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The maintenance of upright balance in healthy humans requires the preservation of
a horizontal gaze, best achieved through dynamical adjustments of spinal curvatures
and a pelvic tilt that keeps the head-to-pelvis alignment close to vertical. It is currently
unknown whether the spinal and pelvic compensations of respiratory-related postural
perturbations are associated with preservation of the head-to-pelvis vertical alignment.
We tested this hypothesis by comparing postural alignment variables at extreme lung
volume (total lung capacity, TLC; residual volume, RV) with their reference value at
functional residual capacity (FRC). Forty-eight healthy subjects [22 women; median age
of 34 (26; 48) years] were studied using low dose biplanar X-rays (BPXR; EOS R©system).
Personalized three-dimensional models of the spine and pelvis were reconstructed
at the three lung volumes. Extreme lung volumes were associated with changes of
thoracic curvature bringing it outside the normal range. Maximal inspiration reduced
thoracic kyphosis [T1–T12 angle = 47◦ (37; 56), −4◦ variation (−9; 1), p = 0.0007]
while maximal expiration induced hyperkyphosis [T1–T12 angle = 63◦ (55; 68); +10◦

variation (5; 12), p = 9 × 10−12]. Statistically significant (all p < 0.01) cervical and
pelvic compensatory changes occurred [C3–C7 angle: +4◦ (−2; 11) and pelvic tilt +1◦

(0; 3) during maximal inspiration; C3–C7 angle: −7◦ (−18; −1) and pelvic tilt +5◦ (1; 8)
during maximal expiration], resulting in preserved head-to-pelvis alignment (no change
in the angle between the vertical plane and the line connecting the odontoid process
and the midpoint of the line connecting the center of the two femoral heads ODHA).
Lung volume related postural perturbations were more marked as a function of age, but
age did not affect the head-to-pelvis alignment. These findings should help understand
balance alterations in patients with chronic respiratory diseases that modify lung volume
and rib cage geometry.

Keywords: biplanar X-ray, personalized 3D models of the spine, lung volume, postural alignment, cervical and
pelvic compensatory mechanisms
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INTRODUCTION

The maintenance of upright balance in healthy humans largely
depends on the preservation of an horizontal gaze (Hasegawa
et al., 2017). In this respect, achieving optimal balance with
minimal energy expenditure implies keeping the head-to-pelvis
alignment near vertical (Vital and Senegas, 1986; Dubousset,
1994; Amabile et al., 2018). Spinal curvatures and pelvic
tilt are continuously adjusted to this effect, on the basis of
information transmitted to the central nervous system via
visual and proprioceptive afferents (Perennou et al., 2008;
Amabile et al., 2016).

Although seldomly integrated into models describing human
balance and spinal stability (Granata and Wilson, 2001), the
rib cage imposes important postural adjustment constraints.
Costovertebral joints limit flexion (especially lateral) and rotation
of the thoracic spine (Liebsch et al., 2017) and their mechanical
properties modulate the force exerted on the upper lumbar
spine during trunk flexion (Ignasiak et al., 2016). In addition,
breathing involves rotation of the costovertebral joints that
modifies spinal curvature and, consequently, spinal postural
alignment (Dally, 1908). It ensures that breathing induces a cyclic
postural perturbation. This is reflected by respiratory-induced
oscillations of the center of pressure, defined as the projection
to the ground of the barycenter of vertical reaction forces,
distributed over the entire surface of foot-ground contact. These
oscillations disappear during breath-holding (Caron et al., 2004).
They increase when ventilation increases (David et al., 2012).

