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Abstract
Wepredict the existence of high frequencymodes in the interference pattern of two condensatesmade
of fermionic-atomdimers. Thesemodes, which result from fermion exchanges between condensates,
constitute a striking signature of the dimer composite nature. From the 2-coboson spatial correlation
function, that we derive analytically, and the Shiva diagrams that visualizemany-body effects specific
to composite bosons, we identify the physical origin of these high frequencymodes and determine the
conditions to see them experimentally by using bound fermionic-atompairs trapped on optical lattice
sites. The dimer granularity which appears in thesemodes comes fromPauli blocking that prevents
two dimers to be located at the same lattice site.

1. Introduction

All particles consisting of an even number of fermions are boson-like. Although this propertymerely derives
from amathematical fact—the particle creation operators commute—the boson-like nature of the particles
bears a strong consequence: theymust undergo Bose–Einstein condensation (BEC). This physical effect has been
observed for dilute gases of ultracold bosonic atoms [1–4], decades after Einstein predicted it. An oscillatory
behavior showing the condensate coherence has also been observed in the interference pattern of two
condensates of bosonic atoms [5–8].

The fact that boson-like particles aremade of fermions shows up in nontrivial ways. This composite nature
mathematically appears through the commutator of their destruction and creation operators, ,i j  =-[ ]†

Di j i j, ,d - .While this commutator reduces to the delta term for elementary bosons, theDi, j operator is
responsible for fermion exchangeswith other particles [9, 10]. Although these exchanges are commonly
neglected, the composite bosons (cobosons) then reducing to point-like structureless elementary bosons, they
can have significant consequences. The study of the particle composite nature in the field of semiconductor
excitons was pioneered byKeldysh andKozlov [11] as early as 1968.

In a gas, the coboson centers ofmass are delocalized over the system volume LD, whereD is the space
dimension, while fermion exchanges occur over the coboson volume aB

D, where aB is its Bohr radius. So,many-
body effects induced by fermion exchanges betweenN cobosons are controlled by the dimensionless parameter

N
a

L
. 1B

D

h = ⎜ ⎟⎛
⎝

⎞
⎠ ( )

This leads us to conclude that the particle composite nature can only have significant consequences for a dense
gas at the scale of the coboson size6. Sizeable ηʼs are difficult to reach for cold atoms due to the very small atom
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Note that this composite nature also appears at the two-body level, through a significant reduction of the dimer–dimer scattering length by

the repeated effective coboson–coboson interaction inwhich fermion exchange plays a key role [12].
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size; yet a 6Li2 dimer condensate with density reaching 0.3 on the dimer–dimer scattering length scale has been
reported [13].

By contrast, in the case of semiconductorWannier excitons, with size two orders ofmagnitude larger than
typical atoms, values of η as large as 1, or even larger, are easy to reach—although for such large ηʼs, excitons
dissociate into an electron–hole plasma. TheWannier exciton composite nature has been shown to have a
significant impact on the physics of excited semiconductors. Among its noticeable consequences, we can cite the
exciton optical Stark effect [14–16] and the coexistence of dark and bright condensates [17, 18] that results [19]
from the coupling, through fermion exchange, between bright excitonswith spin±1 and dark excitons with
spin±2.

It has been shown from the study ofWannier excitons, Frenkel excitons andCooper pairs [10], that the
dimensionless parameter which rules composite bosonmany-body effects physically corresponds to
η=N /Nmax, whereNmax is the number of cobosons that the sample can accommodate. ForWannier excitons,
this number is (L/aB)

3, because for a higher number, excitons overlap and dissociate into an electron–hole
plasma. In the case of Frenkel excitons,made of on-site excitations in a periodic lattice,Nmax is the numberNs of
lattice sites in the sample at hand.

As a result, amore controllable platform to get sizable η is not to use a gas but an optical lattice, as previously
considered to studyHong-Ou-Mandel-like interferences [20]. Indeed, dense samples inwhich each lattice
potential well traps a single dimer have already beenmade, with η∼0.4 for 40K2 fermionic-atomdimers [21],
and η∼0.5 or 0.8 for 87Rb2 [22] or 133Cs2 [23] bosonic-atomdimers. In the case of heteronuclear dimers, dense
optical lattice samples of RbCs [24] andKRb [25, 26] have also been reported. These studies open an exciting
route in the field of cold atoms, toward studying the rich yet essentially unexploredworld ofmany-body effects
resulting fromdimensionless fermion (or boson) exchanges, that is, exchanges occurring between quantum
particles in the absence of energy-like particle-particle interaction.

Motivated by the pioneering studies of condensate coherence properties in the case of bosonic atoms [5–8],
we here investigate the effect of the particle composite nature on the interference pattern of two condensates
made of fermionic-atomdimers.Wefirst give arguments tofind their signature in the spatial correlation
function; next, we provide hints on how this function can be analytically derived, and finally we discuss the
relevant limits.

