathogenesis in several inflammatory and
degenerative diseases, suggesting that cell death may be an important etiologic
factor in these pathologies.72,277–279 On the other hand, kinase dead RIPK1 knockin
mice show increased sensitivity to infection, demonstrating the importance of
RIPK1-driven cell death in immunosurveillance.277,279,280 What determines the
switch between the RIPK1 scaffold and kinase functions that have such an impact
on pathophysiological conditions? The most detailed insights into the regulation of
these two opposing functions of RIPK1 were obtained from studying TNF-induced
signaling pathways. TNF binding to TNFRSF1A causes in the first instance the
formation of a receptor-associated complex I containing TRADD, RIPK1, and E3
ligases (TRAF2, cIAP1/2, and LUBAC), adding K63 and linear ubiquityl chains on
RIPK1. This network of polyubiquityl chains forms a platform that recruits the IKK
complex and MAP3K7/TAK1 complex controlling the NF-κB and MAPK signaling
pathways and leading to pro-survival and pro-inflammatory gene induction.281

However, recently it was found that both IKK and MAPKAPK2/MK2 (activated by the
TAK1/p38 MAPK axis) phosphorylate RIPK1 at distinct sites, preventing its catalytic
autoactivation.282–286 When these phosphorylation-dependent brakes are absent,
RIPK1 is recruited in complex II and will by default propagate apoptosis (complex
IIb) or, in conditions of CASP8 deficiency, trigger RIPK1/RIPK3 necrosome formation
and necroptosis. TBK1, a master integrator of stress and immune receptor signaling,
also leads to the inactivation of RIPK1 kinase activity, suggesting that RIPK1 survival
regulation goes beyond TNF signaling.287 As a consequence, conditions of the
absence or inhibition of IAPs or LUBAC, absence of NEMO, inhibition of IKK,
MAP3K7, or TBK1 strongly favor the catalytic autoactivation of RIPK1.280 It is
hypothesized that pathological conditions, by regulating these survival checkpoints,
may lead to enhanced sensitization of RIPK1-dependent apoptosis and necroptosis,
contributing to inflammatory and degenerative diseases.288
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interactions with the molecular chaperone heat shock protein 90
alpha family class A member 1 (HSP90AA1, also known as
HSP90)57–60 or by the local accumulation of inositol phosphates
resulting from the activation of inositol phosphate kinase (e.g.,
inositol polyphosphate multikinase [IPMK] and inositol-
tetrakisphosphate 1-kinase [ITPK1]).61 Strikingly, the endosomal
sorting complexes required for transport (ESCRT)-III complex, a
membrane scission machine, limits MLKL-mediated necroptosis
and promotes membrane repair.62 MLKL has also been shown to
regulate endosomal trafficking and extracellular vesicle genera-
tion.63 Thus, a fine balance between membrane injury and repair
ultimately decides cell fate in necroptosis.
Early studies have revealed that mitochondrial events such as

the production of mitochondrial reactive oxygen species (ROS),64

the activation of the mitochondrial phosphatase PGAM family
member 5 (PGAM5, mitochondrial serine/threonine protein
phosphatase), or the presence of a mitochondrial permeability
transition may trigger necroptosis.65 How exactly mitochondrial
ROS production contributes to necroptosis induction is still
unsolved, but it may involve a redox sensing upstream of RIPK1
activation and RIPK3 recruitment.66 A connection between aerobic
metabolism and necroptosis sensitivity might exist, as evidenced
by RIPK3-mediated positive regulation of glutaminolysis and
pyruvate dehydrogenase activity.38,67 However, other studies
demonstrate that mitochondria are dispensable for necroptosis
induced by death receptor signaling using PGAM5 knockdown
cells.55,68 It has also been suggested that the formation of
necrosomes with RIPK1, RIPK3, and MLKL in the nucleus may

Fig. 3 Core molecular mechanism of non-apoptotic regulated cell death. a RIPK3-stimulated MLKL is necessary for membrane rupture
formation in necroptosis. Upstream elicitors include DR, TLR, and viruses, which induce RIPK3 activation through RIPK1, TICAM1, and ZBP1,
respectively. In addition, RIPK3 is activated by AR via an unknown adaptor protein or kinases. b Pyroptosis is mostly driven by GSDMD after
cleavage of this protein by CASP1 and CASP11 in response to PAMPs and DAMPs, or cytosolic LPS. c Ferroptosis is a form of cell death that
relies on the balance between iron accumulation-induced ROS production and the antioxidant system during lipid peroxidation. The ACSL4-
LPCAT3-ALOX15 pathway mediates lipid peroxidation. In contrast, several antioxidant systems, especially system xc- that includes the core
components SLC7A11, GPX4, and NFE2L2, inhibit this process. d Parthanatos is a PARP1-dependent form of cell death that relies on the AIFM1-
MIF pathway. e Entotic cell death is a form of cellular cannibalism through the activation of entosis followed by the engulfing and killing of
cells through LAP and the lysosomal degradation pathway. RHOA, ROCK, myosin, and CDC42 are required for entosis. f Netotic cell death is
driven by NET release, which is regulated by NADPH oxidase-mediated ROS production and histone citrullination. g Lysosome-dependent cell
death is mediated by releasing hydrolytic enzymes (cathepsins) or iron upon LMP. h Autophagy-dependent cell death is driven by the
molecular machinery of autophagy. i Alkaliptosis is driven by intracellular alkalinization after IKBKB-NF-κB pathway-dependent
downregulation of CA9. j Oxeiptosis is an oxygen radical-induced form of cell death driven by the activation of the KEAP1-PGAM5-AIFM1
pathway
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increase MLKL activity in plasma membranes.69,70 Moreover,
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-
derived ROS have been implicated in necroptosis in neutrophils.71