The postural perturbations related to breathing in healthy
subjects are centrally integrated and cyclically compensated by
variations of spinal muscular rigidity (phasic contractions of
paravertebral muscles), ensuring the maintenance of balance
(Kantor et al., 2001; Hamaoui et al., 2010). Pelvic adaptations,
consisting of phasic contractions of pelvic floor muscles
synchronous with diaphragmatic contractions (Hodges et al.,
2007; Talasz et al., 2011) and “respiratory” changes of
lumbopelvic and hip angles (Grimstone and Hodges, 2003),
are also involved in cyclic compensation of breathing-related
postural perturbations. Whether or not the spinal and pelvic
compensations of respiratory-related postural perturbations
are associated with preservation of the head-to-pelvis vertical
alignment (as a general balance maintenance mechanism) is
currently unknown. The present study was designed to test the
hypothesis that this is indeed the case, namely that head-to-
pelvis vertical alignment is not affected by lung volume. To
this purpose, we used the EOS R©imaging device, a low-dose
irradiation biplanar X-ray system (BPXR) (Dubousset et al.,
2008) validated for the three-dimensional description of the
normal and pathological weight bearing spine (Ilharreborde
et al., 2013). With this device, we describe postural alignment
and its adjustments as a function of lung volume in upright
healthy volunteers. To maximize the effects of lung volume on
spinal geometry (and therefore to test our hypothesis under
the most extreme compensatory conditions), we performed our
measurements over the full range of vital capacity (VC), namely at
residual volume (RV, end of a maximal expiration) and total lung
capacity (TLC, end of a maximal inspiration), using functional

residual capacity (FRC, end-expiratory relaxation volume) as our
reference point.

MATERIALS AND METHODS

Subjects
Fifty healthy subjects [22 women, 28 men, 34 (26; 48) years,
Body Mass Index 24 (21; 26) kg/m2] with no signs of postural
dysfunction on clinical examination and normal pulmonary
auscultation and pulmonary functional tests, were included.
This study was approved by the Comité de Protection des
Personnes Ile-de-France VI (Ethics Committee) on February
18, 2015 and is registered in the ISRCTN registry under
number ISRCTN56129394. All patients provided their written
informed consent.

Reference Spirometric Values
Prior to the biplanar X-ray acquisitions (BPXR), pulmonary
function tests were performed according to recommended
standards (Wanger et al., 2005), using a spirometer to measure
vital capacity (VC) and the helium dilution technique to measure
FRC and calculate residual volume (RV, equal to FRC minus
expiratory reserve volume -ERV-) and total lung capacity (TLC,
equal to FRC plus inspiratory capacity -IC-) (Brown et al., 1998).
The values of IC and ERV measured during pulmonary function
testing are noted ICpft and ERVpft, respectively.

Lung Volumes During BPXR Acquisitions
Biplanar X-Rays (BPXR, see method next paragraph and
Figure 1) were acquired during voluntary breath holding
at relaxation volume (Vrelax, representing FRC), maximum
inspiration (Vmax, intended as representative of TLC),
maximum expiration (Vmin, intended as representative of
RV). Changes in lung volumes between BPXR acquisitions were
measured using a spirometer (low resistance pneumotachograph,
M.E.C. PFT Systems Pocket-Spiro, Medical Electronics
Construction, Brussels, Belgium), with the subjects wearing
a nose-clip and breathing through a mouthpiece. The Vmax
acquisition was performed after a maximal inspiration initiated
from the end of a tidal expiration under steady-state conditions
(stable tidal volume over several breathing cycles). During the
acquisition (10 to 20 s depending on height), the subjects were
verbally encouraged to maintain breath-hold while relaxing.
After completion of the acquisition, the subject was asked
to expire completely, then breathe quietly for several cycles,
before disconnecting the spirometer. The Vmin acquisition was
performed after a maximal expiration initiated from the end
of a tidal expiration under steady-state conditions. The same
procedure as for the Vmax acquisition was followed. IC and ERV
were measured during the Vmax and Vmin acquisitions (ICbpxr
and ERVbpxr, respectively) (see Figure 1).

Biplanar Controlled Lung Volume Xrays
of the Skeleton
The EOS R©system (EOS R©Imaging, France) is a low-dose biplanar
x-ray system using sources placed at an angle of 90◦, allowing
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FIGURE 1 | Experimental procedures. Low-dose, biplanar X-ray (BPXR) acquisitions at Vrelax in the standardized free-standing position (A) and using
spirometry-controlled lung volume at Vmax (B) and Vmin (C). Subject is fitted with a nose-clip and breaths through a mouthpiece connected to the spirometer.
Spirometric curves are presented for Vmax (B) and Vmin (C). BPXR acquisitions are done during breath holding. From frontal and sagittal radiological images at
Vrelax (D), Vmax (E), and Vmin (F), three 3D model specific are reconstructed (one model for each volume condition, but only one is represented in this figure) (G)
including the odontoid process of C2 (OD), spine from C3 to S1 and pelvis. Then BPXR parameters are measured: C3–C7, T1–T12 and L1–S1 curvatures, pelvic
variables, the angle between the vertical plane and the line through OD and the midpoint of the line connecting the center of the two femoral heads (HA) (ODHA).