To do it, we considerN pairs of fermionic atoms,α andβ, in different hyperfine states, these atoms being
trapped in an optical lattice havingNs sites. TheirHamiltonian reads as [20]

H H U a b b a V a b b a , 2
i

N

i j i
R R R R R R R R R R0

1

s

i i i i j i j j i iå åå= - +ab
= ¹

- ( )† † † †

H a a b b . 3
i

N

i

N

R R R R0
1 1

s

i i

s

i iå åe e= +a b
= =

( )† †

TheH0 eigenstates for one fermionic-atompair are a b vR Ri j
ñ∣† † with energy εα+εβ, where vñ∣ denotes the

vacuum. The energy levels, (εα, εβ), depend on the optical lattice potential. The strength of the atom–atom
attractive potential,Uαβ>0, can be varied through Feshbach resonance, allowing a control on the spatial
extension aB of a bound pair. For largeUαβ attraction, the lowest-energy subspace reduces to theNs states,
a b vR Ri i

ñ∣† † , with energy Ue e+ -a b ab, each lattice site Ri possibly hosting one bound pair, with creation

operator a bR R Ri i i
 =† † † . These pairs are structureless when the lattice period, which is equal to half the optical

laser wavelengthλ, is large compared to the relative-motion extension aB of a bound pair. This inequality,
aBl  , can be easily fulfilled in optical lattice experiments, as in the case of 40K2 dimers [21].

The third termof equation (2) describes inter-site interaction. ItsVR Rj i- strength can be changed by
changing the laser intensity which is proportional to the lattice potential depthV0. Due to this inter-site
interaction, bound fermionic-atompairs delocalize over thewhole lattice. To justify our consideration of one
bound pair per lattice site atmost, the inter-site interaction has to be small compared to the on-site repulsion.
This condition can be achievedwhen the lattice potential depthV0 is large compared to the recoil energy
E k m2R a

2 2= , with k 2p l= andma the atommass, as previously shown in the case of elementary
bosons [27].

In the following, we shall refer to fermionic atoms simply as fermions, and refer to delocalized bound pairs as
dimers. The dimer creation operators

R Q 4
i

N

iQ R
1

s

i
 å= á ñ

=

∣ ( )† †

with a distributionwhich isflat, NR Q ei s
Q Ri iá ñ =∣ · , in the large lattice limit. As the dimer spatial extension aB

is essentially zero, it cannot enter the dimensionless parameter that controlsmany-body effects. Instead, this
dimensionless parameter forN dimers in an optical lattice havingNs sites reads, like for Frenkel excitons

2
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[10, 28, 29], as

N

N
. 5

s

h = ( )

Toproduce two condensatesmade from such dimers, we propose tofirst prepare a single condensate in an
optical lattice having a lattice spacing equal to a few hundreds of nanometers, depending on the laser wavelength.
Then, we ramp up a potential barrier in themiddle of the lattice using an external field in order to split this
condensate into two spatially separated condensates, which are ultimately let to interfere, andwemeasure the
correlation function. The potential barrier in themiddle of the experimental setup can be produced by imposing
another optical lattice with amuch larger lattice spacing. Lattice spacing of the order of a hundredmicrometers
has been experimentally produced [30] by using two near-infrared laser beamswithλwavelength intersecting at
a small angle θ, the lattice spacing being equal to 2 sin 2l q( ). For nearly collimated beams, that is, for θ∼0,
the lattice spacing can become very large, of the order of hundreds ofmicrometers.

We predict that, compared to elementary bosons, the interference pattern has additional high frequency
modes that come from fermion exchanges between condensates. These interferences constitute a striking
signature of the dimer composite nature. As these additionalmodes aremany-body in essence, a sizeable η is
required to observe them. This is why previous experiments performedwith two rather dilute condensatesmade
of small bosonic atoms like rubidium [5] or sodium [6–8], withmomenta Q and Q Q¢ = - , have only seen
interferences ruled by themomentumdifference, Q Q Q2- ¢ = . Such interferences can be obtained by taking
the bosonic atoms as elementary bosons [31–33]. The higher frequencymodeswe predict come from fermion
exchanges involvingmore than one dimer from each of the two Q and Q¢ condensates. They can produce
momentumdifferences m Q Q- ¢( )with m 2 : them=2mode appears when at least one fermion exchange
in each condensate enters into play; so, its amplitude is η2 smaller than them=1mode. Fermion exchanges also
affect them=(0,1)modes present for elementary bosons, but only through η corrections in their prefactors.

2. Physics of the problem

In this section, we use simple physical arguments to understand the formof the interference pattern resulting
from the collision of two dimer condensates. An appropriate way to derive this interference pattern is through
the dimer–dimer spatial correlation function

R R, , 6N N

N N N N

N N N N

R R R R

,
2

1 2
, ,

, ,

1 2 2 1


   y y

y y
=

á ñ

á ñ¢
¢ ¢

¢ ¢
( )

∣ ∣
∣

( )( )
† †

the two-condensate statemade ofN dimers ofmomentum Q and N ¢ dimers ofmomentum Q¢ reading as

v . 7N N
N N

Q Q,  y ñ = ñ¢ ¢
¢∣ ( ) ( ) ∣ ( )† †

Taking N N¢ ¹ and Q Q¢ ¹ - makes the physics easier to grasp.
Let usfirst deal without fermion exchanges, which corresponds to taking the dimers as elementary bosons.

The operator R1
 destroys one of the N N+ ¢( ) dimers of the N N,y ñ¢∣ state at the R1 site. Let this destroyed dimer

have amomentum Q. If R2
 also destroys a Q dimer, these two detections generate aN(N−1) factor from the

number of ways to choose the two Q dimers amongN. Due tomomentum conservation in the R R,N N,
2

1 2 ¢( )( )

numerator, R1
† and R2

† must recreate two Q dimers. The associated phase factors e Q Ri 1· and e Q Ri 1- · to detect a Q
dimer at R1 then cancel; same at R2. So, the term inN(N−1) does not bring any oscillatory contribution to

R R,N N,
2

1 2 ¢( )( ) (figure 1(a)). In the sameway, no oscillation occurs if two Q¢ dimers (figure 1(b)) or one Q dimer

and one Q¢ dimer (figure 1(c)) are destroyed and recreated at the same site, their counting factor being,
respectively, N N 1¢ ¢ -( ) and NN2 ¢, the 2 coming fromdetecting the Q dimer at R1or at R2. So, we end upwith
a contribution to R R,N N,