The functional significance of different ROS sources in necroptosis
and how they impact the signal transduction remain to be further
investigated.
In conclusion, RIPK3 and its substrate MLKL are necessary for

necroptosis, whereas upstream RIPK1 contributes to this process
in some cases (e.g., death receptor activation). RIPK3, independent
of its kinase activity and independent of MLKL, also plays a
regulatory role in apoptosis72 and in NLRP3-inflammasome
activation and pyroptosis.73 Neither RIPK3 nor MLKL knockout
mice show deficiency in embryogenesis, development, and
homeostasis, suggesting no major role of necroptosis in
nonchallenged conditions.74,75 A role for necroptosis in develop-
ment and homeostasis is only revealed in conditions of FADD or
CASP8 deficiency, demonstrating the important checkpoint
function of CASP8 in controlling necroptosis in vivo.74,75 In
contrast to the apparent absence of function during development
and homeostasis, necroptosis is implicated in neurodegenerative
diseases, chemotherapy responses, and tissue injury.76 Of note,
data obtained from conditional knockout mice should be favoured
over the use of systemic knockout mice that were generated using
different sources of ES cells (129, C57BL/6J, or C57BL/6N) to avoid
phenotypic interference of passenger mutations.77

PYROPTOSIS
Pyroptosis is a form of RCD driven by the activation of inflamma-
some, a cytosolic multiprotein complex responsible for the release of
interleukin (IL) 1 family members (e.g., interleukin-1β [IL1B] and
IL18), the formation of ASC (apoptosis-associated speck-like protein
containing a CARD, also called PYCARD or PYRIN and CARD domain-
containing) specks, and the activation of pro-inflammatory caspases.
The term pyroptosis was coined by Brad Cookson and coworkers78

to describe CASP1-dependent PCD in macrophages infected by
Salmonella or Shigella and associated with the release of IL1B (IL1
was historically called leukocytic pyrogen, inspiring the name
pyroptosis).79,80 CASP1 mediates the proteolytic processing of pro-
IL1B and pro-IL18 into mature IL1B and IL18, respectively. This type
of inflammatory cell death can be triggered by the activation of
CASP1 or CASP11 in mice (the latter corresponding to CASP4 and
CASP5 in humans) in macrophages, monocytes and other cells81

(Fig. 3b). Pyroptosis is morphologically distinct from apoptosis.
Pyroptosis is characterized by the absence of DNA fragmentation
in vitro, but by the presence of nuclear condensation coupled to cell
swelling and the formation of large bubbles at the plasma
membrane that eventually ruptures.82,83

The activation of inflammasomes in macrophages or monocytes
requires two signals: a priming signal (that may be mediated by
TLR ligands and IFN signaling) that induces the transcriptional
upregulation of inflammasome components through nuclear
factor of κB (NF-κB), and then a sensing signal (e.g., adenosine
triphosphate [ATP] and lipopolysaccharide [LPS]) that triggers pro-
inflammatory caspase-mediated pyroptosis. Inflammasomes that
include canonical and noncanonical types can be activated in the
context of infection, tissue injury, or metabolic imbalances.81

Canonical CASP1-dependent inflammasomes are divided into two
subtypes, Nod-like receptors (NLR, e.g., NLR family pyrin domain-
containing 1 [NLRP1], NLRP2, NLRP3, NLRP6, NLRP7, NLR family
CARD domain-containing 4 [NLRC4]) and non-NLR (e.g., absent in
melanoma 2 [AIM2]). They can be selectively activated by
pathogen-associated molecular patterns (PAMPs), damage-
associated molecular patterns (DAMPs), or other immune chal-
lenges. For example, NLRP3, the most intensively studied
inflammasome, can be activated by a wide range of inflammatory
stimuli such as bacterial peptidoglycans, extracellular ATP, and uric
acid crystals, facilitated by the kinase NIMA-related kinase 7

(NEK7).84 The non-NLR inflammasome involving AIM2 is activated
by cytosolic double-stranded DNA from bacteria or host cells.85,86

The CASP11-dependent noncanonical inflammasome is activated
by cytosolic LPS from invading Gram-negative bacteria in
macrophages, monocytes, or other cells.87 Lipid A moiety is
required for cytosolic LPS binding to CASP11’s CARD domain,
which causes CASP11 oligomerization.88 TLR4, a cell membrane
receptor for LPS, is not required for cytosolic LPS-induced CASP11
activation.89,90 The cytoplasmic delivery of LPS requires the release
of bacterial outer membrane vesicles (OMVs) by Gram-negative
bacteria91 or the binding of LPS with high-mobility group Box 1
(HMGB1).92 The interplay between canonical (e.g., NLRP3- and
AIM2-dependent) and noncanonical inflammasome pathways can
amplify the inflammatory response and pyroptosis.93,94 Although
eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2)/
PKR and glycolysis may participate in CASP1-dependent inflam-
masome activation under certain conditions,95–98 their roles in
CASP11 inflammasome remain unclear.
Several recent breakthroughs indicate that gasdermin D

(GSDMD) is the key effector of pyroptosis82,99–103 (Fig. 3b).
GSDMD is cleaved by CASP11 or CASP1 to produce a 22 kDa C-
(GSDMD-C) and a 3l kDa N-terminal fragment (GSDMD-N).101–103

CASP11 auto-cleavage at the inter-subunit linker is essential for
optimal catalytic activity and subsequent GSDMD cleavage.104

Once formed, GSDMD-N translocates to the inner leaflet of the
plasma membrane and binds phospholipids, thus inducing the
formation of pores that ultimately cause membrane lysis.99 In
contrast, GSDMD-C inhibits GSDMD-N activity.99,100 While
deficiency of the phospholipid hydroperoxidase glutathione
peroxidase 4 (GPX4) in myeloid-derived cells increases CASP1- or
CASP11-mediated GSDMD-N production, pyroptosis, and leth-
ality after cecal ligation and puncture (CLP)-induced sepsis, the
pharmacological inhibition of phospholipid hydrolysing enzyme
phospholipase C gamma 1 (PLCG1) strongly protects against
pyroptosis and CLP-induced septic death,105 indicating that lipid
peroxidation promotes pyroptosis. Protein kinase A (PKA) is a
major cyclic adenosine monophosphate (cAMP) effector to
directly block CASP11-mediated GSDMD-N production in macro-
phages.106 Like necroptosis, ESCRT-III is also recruited to the
plasma membrane to trigger membrane repair upon GSDMD
activation.107 Other members of the gasdermin family (GSDMA,
GSDMB, GSDMC, GSDME/DFNA5, and GSDMA3) have similar
functions in membrane-disrupting cytotoxicity.99 It has been
shown that following the blockage or deficiency of the bona fide
pyroptosis pathway (ASC-CASP1/4), the induction of pyroptosis
can be engaged through mechanisms such as CASP8-
GSDMD108,109 and CASP3-GSDME,110 although the contribution
of these alternative pathways to pyroptosis elicited by different
triggers remains to be established in vivo.
Neutrophil elastase (ELANE), one of the antibacterial serine