simultaneous acquisition of frontal and sagittal radiological
views of the whole skeleton (Dubousset et al., 2008). The first
acquisition was performed at Vrelax, according to the procedure
described by Amabile et al. (2016). Subjects were placed in the
standardized free-standing position, with their hands placed on
the cheek bone on each side of the face and breathed quietly
during the acquisition. Then, BPXR acquisitions at Vmax and
Vmin were then performed as described above. During these
acquisitions, the position of the hands was slightly modified, as
they were placed slightly more anteriorly in order to hold the
spirometer. Of note, simulated acquisitions at Vmax and Vmin
were performed before the actual acquisitions, to accustom the
subject to the imaging procedure. The experimental plan is shown
in Figure 1.

BPXR Image Processing and
Variables Recorded
A 3D model specific to each subject was constructed from frontal
and sagittal radiological images. This model included the superior
tip of the odontoid process of C2 (OD), the vertebrae from C3 to

S1 and the pelvis. This model (see Figure 1) was produced by
using validated reconstruction techniques (Mitton et al., 2006;
Humbert et al., 2009). The following variables were calculated
from this 3D reconstruction: (1) cervical (C3–C7), thoracic (T1–
T12) (T4–T12) and lumbar (L1–S1) spinal curvatures, expressed
in degrees; (2) pelvic variables (pelvic incidence, sacral slope and
pelvic tilt); (3) the angle between the vertical plane and the line
through OD and the midpoint of the line connecting the center of
the two femoral heads (ODHA); (4) the anteroposterior distance
between the vertical projection of C7 and the superolateral border
of S1 (Sagittal Vertical Axis: SVA) (Amabile et al., 2016). OHDA
characterizes the head-to-pelvis alignment (the smaller this value
is, the closer the head-to-pelvis is to the vertical).

Simulated Effects of Lung Volume
Changes on Verticality in the Absence of
Pelvic and Cervical Compensation
The following simulation was devised to illustrate what the
impact of lung volume changes on posture would be in the
absence of any pelvic and cervical spinal compensation:
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we reconstructed the whole pelvis-spine ensemble at Vmin
and Vmax using the values of C3–C7 curvature and pelvic
tilt by measured at Vrelax instead of their actual Vmin
and Vmax values. This yielded “uncompensated values”
of ODHA in the sagittal plane (ODHAsagittalSimu) and
of SVA (SVAsimu). We then confronted ODHAsagittalSimu
and SVAsimu at Vmin and Vmax to the range of values
obtained for respectively, ODHA and SVA at Vmin and Vmax
(considered as reference values in this group of subjects
without any postural dysfunction), to estimate what would
become of postural stability in the absence of cervical and
pelvic compensation.

Statistical Analysis
The distribution of most variables were non-normal, and all
results are expressed as a median and interquartile range (Q1;
Q3). To evaluate how Vmax and Vmin were representative of

TABLE 1 | Baseline characteristics, pulmonary function tests and BPXR
variables at Vrelax.

Baseline characteristics N = 48

Gender M/F 26/22

Age (years) 34 [26; 48]

Height (m) 1.72 [1.65; 1.76]

Weight (kg) 71 [62; 78]

BMI (kg/m2) 23.6 [21.8; 25.9]

Pulmonary function tests reference values

L % predicted

VCpft 4.9 [4.0; 5.8] 113 [104; 126]

ICpft 3.3 [2.7; 4.0] 119 [106; 128]

ERVpft 1.6 [1.3; 1.9] 112 [99; 130]

FRCpft 3.3 [2.8; 3.7] 103 [96; 111]

RVpft 1.7 [1.3; 1.9] 87 [77; 102]

TLCpft 6.5 [5.6; 7.8] 106 [100; 117]

BPXR parameters at Vrelax

Pelvic incidence (◦) 51 [43; 60]

Pelvic tilt (◦) 12 [9; 16]

Sacral slope (◦) −40 [−49; −34]

ODHA3D (◦) 3 [2; 4]

ODHAsagittal (◦) −3 [−4; 1]

