N

N

Composite boson signature in the interference pattern of
atomic dimer condensates

Shiue-Yuan Shiau, Aurélia Chenu, Monique Combescot

» To cite this version:

Shiue-Yuan Shiau, Aurélia Chenu, Monique Combescot. Composite boson signature in the interference
pattern of atomic dimer condensates. New Journal of Physics, 2019, 21 (4), pp.043041. 10.1088/1367-
2630/ab0cc6 . hal-02125364

HAL Id: hal-02125364
https://hal.sorbonne-universite.fr /hal-02125364
Submitted on 10 May 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.sorbonne-universite.fr/hal-02125364
https://hal.archives-ouvertes.fr

New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

PAPER « OPEN ACCESS

Composite boson signature in the interference pattern of atomic dimer
condensates

To cite this article: Shiue-Yuan Shiau et al 2019 New J. Phys. 21 043041

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 134.157.156.53 on 10/05/2019 at 13:00


https://doi.org/10.1088/1367-2630/ab0cc6
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/690923406/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
17 December 2018

REVISED
22 February 2019

ACCEPTED FOR PUBLICATION
5March 2019

PUBLISHED
23 April 2019

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 21 (2019) 043041 https://doi.org/10.1088/1367-2630/ab0cc6

New jou rnal of Ph sics Deutsche Physikalische Gesellschaft @ DPG Published in partnership
y with: Deutsche Physikalische
The open access journal at the forefront of physics I0P Institute of Physics Gf:s”S.Chaﬂ and the Institute
of Physics

PAPER

Composite boson signature in the interference pattern of atomic
dimer condensates

Shiue-Yuan Shiau' © , Aurélia Chenu™’® and Monique Combescot*

' Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan

> Theory Division, Los Alamos National Laboratory, MS-B213, Los Alamos, NM 87545, United States of America

* Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America
Sorbonne Université, Institut des NanoSciences de Paris, CNRS, 4 place Jussieu, F-75005 Paris, France

*> Current address: IKRERBASQUE research fellow at the Donostia International Physics Center, E-20018 San Sebastidn, Spain

4

E-mail: shiau.sean@gmail.com

Keywords: BEC, interference pattern, composite boson, atomic dimer, optical lattice

Abstract

We predict the existence of high frequency modes in the interference pattern of two condensates made
of fermionic-atom dimers. These modes, which result from fermion exchanges between condensates,
constitute a striking signature of the dimer composite nature. From the 2-coboson spatial correlation
function, that we derive analytically, and the Shiva diagrams that visualize many-body effects specific
to composite bosons, we identify the physical origin of these high frequency modes and determine the
conditions to see them experimentally by using bound fermionic-atom pairs trapped on optical lattice
sites. The dimer granularity which appears in these modes comes from Pauli blocking that prevents
two dimers to be located at the same lattice site.

1. Introduction

All particles consisting of an even number of fermions are boson-like. Although this property merely derives
from a mathematical fact—the particle creation operators commute—the boson-like nature of the particles
bears a strong consequence: they must undergo Bose—Einstein condensation (BEC). This physical effect has been
observed for dilute gases of ultracold bosonic atoms [1-4], decades after Einstein predicted it. An oscillatory
behavior showing the condensate coherence has also been observed in the interference pattern of two
condensates of bosonic atoms [5-8].

The fact that boson-like particles are made of fermions shows up in nontrivial ways. This composite nature
mathematically appears through the commutator of their destruction and creation operators, [5;, B}L-], =
0j — D;j. While this commutator reduces to the delta term for elementary bosons, the D; joperator is
responsible for fermion exchanges with other particles [9, 10]. Although these exchanges are commonly
neglected, the composite bosons (cobosons) then reducing to point-like structureless elementary bosons, they
can have significant consequences. The study of the particle composite nature in the field of semiconductor
excitons was pioneered by Keldysh and Kozlov [11] as early as 1968.