proteases, triggers GSDMD cleavage at a site that is closer to the
N-terminus than the caspase cleavage site.111 Elastase-mediated
GSDMD-N production induces neutrophil death as well as the
formation of neutrophil extracellular traps (NETs) to intercept
invading microorganisms.112,113 In addition, GSDMD-N can directly
lyse bacteria (such as Escherichia coli, Staphylococcus aureus, and
Listeria monocytogenes) after binding to cardiolipin and forming
pores in their membranes.100 CASP1 and CASP11 also play a
pyroptosis-independent role in antibacterial host defence. The
formation of GSDMD pores can directly trigger IL1B secretion by
macrophages before the cells undergo pyroptosis,114 indicating
that distinct activation thresholds may control the active IL1B
release by live cells and its passive shedding from dead cells once
the cell explodes. The dynamics of pore formation and interaction
with ion channels allow the existence of different stages and
extents of plasma membrane permeabilization, resulting in the
release of IL1B prior to spilling of DAMPs following full
permeabilization.115
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In summary, pyroptosis is a form of GSDMD-mediated RCD
that plays a cell type-dependent role in inflammation and
immunity. Of note, the first Casp1-/- mice were established from
129 embryonic stem cells carrying an inactivating passenger
mutation of the Casp11 locus.87 Thus, the phenotype
reported for Casp1-/- mice actually results from deficiencies in
both CASP1 and CASP11. Novel individual or combined
transgenic mice are required to distinguish the contributions
of CASP1 and CASP11 to pyroptotic signaling in a variety of
different diseases that were studied in the past using the
unintended double knockout.

FERROPTOSIS
Ferroptosis is an iron- and lipotoxicity-dependent form of RCD. It
was originally observed in 2003 using erastin (a cell-permeable
compound from high-content screening) to selectively kill
genetically-engineered cells with an oncogenic RAS mutation,
but not normal cells116 In 2012, the term ferroptosis was formally
used by Brent Stockwell to describe an iron-dependent form of
non-apoptotic RCD induced by erastin.117 The morphology of
erastin-induced ferroptotic cells is characterized by dysmorphic
small mitochondria with decreased crista, as well as condensed,
ruptured outer membranes,117,118 which might be under control
of the pro-apoptotic BCL2 family members such as BH3-
interacting domain death agonist (BID)119 and BCL2-binding
component 3 (BBC3, also known as PUMA),120 but not BAX or
BAK1.117 Mechanistically, these dying cells do not display any
hallmarks of apoptosis or necroptosis.117,118 Instead, ferroptosis
occurs via an iron-catalyzed process of lipid peroxidation initiated
through non-enzymatic (Fenton reactions) and enzymatic
mechanisms (lipoxygenases) (Fig. 3c). Polyunsaturated fatty acids
(PUFAs) are the prime targets of lipid peroxidation of mem-
branes.121 The deleterious effects of lipid peroxidation in
ferroptosis execution can be neutralized by lipophilic radical traps
such as vitamin E, ferrostatin-1, and liproxstatin-1.117,118 The
mechanistic consequences of uncontrolled lipid peroxidation
leading to ferroptotic cell death are still elusive. Using molecular
dynamics models, it is hypothesized that membrane thinning and
increased curvature drives a vicious cycle of access by oxidants,
which ultimately destabilizes the membrane leading to pore and
micelle formation.122 Additionally, lipid hydroperoxides decom-
pose to reactive toxic aldehydes such as 4-hydroxy-2-nonenals or
malondialdehydes, which may inactivate proteins through
crosslinking122.
Essentially, ferroptosis can be induced in a canonical way by

either inactivating GPX4, the major protective mechanism of
biomembranes against peroxidation damage, or in a noncanonical
way by increasing the labile iron pool. Two mechanisms have
been described to inactivate GPX4: (1) an indirect way by the
deprivation of the cofactor glutathione (GSH) through the
depletion of the precursor Cys, as a result of the inhibition of
the cystine/glutamate antiporter system xc-117 or the transsulfura-
tion pathway,123 and (2) a direct way by binding and inactivating
GPX4 by compounds such as RSL3, ML162, FINO2, withaferin A, or
the FDA-approved anticancer agent altretamine.121,124–129 In
addition, recent findings have proposed a noncanonical ferropto-
sis induction pathway upon iron overload using, for example, iron
chloride, hemoglobin, hemin, or ferrous ammonium sulfate, which
suffices to induce ferroptosis.129,130 CDGSH iron sulphur domain 1
(CISD1), a mitochondrial iron export protein, also inhibits
ferroptosis by preventing mitochondrial iron accumulation and
ROS production.131 The mitochondrial outer membrane proteins
voltage-dependent anion channel 2 (VDAC2) and VDAC3 have
been identified as direct targets of erastin that modulate
mitochondrial function and contribute to ferroptosis.132 However,
the contribution of mitochondria to ferroptosis remains contro-
versial and may be context-dependent.133

System xc- is composed of a regulatory subunit solute carrier
family 3 member 2 (SLC3A2) and a catalytic subunit solute carrier
family 7 member 11 (SLC7A11). This complex promotes the
exchange of extracellular cystine and intracellular glutamate
across the plasma membrane. Cystine in the cell is reduced to
cysteine, which is required for the production of GSH. GPX4 uses
GSH to eliminate the production of phospholipid hydroperoxides
(PLOOH), the major mediator of chain reactions in lipoxygenases
(Fig. 3c). System xc- inhibitors (e.g., erastin, sulfasalazine, sorafenib,
and glutamate) are considered as class I ferroptosis inducers
(FINs), whereas direct GPX4 inhibitors are referred to class II
FINs.134 Of note, GPX4 depletion was also shown to confer
sensitivity to apoptosis,135,136 necroptosis,137 and pyroptosis.105