2
1 2 ¢( )( ) equal to

N N N N NN1 1 2 . 8- + ¢ ¢ - + ¢( ) ( ) ( )

For an oscillatory term to appear in the correlation function, the dimers destroyed and recreated at the Ri

sitemust have differentmomenta (figure 1(d)). The term inwhich R1
 destroys a Q dimer and R1

† recreates a Q¢
dimer brings a factor e R Q Qi 1 - ¢·( ) with a NN ¢ prefactor coming from the number of ways to choose these Q Q, ¢( )
dimers. To conservemomentum, R2

 then has to destroy a Q¢ dimer and R2
† to create a Q dimer, which brings a

factor e R Q Qi 2 ¢-·( ). So, we end upwith a contribution to R R,N N,
2

1 2 ¢( )( ) equal to

NN e e NN Q Q R2 cos , 9i iR R Q Q R R Q Q
12

1 2 1 2¢ + = ¢ - ¢- - ¢ - ¢-⎜ ⎟⎛
⎝

⎞
⎠ ( ) · ( )( )·( ) ( )·( )
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where R R R12 1 2= - . This leads to them=1mode previously found for elementary bosons. Indeed, when
N N= ¢ and Q Q¢ = - , the spatial correlation function for elementary bosons corresponds to

N

N N

N

N
R R Q R,

2

2 2
1

2 1
cos 2 , 10N N

s
,

2
1 2 2 12 =

-
+

-{ }¯ ( ) ( )!
( )!

· ( )( )

asfirst given in [31]. For completeness, we rederive in appendix A the n-particle correlation function for free
elementary bosons using a different approach. The amplitudes of them=(0, 1) terms both scale as
N Ns

2 2 2h~ and no othermode exists in the case of elementary bosons.
The dimer composite nature brings a far richer physics because R can destroy any two fermions. These two

fermions can simply be the ones of the Q
† or Q ¢

† pair in N N,y ñ¢∣ . Or, since identical fermions are

indistinguishable, they can also be any pair resulting from fermion exchanges in the N N,y ñ¢∣ state. As exchanges
conservemomentum, fermion exchange inside the Q condensate does not change themomentumof the dimer
detected at R1 site, as shown in the Shiva diagramoffigure 2a. So, this does not bring any oscillatory
contribution.However, as each fermion exchange brings a 1/Ns factor, this term appears with a prefactor
equal to

N N N N N N1 2 1 . 11s h- - -( )( ) ( ) ( )

It thus is η times smaller that the leadingN(N−1) term obtained in the absence of fermion exchange, shown in
figure 1(a).

By contrast, fermion exchanges between the Q and Q¢ condensates can lead to terms inwhich the detected
dimers have amomentumdifference equal to m Q Q- ¢( ), withm=1 as infigure 2(b),m=2 as infigure 2(c),
andm�3 for exchanges involvingmore dimers from each condensate. The term corresponding to the Shiva
diagramoffigure 2(b) produces the same Q Q Rcos 12- ¢( ) · oscillatory term as the one of equation (9), but its
prefactor

N N N N N NN1 1 12s
2 hh- ¢ ¢ - ¢ ¢( ) ( ) ( )

Figure 1.Correlation function R R,N N,
2

1 2 ¢( )( ) defined in equation (6), in the absence of fermion exchanges. A dimer is destroyed and
recreated from the same fermion pair at the same positionwith samemomentum (a, b, c) orwith differentmomenta (d), the total
momentumbeing conserved. The oscillatory Q Q Rcos 12- ¢( ) · termof equation (9) comes from (d). In Shiva diagrams, a coboson
dimer is represented by a double line, the solid and dashed lines representing its two different fermionic atoms. See [34] for a detailed
description of Shiva diagrams.

Figure 2. Shiva diagrams for fermion exchanges: (a) exchanges within the Q condensate do not change themomentumof the dimer
detected at R ;1 so, they do not lead to oscillatory terms. (b, c)Exchanges involving the two condensates can lead to dimers detected at
the same site havingmomentumdifferences m Q Q¢ -( ), withm=1 as in (b), orm=2 as in (c).Modeswith m 2 are the
signature of the dimer composite naturewe predict.

4
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is hh¢ times smaller due to the two exchanges it contains.More generally, them=1 terms inwhich fermion
exchanges enter bring density-dependent corrections to the amplitude of the interference terms already present
for elementary bosons.

Momentumchanges m Q Q- ¢( )withm�2 are adefinite signature of the condensate composite nature
because they generate newoscillatorymodes.The Q Q2 - ¢( )momentumchange infigure 2(c)produces a

Q Q Rcos 2 12- ¢( ) · contribution.Thism=2 termhas four exchanges, but two sumsover Q1 and Q2 which cancel
twoNs factors coming fromexchanges; so, it also appearswith aprefactor N N N N N NN1 1 s

2 hh- ¢ ¢ - ¢ ¢( ) ( ) .
Note that in order toproduce thesehighermodes, similar exchangesmust occur in the Q and the Q¢ condensates; so,
m cannot be larger than N NMin , ¢{ }.