ODHAfrontal (◦) 0 [−1; 0]

SVA (mm) −7 [−23; 3]

C3–C7 (◦) −5 [−10; 4]

T1–T12 (◦) 52 [44; 59]

T4–T12 (◦) 40 [32; 45]

L1–S1 (◦) −58 [−69; −50]

BMI, body mass index; VC, vital capacity, IC, inspiratory capacity; ERV, expiratory
reserve volume; FRC, functional residual capacity; RV, residual volume; TLC, total
lung capacity; ODHA, odontoid-hip axis angle; SVA, sagittal vertical axis; C3–C7,
cervical curvature between the third and seventh cervical vertebrae; T1–T12 and
T4–T12, thoracic curvature between the first and twelfth and fourth and twelfth
thoracic vertebrae, respectively; L1–S1, Lumbar curvature between the first lumbar
vertebra and the sacrum.

TLC and RV, respectively, ICbpxr and ERVbpxr were compared
to ICpft and ERVpft using Wilcoxon’s signed rank test for
paired data. BPXR data obtained at Vmax and Vmin were
separately compared to BPXR data at Vrelax by Wilcoxon’s signed
rank test for paired data (no Vmin-Vmax comparisons). SVA
was compared to SVAsimu and ODHAsagittal was compared to
ODHAsagittSlsimu separately at Vmax and Vmin by Wilcoxon’s
signed rank test for paired data. Associations between 1
age and BPXR parameters at the three volumes studied,
ODHAsagittalSimu and difference ODHAsagittalSimu-ODHA 2
dynamic lung volumes and T1–T12 curvature, were evaluated
using Spearman’s correlation coefficient rS. All tests were two-
tailed and p-values < 5% were considered statistically significant,
except for the correlations with age which were adjusted with
Benjamini–Hochberg’s correction for multiple testing with a
target False Discovery Rate of 5%.

RESULTS

The complete protocol could be performed in the 50 subjects,
but two subjects could not be analyzed due to BXPR
acquisition issues. The following results therefore pertain to 48
subjects [22 women, age 34 (26; 48) years, Body Mass Index
23.6 (21.8; 25.9) kg/m2].

BXPR Variables at Vrelax
The baseline characteristics of the subjects and all BPXR variables
at Vrelax are presented in Table 1. Of note, at Vrelax, the
median thoracic kyphosis T1–T12 was 52◦ (44; 59) and the
median ODHA was 3◦ (2; 4). These values are within the range
of previously published normal values (Amabile et al., 2016;
Amabile et al., 2018).

Lung Volumes
Lung volumes from reference pulmonary function tests were
available in the 48 subjects constituting the analysis population
(Table 1). Spirometric data could only be obtained in 44 of these
subjects during BPXR acquisitions (technical issues in 4 subjects).
The difference between ICpft and ICbpxr was 0.40 (0.28; 0.74)
L (p < 0.01). The difference between ERVpft and ERVbxpr was
0.24 (0.05; 0.45) L (p < 0.01). As a result, Vmax [6.1 (5.3; 7.1)
L] represented 94% (89; 96) of TLC and Vmin [1.8 (1.4; 2.2) L]
represented 113% (103; 127) of RV.

Effects of Vital Capacity on Postural
Alignment
The detailed BPXR results are provided in Figure 2 and Table 2
(examples of 3D reconstructions in one subject), Figures 3, 4.
Going from Vrelax to Vmax reduced thoracic kyphosis (median
T1–T12 from 52◦ to 47◦; p = 0.0007), reduced cervical lordosis
(median C3–C7 from −5◦ to 4◦; p = 0.006) and induced pelvic
retroversion (median pelvic tilt from 12◦ to 14◦; p = 0.002).
Conversely, going from Vrelax to Vmin accentuated thoracic
kyphosis (median T1–T12 from 52◦ to 63◦; p = 8.96 × 10−12)
and accentuated cervical lordosis (median C3–C7 from −5◦ to
−12◦; p = 6.70 × 10−7). It also induced pelvic retroversion
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FIGURE 2 | Specific 3D models of one subject at Vrelax Vmax and Vmin. Left:
Vrelax (gray) and Vmin (purple) are superimposed. Right: Vrelax (gray) and
Vmax (blue) are superimposed.