These findings suggest that lipid peroxidation can accelerate an
array of distinct RCD modalities.
The likelihood of ferroptosis is determined by the balance

between iron accumulation-induced ROS production and the
antioxidant system that avoids lipid peroxidation (Fig. 3c).
Increased iron uptake by transferrin receptor (TFRC, also known
as TFR1) and reduced iron export by ferroportin favor oxidative
damage and ferroptosis.138 Lipid peroxidation is influenced by
several lipids and enzymes. Thus, the oxidation of PUFAs,
including arachidonic acid (AA), by a catalytic pathway involving
acyl-CoA synthetase long chain family member 4 (ACSL4),
lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachi-
donate lipoxygenases (ALOXs, especially ALOX15) is required for
lipotoxicity in ferroptosis.121,139–142 Phosphatidylethanolamine
binding protein 1 (PEBP1, also known as RKIP), a scaffold protein
inhibitor of protein kinase cascades, is required for the enzymatic
activity of ALOX15 in ferroptosis.142 The upregulation of ACSL4,
but not other ACSL members, seems to be a marker of
ferroptosis.141 In addition to system xc-and GPX4, several
integrated antioxidant and pro-survival proteins such as the
transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2, also
known as NRF2)143 and certain heat shock proteins (HSPs),144,145

can inhibit lipid peroxidation in ferroptosis. In contrast, ROS
generated during glutaminase 2 (GLS2)-mediated glutaminolysis
may promote ferroptosis.146

NFE2L2 is a key transcription factor that regulates antioxidant
defence or detoxification in the context of various stressors.
NFE2L2-mediated transactivation of metallothionein 1G (MT1G,
a cysteine-rich protein with a high affinity for divalent heavy
metal ions), SLC7A11, and heme oxygenase 1 (HMOX1) limits
ferroptosis.143,147,148 However, upon excessive activation of
NRF2, HMOX1 gets hyperactivated and induces ferroptosis
through increasing the labile iron pool upon metabolizing
heme.129,149,150 Thus, the protective effect of HMOX1 is
attributed to its antioxidant activity, while its toxic effect is
mediated through the generation of ferrous iron that might
boost Fenton-mediated decomposition of peroxides in case of
insufficient buffering capacity by ferritin.
The tumor suppressor tumor protein p53 (TP53)151 and BRCA1-

associated protein 1 (BAP1)152 can promote ferroptosis through
the downregulation of SLC7A11 via transcriptional and epigenetic
mechanisms, respectively. TP53 may also suppress ferroptosis by
directly inhibiting the enzymatic activity of membrane-bound
glycoprotein dipeptidyl peptidase 4 (DPP4, also known as
CD26)153 or by increasing the expression of cell-cycle regulator
cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as
p21).154 This has been observed in some cancers, in particular
colorectal carcinoma, suggesting a context-dependent role of
TP53 in the regulation of ferroptosis.155 An African-specific coding
region variant of TP53, namely Pro47Ser, also affects ferroptosis
senstivity and tumor supression.156

HSPs are a family of highly conserved molecular chaperones
that are expressed in response to environmental stresses and
render cells resistant to different types of cell death, including
ferroptosis. In particular, heat shock protein family B [small]
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member (HSPB1, also known as HSP25 or HSP27)-mediated actin
cytoskeleton protection inhibits ferroptosis via reducing iron
uptake and subsequent oxidative injury.144 Heat shock protein
family A [Hsp70] member 5 (HSPA5, also known as BIP or GRP78),
an endoplasmic reticulum (ER)-sessile chaperone, binds and
stabilizes GPX4, thus indirectly counteracting lipid peroxidation
in ferroptosis.145 However, 2-amino-5-chloro-N,3-dimethylbenza-
mide (CDDO), an HSP90 inhibitor, can inhibit ferroptosis in cancer
cells, indicating that HSP90 may play a different role in
ferroptosis.157

The term “autophagy-dependent cell death” was originally used
to describe cell death associated with autophagy based on
morphological observation.14 It is now defined by the NCCD as a
type of RCD that can be blocked by the suppression of
autophagy.24 Recent findings indicate that ferroptosis induction
is coupled to an increase in the turnover of lipidated microtubule-
associated protein 1 light chain 3 beta (MAP1LC3B, also known as
LC3, a marker of autophagosome) as well as the fusion of the
autophagosome with lysosomes (namely, autolysosome forma-
tion, an important stage of autophagic flux), consistent with the
notion that lipid oxidation stimulates autophagy.158,159 The
genetic depletion of core autophagy effector molecules such as
autophagy-related 5 (ATG5) and ATG7 block cell death by
ferroptosis.158,159 Tat-Beclin 1, a strong direct inducer of autop-
hagy, also enhances ferroptosis in cancer cells.160 The molecular
mechanisms through which autophagy may contribute to
ferroptotic demise may involve multiple pathways,161 such as
the degradation of ferritin via nuclear receptor coactivator 4
(NCOA4)-dependent ferritinophagy (e.g., ferritin-specific autop-
hagy),158,159 the inhibition of system xc- activity via the formation
of a BECN1-SLC7A11 protein complex,160 and the degradation of
lipid droplets via ras-associated protein RAB7 (RAB7A)-dependent
lipophagy.162 In addition, chaperone-mediated autophagy pro-
motes GPX4 degradation and subsequent ferroptosis.157

In summary, ferroptosis is an non-apoptotic form of RCD driven
by iron accumulation and lipid peroxidation, which can also
involve autophagic processes, depending on the trigger.163

Excessive ferroptosis is likely to occur in certain human diseases,
especially neurodegenerative and iron overload disorders, calling
for its therapeutic suppression.164 In contrast, the induction of
ferroptosis constitutes a potential strategy in cancer therapy.164

Note that almost 30 years ago a calcium-dependent non-
apoptotic form of neuronal cell death, glutamate-induced toxicity,
was coined as oxytosis that could be initiated by system xc-

inhibition and GSH depletion,165,166 and it was recently suggested
that oxytosis and ferroptosis should be regarded as the same or at
least a highly overlapping cell death pathway.167 That said, it
remains to be determined whether ferroptosis is involved in
“normal” physiology (e.g., development) or whether it only occurs
in the context of pathologogical distortions (e.g., tissue injury) or
pharmacological manipulations (e.g., anticancer therapy). Further
evidence is required to understand this point. This general caveat
applies to all modalities of RCD that are discussed below.