Last but not least, the fact that two identical fermions cannot be at the same sitemust hold sway over the
possibility of seeing two dimers at the same site. Indeed, a 0R

2 =( )† imposes 0R
2 =( )† . So, R R,N N,

2
1 2 ¢( )( ) must

cancel for R R1 2= .
All this shows that fermion exchanges inside each condensate and between the two condensates change the

interference pattern compared to that obtainedwith elementary bosons in threeways:

(i) the amplitudes of the elementary-boson terms have many-body corrections reading in powers of densities,
η and ;h¢

(ii) higher oscillatory modes in m Q Q Rcos 12- ¢( ) · with m 2, 3, ...= ( ) up to N NMin , ¢{ } appear, with ever
weaker amplitudes;

(iii) a dip at the scale of the optical lattice constant exists for R R1 2= .

The spatial correlation function for fermionic-atomdimers thus has to read

A mR R Q Q R, 1 cos . 13N N
m

N N

N N
m

R R,
2

1 2 ,
0

Min ,

, 121 2 åd= - - ¢¢
=

¢

¢
⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) · ( )( )

{ }
( )

The amplitudes of them=(0, 1)modes are equal to the elementary-boson valueswithin density corrections
coming from fermion exchanges, namely A 1 ,N N,

0 2 h h h h+ ¢ + ¢¢  ( ) ( ( ))( ) and A 2 1N N,
1 hh hh¢ + ¢¢  ( ( ))( ) .

The larger number of exchanges required for them=2mode appears in its amplitudewhich scales as
AN N,

2 2hh~ ¢¢ ( )( ) within density corrections. And so on for largerm.

3. Theoretical approach

For dimers characterized by a single quantum index Q, as dimers in an optical lattice, it is possible to perform an
exact calculation of the n-coboson spatial correlation function, R R, ...,N N

n
n, 1 ¢( )( ) , in spite of the tricky fermion

exchanges that occur not only within each condensate, but also between the Q and Q¢ condensates—from
which themost interesting physics arises. To do it, we have developed an original procedure inwhich N N,y ñ¢∣ is

written in terms of the generalized coherent states e vz z
z z

,
Q Q f ñ = ñ¢
+ ¢ ¢∣ ∣† †

where z z, ¢( ) are complex scalars, as

explained in appendix B.Using it, we can obtain R R, ...,N N
n

n, 1 ¢( )( ) analytically for arbitrary n. As its expression is
extremely complicated, even for n=2, we shall here only discuss two limiting cases that best illustrate the
involved physics, and refer the interested readers to appendix B for the general form.

4. Analytical results for limiting cases

For n=1, the function RN N,
1

1 ¢( )( ) stays equal to its elementary-boson value, N N Ns+ ¢( ) , which physically
corresponds to the total dimer density of the two condensates at the scale of the lattice site numberNs. This result
follows from the fact that (i) RN N,

1
1 ¢( )( ) does not depend on R1, and (ii) themean value of the number operator

Q Q Q R R R   å = å† † in the N N,y ñ¢∣ state is equal to the total dimer number, N N+ ¢.
To grasp how fermion exchanges affect the interference pattern of two condensates, let us consider the

simplest case inwhich the predictedm=2 oscillatorymode exists, that is N N 2= ¢ = . The explicit expression
of the spatial correlation function then reads (see equation (B.28))

N
x x xR R Q Q R Q Q R,

1
12 1 8 1 cos cos 2 . 14

s

R R
2,2
2

1 2
,

2 0 1 12 2 12
1 2

d
=

-
+ + + - ¢ + - ¢{ }( )

( )
( ) ( ) ( ) · ( ) · ( )( )

The changes from the elementary-boson result given in equation (10), induced by exchanges, appear in the xiʼs,
as illustrated infigure 3. They read x N N N F x N N F5 3 15 36 , 7 36s s s s s0

2 3
2,2 1

2 3
2,2= - + = - +( ) ( ) , and

x N F8 s2
2

2,2= ( ) . The F2,2 factor, equal to N N N1 10 33 36s s s
2 3- + - , comes from the norm, N N FN N,¢ ¢! ! ,

of the N N,y ñ¢∣ state given in equation (B.26). Fermion exchanges like the one offigure 2(a) give the 1/Ns termof
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x0; the one offigure 2(b) gives the N1 s
2 termof x1; the one offigure 2(c) gives the x2 prefactor of them=2 term.

Figure 3 shows the resulting correlation function forNs=5, fromwhichwe clearly see the next-to-lowest
oscillatorymode, and the singularity at R 012 = .

So far, we have considered bound fermion pair a bR Ri i

† † with no relative-motion extension. Pauli blocking
then appears in the strongest way by forbidding two dimers to be at the same site through the 1 R R,1 2

d-( )
prefactor in equation (13). In reality, physical dimers are trapped in lattice potential wells with finite depth and
width; so they have afinite spatial extension. This physically broadens the effect of Pauli blocking and transforms
the singular dip of equation (13) into a smooth dip (seefigure 3). However, such dimer granularitymust not
affect the interference pattern at larger scale. Interestingly, a similar dip feature has been found for elementary
bosonswith hardcore repulsion [35].

5. Conclusion

In this work, we address the commonly bypassed consequences of the particle composite nature in cold-atom
physics, by considering the interference pattern of two condensatesmade of dimers.We predict the existence of
additional high frequencymodes, in contrast to a unique low-frequencymode existing when the particle
composite nature is neglected.With the help of analytical calculations and Shiva diagrams that visualize
composite bosonmany-body effects, we evidence that these highmodes come fromdimensionless fermion
exchanges between condensates. Beingmany-body in essence, the amplitude of these highmodes depends on
density; therefore, their observation requires rather dense condensates, that is, sizeablemany-body parameter η,
as possibly obtained by using optical lattices. In addition, Pauli blocking between the particle fermionic
components produces a dip in the interference pattern that constitutes another signature of the dimer
granularity.