(median pelvic tilt from 12◦ to 17◦; p = 2.12 × 10−9). In both
cases (Vrelax to Vmax and Vrelax to Vmin) the ODHA3D angle
was almost invariant (median variation of 1◦).

Simulated Absence of Pelvic and
Cervical Compensation (Figures 4, 5)
Forty two subjects had ODHAsagittal values in the normal range
defined, previously in healthy subjects (Amabile et al., 2016,
2018) at Vrelax, 37 subjects at Vmin and 37 subjects at Vmax.
In contrast, 31 subjects (65%) had ODHAsagittalSimu values at
Vmax and/or Vmin outside of the normal range. The differences
between ODHAsagittalSimu and ODHAsagittal were 2 (0; 4) at Vmax
(p = 0.001) and 4 (0; 7) at Vmin (p< 0.00001). Regarding SVA, the
differences between SVAsimu and SVA were 7 (−6; 21) at Vmax
(p < 0.0001) and 37 (7; 60) at Vmin (p < 0.0001).

Correlations Between Lung Volumes,
BPXR Values and Age
ERVbpxr correlated with the T1–T12 angle at Vmin (rS = 0.3329;
p = 0.027). Similarly, ICbpxr was correlated with the T1–T12

angle at Vmax (rS = 0.3204; p = 0.034). In contrast, no
correlation was observed between Vrelax and the T1–T12 angle
at Vrelax (p = 0.154).

Age was correlated with more marked pelvic tilt at Vrelax,
Vmax and Vmin, a more marked C3–C7 lordosis at Vrelax and
Vmax (see Table 3). In contrast, no correlation was observed
between age and T1–T12, L1–S1 and ODHA at any of the three
lung volumes studied and between age and ODHAsagittalsimu at
Vmax and Vmin. Age was correlated with lower ERVbpxr and a
greater ERVpft – ERVbpxr difference (Figure 6). In contrast there
was no correlation between age and neither ERVpft nor IC (be it
ICpft, ICbpxr or the difference between these values).

DISCUSSION

This study shows that the changes in thoracic spinal curvature
induced by maximal inspiration and maximal expiration in
healthy humans, are fully compensated in terms of the head-to-
pelvis alignment. This compensation is achieved through changes
in the cervical spinal curvature and changes in the pelvic tilt.
Simulations strongly suggest that in the absence of these cervical
and pelvic compensations verticality could be compromised to
the point of being responsible for falls.

Methodological Strengths
and Limitations
Respiratory-related changes in spinal curvature have been
previously described (Dally, 1908), but this study is the first to
describe postural adaptations over the range of vital capacity. It is
also the first study to take advantage of the BPXR technology to
address this issue. We obtained individual 3D skeleton models
(Mitton et al., 2006; Dubousset et al., 2008; Humbert et al.,
2009) at different lung volumes: this approach is known to allow
a precise evaluation of postural alignment in weight bearing
condition (Vialle et al., 2005; Amabile et al., 2016; Hasegawa
et al., 2017). It has been validated in healthy subjects (Vialle et al.,
2005; Amabile et al., 2016; Hasegawa et al., 2017) for the study of

TABLE 2 | BPXR variables at Vmax and Vmin and their variations from Vrelax.