PARTHANATOS
Parthanatos is a poly [ADP-Ribose] polymerase 1 (PARP1)-
dependent RCD that is activated by oxidative stress-induced
DNA damage and chromatinolysis (Fig. 3d). The term was coined
by Valina and Ted Dawson in 2009.168 Unlike apoptosis,
parthanatotic cell death occurs without the formation of an
apoptotic body and small-size DNA fragments.169 Parthanatos also
occurs in the absence of cell swelling, but is accompanied by
plasma membrane rupture.170 PARP1 is a chromatin-associated
nuclear protein that plays a critical role in the repair of DNA single-
strand or double-strand breaks. PARP1 can recognize DNA breaks
and use nicotinamide adenine dinucleotide (NAD+) and ATP to
trigger poly (ADP-ribose)-sylation. The cleavage-mediated

inactivation of PARP1 by caspases has been considered as a
marker of apoptotic cell death.171,172 In contrast, 8-oxo-7,8-
dihydroguanine, the common DNA base modification resulting
from oxidative injury (e.g., ROS, ultraviolet light, and alkylating
agents), triggers PARP1 hyperactivation.173 Hyperactivated PARP1
mediates parthanatos through at least two mechanisms, namely,
the depletion of NAD+ and ATP (as it occurs during necrosis) and
the dissipation of the mitochondrial inner transmembrane
potential (an event commonly associated with apoptosis).174

Mechanistically, apoptosis-inducing factor mitochondria-
associated 1 (AIFM1, also known as AIF),175 but not caspases
and apoptotic DNase endonuclease G (ENDOG), is required for
parthanatos execution.176 Hyperactive PARP1 binds AIFM1, which
leads to AIFM1 release from mitochondria into the nucleus to
produce parthanatotic chromatinolysis.177 This process can be
negatively controlled by blocking PARP1 activity via the poly
(ADP-ribose)-degrading protein ADP-ribosylhydrolase-like 2
(ADPRHL2, also known as ARH3)178 and the poly (ADP-ribose)-
binding protein ring finger protein 146 (RNF146, also known as
IDUNA),179 whereas it is positively regulated by enhancing PARP1
activity by the DNA glycosylase enzyme 8-oxoguanine DNA
glycosylase (OGG1).173 More recently, macrophage migration
inhibitory factor (MIF) has been identified as an AIFM1-binding
protein with nuclease activity to produce large DNA fragments in
the induction of parthanatos.180 AIFM1-independent parthanatos
may also occur in some conditions such as dry macular
degeneration.181 The interplay between AIFM1-dependent and
-independent parthanatos with other RCDs such as autophagy-
dependent cell death182 and necroptosis183 may be involved in
various types of oxidative DNA damage-associated diseases,
including neurodegenerative disease, myocardial infarction, and
diabetes.

ENTOTIC CELL DEATH
Entotic cell death is a form of cell cannibalism in which one cell
engulfs and kills another cell. The term entosis was coined in 2007
by Joan Brugge.184 Entosis and entotic cell death occur mostly in
epithelial tumor cells in the contexts of aberrant proliferation,184

glucose starvation,185 matrix deadhesion,184 or mitotic stress.186

Entosis is characterized by the formation of cell-in-cell struc-
tures,184 which have also been observed in the urine and ascites
from tumor patients.187 Entosis plays an ambiguous role in
tumorigenesis, since it may trigger aneuploidy in engulfing cells188

and provide nutritional support for tumor growth,185 but may also
mediate the removal of cancer cells by healthy neighbouring
cells.186

Although their underlying mechanisms are not well-under-
stood, cell adhesion and cytoskeletal rearrangement pathways
play a central role in the control of entosis induction.189,190 The
invasion of a live cell into a neighbouring cell during entosis
requires the formation of adherent junctions, which is mediated
by adhesion proteins cadherin 1 (CDH1, also known as E-cadherin)
and catenin alpha 1 (CTNNA1), but not integrin receptors.184,191,192

Both intact actin and microtubules are required for cytoskeletal
rearrangement during entosis. In particular, actomyosin, the actin-
myosin complex in the cytoskeleton, is essential for the formation
of cell-in-cell structures in entosis. The generation and activity of
actomyosin is spatiotemporally controlled by ras homolog family
member A (RHOA), rho-associated coiled-coil containing protein
kinase (ROCK), and the myosin pathway184,185,192–196 (Fig. 3e).
Consequently, pharmacologically targeting these core pathways
by inhibitors such as C3-toxin, Y-27632, and blebbistatin
diminishes entosis in vitro and in vivo.189

In addition to cell adhesion and cytoskeletal rearrangement
pathways, other signaling molecules and regulators are also
involved in the regulation of entosis through different mechan-
isms.189 For example, cell division cycle 42 (CDC42) depletion
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enhances changes in mitotic morphology and subsequent
entosis.186 AURKA197 and the AMP-activated protein kinase
(AMPK)185 promote entosis through the control of microtubule
plasticity or energy metabolism, respectively. The chromatin-
binding protein nuclear protein 1 (NUPR1, also known as P8), a
transcriptional regulator, negatively regulates entosis through
modulating AURKA activity or autophagy.198