Just like the composite nature of semiconductor excitons has revealed a breadth of remarkable effects, we
anticipate cold-atom systems to provide a novel, fully controllable playground to investigate further in depth the
very uniquemany-body effects that result fromdimensionless fermion exchanges, that is, exchange in the
absence of fermion-fermion interaction. Recent optical lattices already reach densities high enough for these
newmany-body effects to be observable, including the signatures we here predict.
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AppendixA. Elementary bosons

Elementary boson operators obey the commutation relations B B, 0Q Q =¢ -[ ¯ ¯ ]† † and B B, ;Q Q Q Qd=¢ - ¢[ ¯ ¯ ]† so, by
iteration,

Figure 3. Spatial correlation function R R,2,2
2

1 2 ( )( ) for Q2,( ) and Q2, -( ) cobosonswhenNs=5 (red circles, equation (14)). For
periodic lattice, the red circles correspond to the set of values for Q R12· . The blue circles correspond to elementary bosons
(equation (10)). The curves are plotted by taking Q R12· continuous to guide the eye. The inset shows each term in equation (14).
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B B N B, . A.1N N
Q Q Q Q Q

1d=¢
-

¢
-⎡

⎣⎢
⎤
⎦⎥¯ ( ¯ ) ( ¯ ) ( )† †

This commutator immediately gives the normalization factor of the state B B vN N
N N

Q Q,y ñ = ñ¢ ¢
¢∣ ¯ ( ¯ ) ( ¯ ) ∣† † as

N NN N N N, ,y yá ñ = ¢¢ ¢¯ ∣ ¯ ! !where vñ∣ denotes the vacuum, andwith a littlemorework, the value of

B B B BR ... ... A.2N N
n

i N N N NR R R R, , ,n n1 1 y y= á ñ¢ ¢ ¢¯ ({ }) ¯ ∣ ¯ ¯ ¯ ¯ ∣ ¯ ( )( ) † †

with B B Q RR Q Q= å á ñ¯ ¯ ∣† † , that enters the n-particle spatial correlation function

R
R

. A.3N N
n

i
N N
n

i

N N N N
,

,

, ,




y y
=

á ñ¢
¢

¢ ¢

¯ ({ })
¯ ({ })
¯ ∣ ¯ ( )( )

( )

The R-space and Q-space creation operators are linked through LQ R e DQ Ri 2á ñ = -∣ · for continuous R in a
finite volume LD, with LD replaced byNs for a discrete lattice ofNs sites located at Ri{ }.

In this work, we propose an original procedure to evaluate the spatial correlation function (A.3). Although
this proceduremight appear as overcomplicated for elementary bosons, it allows handlingmore complex
cobosons in an exact way.We introduce a generalized elementary-boson coherent state

ve , A.4z z
zB z B

,
Q Qf ñ = ñ¢
+ ¢ ¢∣ ¯ ∣ ( )¯ ¯† †

where z z, ¢( ) are complex scalars. The residue theorem gives the two-condensate state N N,y ñ¢∣ ¯ as

N N
z

z

z

z

d

2 i

1 d

2 i

1
. A.5N N N N N z zz, 1 1 ,y

p p
fñ = ¢

¢
¢

ñ¢ + ¢+ ¢+ ¢∮ ∮∣ ¯ ! ! ∣ ¯ ( )

Turning from z z,f ñ¢∣ ¯ to z zz,f ñ¢∣ ¯ allows controlling the total number N N+ ¢ of bosonswithmomentum Q and Q¢
through z, and the number N ¢ of Q¢ bosons through z¢. This will later on facilitate expansion in the boson
density through z factors.

We note that the only part of ve B B
1,1

Q Qf ñ = ñ+ ¢∣ ¯ ∣( ¯ ¯ )† †
that gives a non-zero contributionwhen projected over

N N,y ñ¢∣ ¯ is the one that has the same particle number andmomentum, i.e. N N,y ñ¢∣ ¯ itself. This remark helps seeing
that

N N
z

z

z

z

d

2 i

1 d

2 i

1
. A.6

N N N z zz N N N N
2

1 1 1,1 , , ,
p p

f f y y¢
¢

¢
á ñ = á ñ

+ ¢+ ¢+ ¢ ¢ ¢∮ ∮( ! !) ¯ ∣ ¯ ¯ ∣ ¯ ( )

In the sameway, equation (A.2) can be rewritten as

N N
z

z

z

z

B B B B

R
d

2 i

1 d

2 i

1

... ... . A.7

N N
n

N N N

z zzR R R R

, i
2

1 1

1,1 ,n n1 1


p p

f f

= ¢
¢

¢
´ á ñ

¢ + ¢+ ¢+

¢

∮ ∮¯ ({ }) ( ! !)