Vmax Difference p Vmin Difference p

Pelvic tilt (◦) 14 [9; 18] 1 [0; 3] 0.002 17 [11; 23] 5 [1; 8] 2 × 10−9

Sacral slope (◦) −40 [−46; −34] 1 [−2; 4] 0.166 −36 [−43; −28] 6 [0; 9] 6 × 10−7

ODHA3D (◦) 4 [3; 6] 1 [0; 2] 1.18 × 10−5 4 [2; 6] 1 [0; 2] 0.014

ODHAsagittal (◦) −4 [−5; −2] −1 [−2; 0] 4.26 × 10−6
−3 [−5; −1] 0 [−1; 1] 0.418

ODHAfrontal (◦) 0 [−1; 1] 0 [0; 1] 0.002 0 [−1; 1] 0 [0; 1] 0.006

SVA (mm) −22 [−34; −10] −11 [−23; −5] 9.49 × 10−7
−6 [−23; 9] 3 [−12; 21] 0.239

C3−C7 (◦) 4 [−3; 8] 4 [−2; 11] 0.006 −12 [−17; −6] −7 [−18; −1] 6 × 10−7

T1–T12 (◦) 47 [37; 56] −4 [−9; 1] 0.0007 63 [55; 68] 10 [5; 12] 8 × 10−12

T4–T12 (◦) 33 [25; 40] −5 [−9; 0] 1.18 × 10−5 47 [40; 53] 6 [2; 12] 1 × 10−8

L1–S1 (◦) −56 [−68; −51] 0 [−4; 5] 0.512 −57 [−66; −45] 3 [−1; 8] 0.012

ODHA, odontoid-hip axis angle (3D: three-dimensional, sagittal: in the sagittal plane, frontal: in the frontal plane); SVA, sagittal vertical axis; C3–C7, cervical curvature
between the third and seventh cervical vertebrae; T1–T12 and T4–T12: thoracic curvature between the first and twelfth and fourth and twelfth thoracic vertebrae,
respectively; L1–S1, lumbar curvature between the first lumbar vertebra and the sacrum.
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FIGURE 3 | Influence of lung volume on BPXR parameters. C3–C7, T1–T12 and pelvic tilt values at Vrelax, Vmax, and Vmin in the 48 subjects. ∗p < 0.01 and
∗∗p < 0.001.

FIGURE 4 | ODHA values at the three lung volumes and ODHA simulated values in the absence of pelvic and cervical compensation at Vmax and Vmin. On the left,
representation of individual values of ODHAsagittal at Vrelax (reference values), Vmax and Vmin. On the right representation of individual values of ODHAsagittalSimu in
the absence of pelvic and cervical compensation at Vmax (Vmaxsimu) and Vmin (Vminsimu). For both graphs, median of the reference values at Vrelax (in black solid
line), 25–75th percentiles interval (in black dashed line) and normal values (Amabile et al., 2018) (in gray) are represented.

compensatory mechanisms during aging (Amabile et al., 2018),
and in scoliotic patients (Ilharreborde et al., 2013).

We paid particular attention to perform BPXR acquisitions
at reproducible lung volumes, hence the need to perform
spirometric measurements during the procedure. The subjects

therefore had to breathe into a spirometer and hold it themselves.
Breathing through a spirometer has been shown to induce a
postural constraint (Clavel et al., 2017). To limit the impact of
this bias on our observations, we carefully instructed the subjects
to hold the spirometer between the palms of their hands with
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FIGURE 5 | Simulated effects of lung volume changes on verticality. ODHA:
angle between the vertical plane and the line through odontoid (OD) and the
midpoint of the line connecting the center of the two femoral heads (HA);
Vrelax: relaxation lung volume; Vmin: minimal lung volume; Vmax: maximal
lung volume. (A) ODHAsagittal angles in subject 10, measured at Vrelax (black
solid line) (–1◦) and Vmin (gray solid line) (–5◦), and uncompensated (in the
absence of pelvic and cervical compensation) simulated ODHA at Vmin
(Vminsimu gray dashed line) (+11◦). (B) ODHA angles in the same subject,
measured at Vrelax (black solid line) (–1◦) and Vmax (gray solid line) (–5◦), and
uncompensated (in the absence of pelvic and cervical compensation)
simulated ODHA at Vmax (Vmaxsimu gray dashed line) (+2◦).

TABLE 3 | Correlations between age and BPXR parameters.

rS p q

Pelvic tilt at Vrelax 0.3748 0.00867366 0.03324904

Pelvic tilt atVmax 0.4608 0.00098087 0.01128

Pelvic tilt at Vmin 0.3949 0.00547981 0.03055895

C3–C7 at Vrelax −0.3578 0.01252155 0.04114223

C3–C7 at Vmax −0.3866 0.00664325 0.03055895

BPXR, biplanar X-ray; C3–C7, cervical curvature between the third and seventh
cervical vertebrae; Vrelax, lung volume which corresponds to the functional residual
capacity during BPXR acquisition; Vmax, lung volume after maximal inspiration
during BPXR acquisition; Vmin, lung volume after maximal expiration during BPXR
acquisition; rs, Spearman’s correlation coefficient; p: associated p-value; q: p-value
adjusted with Benjamini–Hochberg’s correction for multiple testing.