The possible fates of the engulfed cells include cell division,
release, or death. Entotic cell death involves the digestion of the
engulfed cells by the host cells, which requires LC3-associated
phagocytosis (LAP) and the cathepsin B (CTSB)-mediated lysoso-
mal degradation pathway189,190 (Fig. 3e). However, entosis does
not involve apoptosis effector caspases and is not regulated by
proteins of the BCL2 family.189,199 LAP bridges phagocytosis and
autophagy; this process is regulated by the core LC3 lipidation
machinery (e.g., ATG5, ATG7, class III phosphatidylinositol 3-kinase
complex [e.g., phosphatidylinositol 3-kinase catalytic subunit type
3 (PI3KC3), also known as VPS34], phosphoinositide-3-kinase
regulatory subunit 4 [PIK3R4, also known as VPS15], and BECN1),
cytochrome B-245 beta chain (CYBB, also known as NOX2)-
mediated ROS production, other autophagy regulators (e.g., UV
radiation resistance-associated [UVRAG] and RUN domain and
cysteine-rich domain-containing beclin 1 interacting protein
[RUBCN, also known as Rubicon]).200 Entosis is often observed in
neoplasia and its frequency correlates with tumor stage, calling for
a further in-depth evaluation of the possibility of targeting this
phenomenon. However, at this stage, there are no reagents
available that would allow us to inhibit or induce entosis in a
selective fashion, i.e., without influencing other cell death
modalities.

NETOTIC CELL DEATH
Netotic cell death is a form of RCD driven by NET release. NETs
are extracellular net-like DNA-protein structures released by
cells in response to infection or injury. NET formation and
release, or NETosis, was first observed in neutrophils upon
exposure to phorbol myristate acetate or IL8 by Arturo
Zychlinsky’s lab in 2004.201 NETs can also be generated by
other leukocyte populations (e.g., mast cells, eosinophils, and
basophils), epithelial cells, and cancer cells in response to
various stresses.202–204 Elevated NETosis not only acts against
the spread of infection by trapping pathogenic microorganisms
(e.g., bacteria and viruses), but also promotes DAMP release,
thus possibly contributing to the pathogenesis of autoimmune
disorders (e.g., systemic lupus erythematosus, rheumatoid
arthritis, asthma, vessel vasculitis, and psoriasis), ischemia-
reperfusion injury, and tumor development.205 A recent study
indicates that inflammation-associated NET production can
awaken nearby dormant cancer cells to redivide.206 This effect
may rely on the degradation of laminins, a major adhesive
component of basement membranes206; however, this needs
further mechanistic exploration.
NETosis is a dynamic process and relies on multiple signals

and steps including NADPH oxidase-mediated ROS production,
autophagy, the release and translocation of granular enzymes
(e.g., elastase, neutrophil expressed [ELANE], matrix metallopro-
teinase [MMP], and myeloperoxidase [MPO]) and peptides from
the cathelecidin family (e.g., cathelicidin antimicrobial peptide
[CAMP, also known as LL37]) from the cytosol to the
nucleus.207,208 This is followed by histone citrullination, favoring
chromatin decondensation, the destruction of the nuclear
envelope, and the release of chromatin fibres209 (Fig. 3f).
Peptidyl arginine deiminase 4 (PADI4, also known as PAD4) is
the enzyme responsible for catalyzing the conversion of arginine
to citrullin residues in histones.210 A recently discovered
pathway of PADI4-independent NETosis211 may occur down-
stream of death signals that are normally involved in other types

of RCD such as pyroptosis, necroptosis, and autophagy-
dependent cell death.212 The alterations of cell surface
associated to netotic cell death are initiated by entropic swelling
of chromatin through a yet elusive mechanism.213 Of note,
lactoferrin, a component of neutrophil granules, can block
netotic cell death and inflammation both in vitro and in vivo.214

In addition to the key role of GSDMD in pyroptosis, GSDMD is
also involved in the induction of NETosis to digest the
pathogen,112,113 indicating a crosstalk between pyroptosis and
NETosis pathways in the innate immunity.

LYSOSOME-DEPENDENT CELL DEATH
Lysosome-dependent cell death (LCD), also known as lysosomal
cell death, is a type of RCD mediated by hydrolytic enzymes that
are released into the cytosol after lysosomal membrane permea-
bilization (Fig. 3g).215 The idea of LCD was first expressed by
Christian de Duve, who discovered lysosomes as the cellular
degradation machinery in 1955, and the term “lysosomal cell
death” was coined in 2000.216 Lysosomes are acidic cellular
organelles that can degrade a variety of heterophagic and
autophagic cargos, including unused intracellular macromolecules
(nucleic acids, proteins, lipids, and carbohydrates), entire orga-
nelles (e.g., mitochondria), and invading pathogens.
Lysosomes become leaky when cells are exposed to lysosomo-

tropic detergents (e.g., O-methyl-serine dodecylamide hydrochlor-
ide), dipeptide methyl esters (e.g., Leu-Leu-OMe), lipid metabolites
(e.g., sphingosine and phosphatidic acid), and ROS.215 Lysosomal
membrane permeabilization may also amplify or initiate cell death
signaling in the context of apoptosis, autophagy-dependent cell
death, and ferroptosis.217,218

Among lysosomal hydrolases, cathepsins (a large family of
cysteine peptidases) play a major role in LCD. Different
cathepsins are responsible for the initiation and execution of
LCD, depending on the context of lysosomal membrane
permeabilization.219 The transcription factors signal transducer
and activator of transcription 3 (STAT3)220 and TP53221 may
favor LCD induction through the selective upregulation of
cathepsins (e.g., CTSB, cathepsin L [CTSL] and cathepsin D
[CTSD]) expression. In contrast, the NF-κB–elicited expression of
serpin family A member 3 (SERPINA3) results in the inhibition of
CTSB and CTSL.222 Moreover, the suppression of mucolipin 1, an
ion channel in the lysosome (MCOLN1, also known as TRPML1)
results in a lysosomal trafficking defect, which promotes CTSB
release and consequent LCD.223