¯ ∣ ¯ ¯ ¯ ¯ ∣ ¯ ( )

( )

† †

The trick now is to calculate the above scalar product by using commutators in real space instead of
momentum space as in equation (A.1).Wefirst note that z z,f ñ¢∣ ¯ is eigenstate of the BR¯ operator

B f R , A.8z z z z z zR , , ,f fñ = ñ¢ ¢ ¢
¯ ∣ ¯ ( )∣ ¯ ( )

with the eigenvalue f z zR R Q R Qz z, = á ñ + ¢á ¢ñ¢ ( ) ∣ ∣ . So, we readily find

B B B B
G

L
R

R... ...
, A.9z z

z z i

n

z z i
z z
n

i

nD

R R R R1,1 ,

1,1 , 1
,

,n n1 1 
f f

f f

á ñ

á ñ
= º

X¢

¢ =
¢

¢
¯ ∣ ¯ ¯ ¯ ¯ ∣ ¯

¯ ∣ ¯ ( )
¯ ( )

( )
† † ( )

with G f fR R Rz z z z, 1,1 ,
*=¢ ¢( ) ( ) ( ). Themajor advantage of this newprocedure is to avoid enforcingmomentum

conservation at each commutation step; instead, the relevantmomentum-conserving processes are selected
at the very end only, directly through Rz z

n
i,X ¢

¯ ({ })( ) : indeed, for n=1, equation (A.9) readily gives Rz z,
1X =¢( )( )

z z z ze eR Q Q R Q Qi i+ ¢ + + ¢- ¢ ¢-·( ) ·( ), inwhich the term that conversesmomentum is z z+ ¢, so that Rz z,
1X ¢( )( )

must reduce to z z+ ¢. In the sameway, Rz z
n

i,X ¢
¯ ({ })( ) for n=2 is equal to z z zz22+ ¢ + ¢( ) Q Q Rcos ;12- ¢( ) ·

for n=3 it is equal to z z zz z z Q Q R Q Q R2 cos cos3
12 23+ ¢ + ¢ + ¢ - ¢ + - ¢( ) ( )( ( ) · ( ) · Q Q Rcos 31+ - ¢( ) · ),

and so on... The above results used for the scalar product in equation (A.7) give, with the help of equation (A.6),
thefirst n-particle correlation functions for free elementary bosons as

L
N NR

1
, A.10N N D,

1
1 = + ¢¢

¯ ( ) ( ) ( )( )

L
N N N N NN NNR R Q Q R,

1
1 1 2 2 cos , A.11N N D,

2
1 2 2 12 = - + ¢ ¢ - + ¢ + ¢ - ¢¢ { }¯ ( ) ( ) ( ) ( ) · ( )( )
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L
N N N N N N N N N

NN N N N N NN N

R R R

Q Q R

Q Q R Q Q R

, ,
1

1 2 1 2 3 1

3 1 2 1 2 1 cos

cos cos , A.12

N N D,
3

1 2 3 3

12

23 31

 = - - + ¢ ¢ - ¢ - + ¢ -

+ ¢ ¢ - + ¢ - + ¢ ¢ - - ¢

+ - ¢ + - ¢

¢

⎜

⎟

⎛
⎝

⎞
⎠
⎫⎬⎭

{¯ ( ) ( )( ) ( )( ) ( )

( ) ( ( ) ( )) ( ) ·

( ) · ( ) · ( )

( )

with LD replaced byNs in the case of discrete Riʼs.
The 1-particle function RN N,

1
1 ¢

¯ ( )( )
physically corresponds to the total density of the Q and Q¢ elementary

bosons in the sample volume LD, while the other results evidence that the collision of two elementary-boson
condensates leads towave-like interference patterns associatedwith themomentumdifference Q Q- ¢( ). This
pattern can be observed bymeasuring the n-particle correlation function RN N

n
i, ¢

¯ ({ })( )
for n�2. The expression

of this correlation function for N N= ¢ and Q Q¢ = - has already been reported in [31].
It can be of interest to note that the quantity

P L
N n

N
R R

2

2
, A.13N

n
i

nD
N N
n

i,=
-¯ ({ }) ( )!

( )!
¯ ({ }) ( )( ) ( )

corresponds to the probability of detecting n bosons located at R R, ..., n1( ) in the N N,y ñ∣ ¯ condensate, as
suggested in [31]: Indeed, P R 1N

1
1 =¯ ( )( ) while the PN

n¯( )ʼs are linked by

L
P P

R
R R R R

d
,..., , ..., , A.14n

D N
n

n N
n

n1
1

1 1ò = -
-¯ ( ) ¯ ( ) ( )( ) ( )

as physically required for probabilities. In the case of composite bosons, the correlation functions have
additional terms induced by the fermion exchanges that prevent such identification.

Appendix B. Composite bosons: fermionic-atomdimers

Wenow consider an optical lattice ofNs sites, each site possibly hosting a bound pair of different fermionic
atoms, with creation operator a bR R Ri i i

 =† † † . Due to inter-site interaction, the resulting coboson dimer creation

operators read R Qi
N

iQ R1
s

i
 = å á ñ= ∣† † , with NR Q e s

Q R
i

i iá ñ =∣ · . They obey the commutation relations

, , B.1Q Q Q Q Q Q  d= -¢
-

¢ ¢
⎡
⎣⎢

⎤
⎦⎥ ( )†

N
a a b b

1
e . B.2

s j

N

Q Q
Q Q R

R R R R
1

i
s

j
j j j j å= +¢

=

- ¢- ( ) ( )( )· † †

As usual [10], the deviation-from-boson operator Q Q ¢ generates the dimensionless Pauli scatterings
Q Q
Q Q

1 1

2 2l ¢
¢( )

responsible for fermion exchanges between cobosons. In the case of the single-index cobosonswe here consider,
they reduce to

N

Q Q,

2
. B.3

s

Q Q Q
Q

Q Q Q
Q Q

Q Q Q

1 21 1 2

2

2 1 1

2 2

1 2 1

  



å l= +

=

¢
- ¢

¢ ¢
¢

+ - ¢

⎜ ⎟⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭( ⟷ )

( )

† †

†

The correlation function for detecting n dimers for the state vN N
N N

Q Q,  y ñ = ñ¢ ¢
¢∣ ( ) ( ) ∣† † reads as

R RN N
n

i N N
n

i N N N N, , , ,  y y= á ñ¢ ¢ ¢ ¢({ }) ({ }) ∣( ) ( ) with

R ... ... . B.4N N
n

i N N N NR R R R, , ,n n1 1    y y= á ñ¢ ¢ ¢({ }) ∣ ∣ ( )( ) † †

Here also, we introduce the generalized composite-boson coherent state vez z
z z

,
Q Q f ñ = ñ¢
+ ¢ ¢∣ ∣† †

. As for
elementary bosons, we can rewrite equation (B.4) as

N N
z

z

z

z
R

d

2 i

1 d

2 i

1

... ... . B.5

N N
n

N N N

z zzR R R R

, i
2

1 1

1,1 ,n n1 1



   

p p
f f

= ¢
¢

¢
´ á ñ

¢ + ¢+ ¢+

¢

∮ ∮({ }) ( ! !)