their shoulders relaxed, in a position that was very close to
the reference position (namely at relaxed end-expiratory lung
volume, without the spirometer). We can however not rule out
that the spirometric measurements interfered with our subjects’
standing posture. The amplitude of the corresponding changes, if
any, was probably small respective to the postural modifications
observed in response to the very large volume variations that
we studied. Of note, Vmax and Vmin as measured during the

FIGURE 6 | Correlations between age and expiratory reserve volume. ERV,
Expiratory Reserve Volume; BPXR, Biplanar Xrays. (A) Correlation between
age and expiratory reserve volume measured prior to the BPXR acquisition
(spirometric reference values ERVpft). (B) Correlation between age and ERV
measured during BPXR acquisition (ERVbpxr). (C) Correlation between age
and the difference ERVpft – ERVbpxr. rs: Spearman’s correlation coefficient; p:
associated p-value; q: p-value adjusted with Benjamini–Hochberg’s correction
for multiple testing.

BPXR acquisitions, significantly differed from TLC and RV.
Nevertheless, the differences were small, and the dispersion of the
values was limited.

As a limitation of the study, we acknowledge that our
results pertain to postural adaptations to maximal lung volumes
described under static rather than dynamic conditions. This
limits their transposition to the study of respiratory-related
postural perturbations and adaptations in real-life, particularly
for hyperventilation, which is known to increase breathing-
related postural perturbation (Hodges et al., 2002; Hamaoui
et al., 2010; David et al., 2012) while holding the breath (as
it was required in our study) is known to reduce or cancel it
(Caron et al., 2004). In addition, nasal breathing maneuvers were
not tested in these experiments for physiological comparison,
as subjects were instructed to breathe through a mouthpiece.
However, evaluations were done in a static condition, and
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consequently the spinal alignment we observed at extreme lung
volumes was related to lung volume variations and was not
influenced by the route of breathing before holding the breath.

Postural Alignment and Vital Capacity
At extreme lung volumes, we observed variations of thoracic
curvature resembling those long described during breathing
(Dally, 1908) but of an expectedly greater amplitude. Indeed,
inspiring to TLC and expiring to RV brought the T1–T12
angle outside its normal range (Vialle et al., 2005; Amabile
et al., 2016) and resulted in highly variable SVA values. In the
absence of compensation, this would compromise upright static
balance (Roussouly et al., 2005; Vialle et al., 2005; Roussouly
and Pinheiro-Franco, 2011b). Yet, in our subjects, verticality was
preserved as ODHA values remained within the normal range
(Amabile et al., 2016). We did observe compensations at the
pelvic and lumbar level, as it is the case during resting breathing
(Kantor et al., 2001; Caron et al., 2004; Hodges et al., 2007;
Hamaoui et al., 2010; Talasz et al., 2011). We also observed the
activation of a cervical compensatory mechanism (Figure 3 and
Table 2). Combined pelvic and cervical compensations have been
described during aging (Diebo et al., 2015; Amabile et al., 2018)
and in degenerative diseases altering spinal posture (Roussouly
and Pinheiro-Franco, 2011b; Diebo et al., 2015; Paternostre et al.,
2017). They restore an adequate alignment of the head and
pelvis to maintain horizontal gaze (Hasegawa et al., 2017) while
achieving an energetically economical standing position (Duval-
Beaupere et al., 1992). To our knowledge, cervical compensation
has not been described before in the context of respiratory-related
postural perturbations. This is possibly because the respiratory-
induced changes in thoracic curvature during tidal breathing
are not sufficient to trigger cervical adaptations, but become so
when lung volume changes are very important as during our
experiment (Scheer et al., 2013). In our subjects, changes in
cervical spinal curvature appeared as a predominant postural
compensatory mechanism, while the lumbar compensation was
limited. The lumbar curvature is mostly determined by pelvic
incidence, defined as the angle perpendicular to the sacral plate
at its midpoint, and a line connecting the same point to the
center of the bicoxofemoral axis. This angle is constant whatever
the position; its values for one subject determine the global
spinal alignment and particularly the magnitude of the lumbar
lordosis, which partly explains the relatively low mobility of this
spine segment (Roussouly et al., 2005). Moreover, inspiratory
and expiratory efforts over the full range of vital capacity both
induce increase of lumbar spinal stiffness, which in addition may
limit lumbar mobility at extreme lung volumes (Shirley et al.,
2003). This improvement in lumbar stiffness is due to an increase
of trunk muscle activity and intra-abdominal pressure, and by
the direct action of the diaphragm on the lumbar spine via its
insertions (Shirley et al., 2003). Consequently, dramatic changes
of thoracic curvature when maximally mobilizing lung volume,
predominantly trigger cervical and pelvic segments, which are
freer of motion (Roussouly and Pinheiro-Franco, 2011a).