Blocking cathepsin expression or activity can block LCD.
However, cathepsins are not the sole effectors of LCD because
lysosomes store abundant iron, meaning that lysosomal mem-
brane permeabilization can result in the release of this toxic metal
into the cytosol,224 thus contributing to ferroptosis.218,225 Impaired
lysosomal degradation and the LCD pathway are associated with
increased oxidative injury and contribute to lysosomal storage
disorders and age-associated diseases.226,227 Based on the cellular
context, LCD can adopt necrotic, apoptotic, autophagic, or
ferroptotic-like features, adding complexity to this cell death
pathway.215,217,218

AUTOPHAGY-DEPENDENT CELL DEATH
Autophagy-dependent cell death is a type of RCD driven by the
molecular machinery of autophagy (Fig. 3h). Macroautophagy
(hereafter called “autophagy”) is an evolutionarily conserved
degradation pathway and has been implicated in human disease
and aging.228,229 The process of autophagy involves the sequential
formation of three unique membrane structures, namely the
phagophore, autophagosome, and autolysosome. Over 40
autophagy-related genes/proteins (ATGs) play key roles in
autophagic membrane dynamics and processes.230
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As a dynamic recycling system, the bulk and nonselective
autophagy process is generally considered as a pro-survival
mechanism in response to multiple types of cellular stresses.16

Nevertheless, autophagy can selectively degrade pro-survival
proteins related to other types of RCD, thereby tipping the
balance from life to death.231–234 Ferritinophagy causes ferroptosis
due to the selective degradation of ferritin (an iron storage
protein), consequently causing iron release and oxidative
injury.158,159 The degradation of protein tyrosine phosphatase,
nonreceptor type 13 (PTPN13, a negative regulator of extrinsic
apoptosis)235 favors apoptosis, while autophagic digestion of
baculoregulator repeat containing 2 (BIRC2, also known as cIAP1, a
negative regulator of necroptosis)236 facilitates the ignition of
necroptosis.
In 2013, Beth Levine described “autosis” as a subtype of

autophagy-dependent cell death induced by nutrient depriva-
tion or by Tat-Beclin 1, an autophagy-inducing peptide fusing
amino acids from BECN1 and HIV Tat protein.17 Autosis is
morphologically characterized by enhanced cell-substrate
adherence, fragmented or vanished ER structure, focal swelling
of the perinuclear space, and mild chromatin condensation.17 At
the molecular level, Tat-Beclin 1–induced autosis can be
inhibited by blocking upstream Na+/K+-ATPase, a plasma pump
linking ion homeostasis and ER stress.17 Interestingly, iron
overload stimulates Na+/K+-ATPase activity in the human
erythrocyte membrane,237 which may lead to ferroptosis.
However, the exact relationship between autosis and ferroptosis
remains to be determined.
Autophagy-dependent cell death probably plays a pathogenic

role in neurotoxicity and hypoxia-ischemia-induced neuronal
death,232–234 indicating that this type of RCD can possibly be
targeted for neuroprotection.

ALKALIPTOSIS
Alkaliptosis is a novel type of RCD driven by intracellular
alkalinisation.238 The word “alkaliptosis” was termed in 2018 by
our group.238 A screen of small-molecule compound library
targeting G-protein coupled receptors (GPCR) for cytotoxic activity
on a human pancreatic cancer cell line led to the idenfication of
JTC801. The latter is an opioid analgesic drug that efficiently kills a
panel of human pancreas, kidney, prostate, skin, and brain cancer
cell lines,238 and these cytotoxic effects were not related to
apoptosis, necroptosis, autophagy, or ferroptosis, because geneti-
cally or pharmacologically blocking these forms of RCD failed to
reverse JTC801-induced cell death.238 In contrast, the inhibition of
intracellular alkalinization by N-acetyl cysteine, N-acetyl alanine
acid, and acidic culture media blocked JTC801-induced cell
death.238 At the molecular levels, alkaliptosis requires inhibitor
of nuclear factor kappa B kinase subunit beta (IKBKB, also known
as IKKβ)-NF-κB pathway-dependent downregulation of carbonic
anhydrase 9 (CA9), an enzyme participating in pH regulation
(Fig. 3i). Opioid-related nociceptin receptor 1 (OPRL1), the target
that accounts for the analgesic activity of JTC801, is dispensable
for alkaliptosis.238 Of note, JTC801 has also been reported to
induce apoptosis in human osteosarcoma cells,239 suggesting that
the type of RCD triggered by JTC801 depends on the cellular
context.
It should be noted that the pathological significance of

alkaliptosis in human disease remains fully elusive although
metabolic alkalosis is a unique acid-base disorder with kidney or
lung injury.240 The significance of the core effector molecules of
alkaliptosis also remains unclear.

OXEIPTOSIS
Oxeiptosis is a novel oxygen radical-induced caspase-independent
RCD driven by the activation of the KEAP1-PGAM5-AIFM1 pathway

(Fig. 3j).241 This term was introduced in 2018 by Andreas
Pichlmair’s lab in a study reporting on the response of mice to
ozone and that of cultured fibroblasts and epithelial cells to
hydrogen peroxide (H2O2).

241 Ozone- or H2O2-induced oxeiptosis
is independent of apoptotic or pyroptotic caspases, necroptosis,
autophagy, and ferroptosis.241 The KEAP1-NFE2L2 pathway has
been known to mediate cytoprotective responses to oxidative
injury.241 However, hyperactivated KEAP1 can mediate H2O2-
induced oxeiptosis in an NFE2L2-independent manner,241 through
a pathway that involves KEAP1 interaction partner PGAM5, a
mitochondrial serine-threonine phosphatase that dephosphory-
lates AIFM1 at Ser116.241 Unlike AIFM1-mediated caspase-inde-
pendent apoptosis and parthanatos, dephosphorylated AIFM1-
mediated oxeiptosis does not require the translocation of AIFM1
from mitochondria to the nucleus.241 In vivo, Pgam5–/– mice are
more sensitive to inflammation and injury following ozone
treatment or viral infection, indicating that oxeiptosis may
suppress inflammation.241 However, it remains an open conun-
drum how H2O2 may induce so many different cell death
modalities including oxeiptosis,241 apoptosis,242 necrosis,242 and
ferroptosis.243 Understanding the location- and modification-
dependent role of AIFM1 may help us to distinguish these
different types of RCD. The role of oxeiptosis in pathological cell
death in human diseases also remains largely unknown.