∣ ∣ ( )

( )

† †

The procedure is essentially the same as for elementary bosons, equations (A.5), (A.6), (A.7) staying valid for
cobosons.Momentum conservation at each commutation is evenmore cumbersome due to additional fermion
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exchanges, which aremany-body in nature. This is whyworkingwith commutators in real space is really
advantageous.

It will appear as convenient tofirst note that the deviation-from-boson operator R PRQ P PQ = å á ñ∣
leads to

z R Q R Q, e 2 e . B.6z z
RQ RQ Q  = á ñá ¢ñ

-

¢ ¢
⎡
⎣⎢

⎤
⎦⎥ ∣ ∣ ( )†† †

In the sameway

z zR, e e , B.7z z z z
z zR RQ RQ,Q Q Q Q      = - - ¢+ ¢

-

+ ¢
¢

+
¢¢ ¢

⎡
⎣⎢

⎤
⎦⎥ ( )( ) ( )† † † †

with

f f fR R R R1 e , B.8z z z z z z z z
f

R
R

, , , ,
z z R,  = - =¢

+
¢ ¢ ¢

- ¢{ }( ) ( ) ( ) ( ) ( )† ( ) †

since 0R
2 =( )† .

The above two commutators are obtained from iteration of the coboson commutation relations in
momentum space, equations (B.1), (B.3), namely

N
N N

N
,

1
, B.9N N

s

N
Q Q Q Q Q Q Q Q Q Q

1 2
2     d= - -

-
¢

-

-
¢ ¢

-
- ¢

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )† † † †

N

N
, 2 . B.10N

s

N
Q Q Q Q Q Q Q

1
1 1 1 1

   =¢
-

-
+ - ¢

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )† † †

equation (B.7) then gives

R . B.11z z z z z zR , , , f fñ = ñ¢ ¢
+

¢∣ ( )∣ ( )

The curly bracket in equation (B.8), absent for elementary bosons (see equation (A.8)), results from fermion
exchanges occurring within the z z,f ñ¢∣ state. Itmakes z z,f ñ¢∣ not an eigenstate of the fermion pair operator R . In
the sameway, wefind

R R1 , B.12z z z z z z z zR R R R, , 2 , 1 ,2 1 2 1   f d fñ = - ñ¢ ¢
+

¢
+

¢∣ { } ( ) ( )∣ ( )

the curly bracket coming fromPauli blocking as 0R R2 1
  = when R R ;2 1= and so on...

Themajor advantage of using commutators in real space is that n
Ri
( )† readily gives zero for n 2 whenever

it appears. Equations (B.8), (B.11) then give

f R , B.13z z z z z zR R R1,1 , , 1,1 ,  f f f fá ñ = á ñ¢ ¢ ¢∣ ∣ ( ) ∣ ∣ ( )† †

while for R R1 2¹ , equation (B.12) gives

f fR R . B.14z z z z z z z zR R R R R R1,1 , , 1 , 2 1,1 ,1 2 2 1 1 2
     f f f fá ñ = á ñ¢ ¢ ¢ ¢∣ ∣ ( ) ( ) ∣ ∣ ( )† † † †

More generally, ... ... z zR R R R1,1 ,n n1 1
   f fá ñ¢∣ ∣† † reduces for different Riʼs to

f R ... . B.15
i

n

z z i z zR R
1

, 1,1 ,n1
  f fá ñ

=
¢ ¢

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ∣ ( )† †

If we nowuse equation (B.11) for R1,1 fá ∣ † , we endwith

G

G

R

R1
, B.16z z

z z

z z

z z

R R1,1 ,

1,1 ,

,

,

 f f

f f

á ñ

á ñ
=

+
¢

¢

¢

¢

∣ ∣
∣

( )
( )

( )
†

andmore generally

G

G

R

R

... ...

1
. B.17z z

z z i

n
z z i

z z i

R R R R1,1 ,

1,1 , 1

,

,

n n1 1   


f f

f f

á ñ

á ñ
=

+
¢

¢ =

¢

¢

∣ ∣
∣

( )
( )

( )
† †

This result can also be obtained from the definition of the state z z,f ñ¢∣ and the relation R QQ R R = å á ñ∣† † , so
that
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v

f vR

e

1 . B.18

z z

z z

z z

R Q R Q

R
R

,

,

R
R







f ñ = ñ

= + ñ

å
¢

á ñ+ ¢á ¢ñ

¢
⎜ ⎟⎛
⎝

⎞
⎠

∣ ∣

( ) ∣ ( )

( ∣ ∣ )

†

†

Comparing the result for coboson dimers (B.17)with that for elementary bosons (A.9), we can trace the
denominator in the RHS of equation (B.17) back to the curly bracket of Rz z, ¢