In line with this, changes in lumbar curvature were small in
our subjects both at Vmax (where they did not reach statistical
significance) and at Vmin.

Moreover, the cervical lordosis is highly correlated to thoracic
hyphosis when spine alignment varies (Shirley et al., 2003). In
our subjects, it was adjusted to maintain the horizontal gaze when
mobilizing vital capacity.

Simulations showed that in the absence of compensation,
65% of our subjects would have had ODHA values outside
the normal range at either of the lung volumes studied, and
therefore a compromised balance. Figure 5 clearly illustrates
this phenomenon in one subject. Of note, maximum expiration
induced more marked changes in thoracic spinal curvature
(hyperkyphosis) than maximum inspiration. It also induced
more intense pelvic postural compensation (retroversion) than
maximum inspiration, suggesting that cervical compensations
was less efficient during expiration than inspiration (Scheer et al.,
2013). As a result, maximal expiration appears theoretically more
threatening to postural stability than maximal inspiration.

This study fuels the notion that alterations in postural
compensatory mechanisms involved by respiratory-related
postural perturbations could constitute one of the determinants
of the postural dysfunction observed during chronic respiratory
diseases known to induce changes in lung volume or chest
geometry, such as chronic obstructive pulmonary disease
(COPD) (Janssens et al., 2014; Lahousse et al., 2015).

Effects of Age
In our study population at Vrelax, age was significantly associated
with more marked pelvic retroversion and more marked cervical
lordosis. This is consistent with age-related postural adjustments
previously reported (Diebo et al., 2015; Amabile et al., 2018).
Of note, the postural adjustments that we observed during
maximum expiration consist in an exaggeration of this pattern.
Compensatory postural mechanisms during expiration could
therefore be less effective in older people.

Normal aging is accompanied by decreased vital capacity
with a decreased expiratory reserve volume -observed in our
study population- and a decreased inspiratory capacity -not
observed in our study population- (Turner et al., 1968).
This is generally attributed to changes in thoracopulmonary
mechanical properties (Verbeken et al., 1992; Galetke et al.,
2007). The present data raise the hypothesis that the age-
related reduction in vital capacity could partly proceed from
deteriorated compensation of the respiratory-related postural
perturbation. This is supported by the correlations observed
in our subjects between lung volumes and T1–T12 curvature
(increased kyphosis during expiration; decreased kyphosis during
inspiration): greater lung volumes induce greater perturbations
of postural alignment hence a greater need of postural
compensation to maintain balance. This is also supported by
the smaller IC and ERV values during BPXR acquisitions
compared to reference values: although technical issues are
possible, the subjects could have “censored” their respiratory
efforts during BPXR acquisitions to preserve their balance. Of
note, the differences between BPXR lung volumes and reference
lung volumes were more marked with age (namely in subjects
with lower postural compensation capacity) and particularly
so for maximal expiration (that threatens balance more than
maximal inspiration, see above). This postulated mechanism
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(impact of limited postural compensation capabilities on vital
capacity) could, beyond aging, be called on to explain part of the
impact of thoracic deformities on lung volumes [e.g., scoliosis
(Szopa and Domagalska-Szopa, 2017) or secondary spinal lesions
(Kenis-Coskun et al., 2017)].

CONCLUSION

Extreme lung volume variations over vital capacity is associated
with changes of thoracic curvature bringing it outside the normal
range, which would theoretically compromise verticality. This
is however fully compensated by adaptations of the cervical
curvature and pelvic tilt to preserve adequate head-to-pelvis
verticality and horizontal gaze alignment. Lung volume related
postural perturbations increase with age, but age did not affect
head-to-pelvis alignment. Future studies are needed to investigate
potential postural dysfunction in chronic respiratory diseases that
induce changes of lung volume or chest geometry, such as COPD.
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