IMMUNOLOGICAL CONSEQUENCES OF CELL DEATH
Cell death induced by stimuli may occur in a way that the immune
system is alerted, triggering immunity against dead-cell antigens.
This “immunogenic cell death” (ICD), a term coined in 2005,244

contrasts with silent efferocytosis, in which dying and dead cells
are cleared by phagocytosis without any inflammatory or immune
reaction, as well as with tolerogenic cell death (TCD) that actively
inhibits immune responses.245 Although apoptosis has generally
been considered as a TCD, accumulating evidence suggests that
apoptosis can be an ICD when induced under certain condi-
tions.246 An acute or chronic inflammatory response elicited by
dying cells not only promotes tissue regeneration and limits
infection, but may also cause tissue injury and disease.247 Given
the fundamental role of inflammation in a variety of human
diseases, it is important to understand the key mediators and
pathways that drive this response.
There is no doubt that the release of DAMPs by dead or dying

cells is an important factor regulating the balance between ICD
and TCD. The immune system can recognize two types of danger
signals.248 PAMPs from microbes are recognized by pattern
recognition receptors (PRRs). Endogenous DAMPs, which act on
the same PRRs as the PAMPs, can be proteins (e.g., HMGB1,
histones, and transcription factor A, mitochondrial [TFAM]) and
nonproteaceous entities (e.g., DNA, RNA, and extracellular ATP).
The release of DAMPs is a hallmark of various types of cell death,
although they may exhibit distinct expression profiles in response
to different stimuli.249 DAMPs activate different PRRs, such as TLRs,
advanced glycosylation end-product specific receptor (AGER, also
known as RAGE), and DNA sensors (Box 4) that are widely
expressed in leukocytes and other cell types.248 A number of
inflammation-related pathways, involving for example the RIPK1-
NF-κB,250 DNA-TMEM173 (Fig. 4),251 and IL-17A–IL-17R252 path-
ways have been documented to mediate the ICD-associated
immune response. However, another study suggests that the
immunogenicity of necroptotic cells does not correlate with the
activation of the RIPK3-RIPK1-NF-κB pathway.253

The pathophysiological role of ICD has amply been documen-
ted in the context of chemotherapy-induced anticancer immune
responses.244 Several cytotoxic antineoplastics stimulate the
immune system by stressing and killing cancer cells in a way
that results in the exposure of DAMPs such as calreticulin246 at the
surface or the release of DAMPs such as ATP,254 annexin A1,255
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HMGB1,256 and TFAM257 into the extracellular space. ICD may
occur in the context of apoptosis and necroptosis, meaning that
the immunological consequences are not tied to the cell death
modality itself but rather to the exposure/release of DAMPs that

may occur as a consequence of premortem stress responses.247

Thus, calreticulin exposure is tied to a partial endoplasmic
reticulum stress response,246 while ATP release occurs through
an autophagy-dependent mechanism.254 ICD of malignant cells
favors the cross-presentation of tumor-associated antigens by
dendritic cells, resulting in the induction of cytotoxic T lympho-
cytes that then play an essential role in keeping tumors in
check.247 In addition to cancer, ICD is also implicated in infectious
disease.247

It is interesting to note that the redox status of DAMPs may
affect their immune activity as this has been exemplified for
HMGB1, a protein that is usually present in the nucleus yet can
translocate to the cytoplasm and undergo cell death-associated
release. Extracellular HMGB1 remarkably initiates, amplifies, and
perpetuates the inflammatory response if it is nonoxidized.258

However, the oxidized form of HMGB1 favors the induction of
immune tolerance in antigen-presenting cells259 and may also
promote the expression of immune checkpoint molecules (such as
CD274, also known as PD-L1) to limit anticancer immunity.260 The
proteolytic cleavage or degradation of HMGB1 also limits its
immunostimulatory activity under some conditions.261,262 Thus,
HMGB1 may act as a tightly controlled universal DAMP that
mediates both ICD and TCD depending on its abundance and
oxidation status.263

In spite of the wealth of information on the rules governing the
immunological consequences of cell death, a systematic explora-
tion of non-apoptotic RCD subroutines with respect to their
immunogenicity is still elusive.

CONCLUSIONS AND PERSPECTIVES
RCD occurs through a variety of subroutines that cause cells to be
dismantled in different ways, hence producing distinct morpho-
logical changes and immunological consequences. In spite of this
“biodiversity,” the evolutionary relationship between distinct RCD
pathways remains unknown. Oxidative stress can lead to various
types of RCD, while the sources of ROS as well as the efficacy of
antioxidant defences are context-dependent. It will be important
to assemble a standard panel of biomarkers and functional tests
including genetic and pharmacological inhibition studies to
accurately distinguish between different forms of RCD that may
occur in a “pure” form or in “mixed” variants, in which distinct
lethal subroutines come into action in a parallel and sometimes
hierarchized fashion. It is well known that the suppression of
apoptosis by caspase inhibition may reveal necroptotic pathways,
and similar backup systems might come into action when other
cell death modalities are inhibited. It is plausible that RCD does
not only play a housekeeping role in maintaining organismal
homeostasis, and that it may play a major role in unwarranted
cellular demise. The release of DAMPs during RCD provides potent
signals to stimulate local inflammatory or systemic immune
responses. The development of novel drugs for selectively
intercepting (or, in sharp contrast, activating) the RCD pathway
holds great promise for preventing and treating human diseases
in which cell loss must be avoided (or when the elimination of
malignant cells is a therapeutic goal). More research on RCD is
needed to define the interplay between distinct cell death
signaling pathways, identify unique molecular effectors for each
type of RCD, and evaluate pro-survival or reprogramming
mechanisms against RCD. In addition, more research is needed
to define the critical point of no return of each RCD subroutine
and to investigate the role of excessive or deficient RCD in human
disease.
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