+ ( ) given in equation (B.8).
Let us now focus on the correlation functions for one and two dimers. Extension tomultiple dimers is

straightforward. As for elementary bosons, the relevantmomentum-conserving processes are selected from

G

G
R

R

R1
. B.19z zz

n
i

i

n
z zz i

z zz i
,

1

,

,
X =

+¢
=

¢

¢
({ }) ( )

( )
( )( )

Wefirst expand in z, which is easy to do by noting that f zfR Rz zz z, 1,=¢ ¢( ) ( ). For n=1, this gives

z

N
z1 e e e e . B.20

p

p

s

p p p
R Q R Q R Q R Q

1

1 i i i iå - + + ¢
=

¥
- - - ¢ ¢⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )· · · ·

Selectingmomentum-conserving processes yields

z

N
C zR 1 , B.21z zz

p

p

s

p

m

p

m
p m

,
1

1

1

0

2å åX = - ¢¢
=

¥
-

=

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )( )

whereCp
m denotes the binomial coefficient

p

m
⎜ ⎟⎛
⎝

⎞
⎠. Similarly, for n=2, wefind

z

N
C C

z C C

R R, e

. B.22

z zz
p p s

p p

m

p

m

p
m m

m
p

m
p

m

p
m m

m
p

m m m
p

R Q Q
,
2

1 2
1 1 0 0

i

0

1 1

1 1 12
1 1

2

1 2
2 1 2 1

å å å å

å

X =
-

´ ¢

¢
=

¥

¢=

¥ + ¢

= ¢=

¢- - ¢
¢

=

¢
+ ¢

+ - ¢
¢

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )

( ) ( ) ·( )

To go further and obtain the spatial correlation function, we need the normalization factor N N N N, ,y yá ñ¢ ¢∣ .
This quantity is quite tricky to derive from a naive expansion, because fermion exchange not only occurs
between dimers carrying samemomentumbut also between dimers carrying differentmomenta. The same
procedure, that is, equation (A.6) rewritten for dimers, gives

F
N N

N N
z

z

z

z

d

2 i

1 d

2 i

1
, B.23

N N
N N N N

N N N z zz

,
, ,

1 1 1,1 ,

y y

p p
f f

=
á ñ

¢

= ¢
¢

¢
á ñ

¢
¢ ¢

+ ¢+ ¢+ ¢∮ ∮

∣
! !

! ! ∣ ( )

which also reads, through an integration by part over z, as

F
N N

N N

z

z

z

z
z

d

2 i

1 d

2 i

1
. B.24N N N N N z zzQ Q, 1 1,1 , 

p p
f f=

¢
+ ¢

¢
¢

á + ¢ ñ¢ + ¢ ¢+ ¢ ¢∮ ∮! ! ∣ ∣ ( )† †

This quantity is best calculated from commutators in real space through BR QQ R R = å á ñ∣† †.We thenfind

z G

G

R

R1
, B.25

z zz

z zz

z

z zz

Q Q

R

1,1 ,

1,1 ,

1,

,

 
å

f f

f f

á + ¢ ñ

á ñ
=

+
¢ ¢

¢

¢

¢

∣ ∣
∣

( )
( )

( )
† †

as obtained by using equation (B.11). The above sumover R has the effect of selectingmomentum-conserving
processes, as obtained through an z expansion similar to the one performed in equation (B.20). Equation (B.24)
then leads to

F
N N

p
N

C C C F
1 1

. B.26N N
p

N N

s

p

m p N

p N

p m
N

m
N

m
p

N m p N m,
1

1

max ,0

min ,

,å å=
+ ¢

-
¢

=

+ ¢ -

= -

¢

-
¢

+ - ¢-
⎛
⎝⎜

⎞
⎠⎟! ( )

{ }

{ }

This equation provides an efficient iteration to obtain high FN N, ¢ terms, starting from F0,0=1. Thefirst ones
read

F
N

a1
2

, B.27
s

1,1 = - ( )

F F
N

b1
1

, B.27
s

0,2 2,0= = - ( )

F F
N N

c1
5 6

, B.27
s s

1,2 2,1 2
= = - + ( )
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F
N N N

d1
10 33 36

. B.27
s s s

2,2 2 3
= - + - ( )

The 1-dimer function follows from equation (B.21) divided by the normof the N N,y ñ¢∣ state, as obtained
from equation (B.26).Wefind that it simply reduces to the dimer density, namely N N NRN N s,

1 = + ¢¢( ) ( )( ) , as
obtained for elementary bosons. The physical reason for not having any correction is that it fundamentally deals
with detecting a single dimer. 

The 2-dimer correlation function ismodified by terms stemming from fermion exchanges. For n=2, the
result already is quite complicated

N
C C

C C p p m m

C m m C
F

F

R R,
1

e

. B.28
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p

N N p p p

s
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p

p p m m
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m m
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R Q Q
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2
1 2
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1 0 0

i

max 0,

min ,

1 2

1 2
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,

1 1
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1 1 12

2 1 1

1

2 1 2 1

1 2 1 2

1 2 1 2

 å å å å

å

=
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´ +

¢
=
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¢
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+ ¢- - +
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When N N 1= ¢ = , it reduces to

N F
R R Q Q R,

2
1 cos . B.29

s
1,1
2

1 2 2
1,1

12 = + - ¢( ) { ( ) · } ( )( )

From the general form (B.28), we see that interferences in m m Q Q Rcos 1 1 12- ¢ - ¢∣ ∣( ) · with m m 11 1- ¢ ¹∣ ∣ do
exist for N N, 2, 2¢{ } { }. The explicit result for N N 2= ¢ = is given in equation (14).
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