In a gas, the coboson centers of mass are delocalized over the system volume L D where Dis the space
dimension, while fermion exchanges occur over the coboson volume ag , where agis its Bohr radius. So, many-
body effects induced by fermion exchanges between N cobosons are controlled by the dimensionless parameter

D
_ N[
n_N(L)' M

This leads us to conclude that the particle composite nature can only have significant consequences for a dense
gas at the scale of the coboson size”. Sizeable 7)’s are difficult to reach for cold atoms due to the very small atom

® Note that this composite nature also appears at the two-body level, through a significant reduction of the dimer—dimer scattering length by
the repeated effective coboson—coboson interaction in which fermion exchange plays a key role [12].
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size; yet a °Li, dimer condensate with density reaching 0.3 on the dimer—dimer scattering length scale has been
reported [13].

By contrast, in the case of semiconductor Wannier excitons, with size two orders of magnitude larger than
typical atoms, values of yas large as 1, or even larger, are easy to reach—although for such large s, excitons
dissociate into an electron—hole plasma. The Wannier exciton composite nature has been shown to have a
significant impact on the physics of excited semiconductors. Among its noticeable consequences, we can cite the
exciton optical Stark effect [ 14—16] and the coexistence of dark and bright condensates [17, 18] that results [19]
from the coupling, through fermion exchange, between bright excitons with spin £1 and dark excitons with
spin 2.

It has been shown from the study of Wannier excitons, Frenkel excitons and Cooper pairs [10], that the
dimensionless parameter which rules composite boson many-body effects physically corresponds to
1 = N/ N where N, is the number of cobosons that the sample can accommodate. For Wannier excitons,
this number is (L/ag)’, because for a higher number, excitons overlap and dissociate into an electron—hole
plasma. In the case of Frenkel excitons, made of on-site excitations in a periodic lattice, Ny, is the number N; of
lattice sites in the sample at hand.

Asaresult, amore controllable platform to get sizable 1) is not to use a gas but an optical lattice, as previously
considered to study Hong-Ou-Mandel-like interferences [20]. Indeed, dense samples in which each lattice
potential well traps a single dimer have already been made, with 1) ~ 0.4 for *°K, fermionic-atom dimers [21],
andn ~ 0.50r0.8 for 87Rb, [22] or '**Cs, [23] bosonic-atom dimers. In the case of heteronuclear dimers, dense
optical lattice samples of RbCs [24] and KRb [25, 26] have also been reported. These studies open an exciting
route in the field of cold atoms, toward studying the rich yet essentially unexplored world of many-body effects
resulting from dimensionless fermion (or boson) exchanges, that is, exchanges occurring between quantum
particles in the absence of energy-like particle-particle interaction.

Motivated by the pioneering studies of condensate coherence properties in the case of bosonic atoms [5-8],
we here investigate the effect of the particle composite nature on the interference pattern of two condensates
made of fermionic-atom dimers. We first give arguments to find their signature in the spatial correlation
function; next, we provide hints on how this function can be analytically derived, and finally we discuss the
relevant limits.

To do it, we consider N pairs of fermionic atoms, a and g, in different hyperfine states, these atoms being
trapped in an optical lattice having N; sites. Their Hamiltonian reads as [20]

N, .
H=H, - U Z a;{ibﬁx_bRiaRi + Z Z VRj_RialI{jb};jbRiaRz’ 2)
i=1 PRy
Hy, = Z Eaaﬂiam + Z Eﬂbl}{ibR;' 3)

i=1 i=1

The H eigenstates for one fermionic-atom pair are a;{1 bﬁj| v)withenergye,, + €3 where |v) denotes the
vacuum. The energy levels, (€, € 3), depend on the optical lattice potential. The strength of the atom—atom
attractive potential, U, 3 > 0, can be varied through Feshbach resonance, allowing a control on the spatial
extension ag of abound pair. For large U, gattraction, the lowest-energy subspace reduces to the Nj states,
a;{i bﬁjv), with energy e, + g — U,p, eachlatticessite R; possibly hosting one bound pair, with creation
operator Bai = ‘111, bgi. These pairs are structureless when the lattice period, which is equal to half the optical
laser wavelength ), is large compared to the relative-motion extension ag of a bound pair. This inequality,

A > ag, can be easily fulfilled in optical lattice experiments, as in the case of *’K, dimers [21].

The third term of equation (2) describes inter-site interaction. Its Vg g, strength can be changed by
changing the laser intensity which is proportional to the lattice potential depth Vj. Due to this inter-site
interaction, bound fermionic-atom pairs delocalize over the whole lattice. To justify our consideration of one
bound pair per lattice site at most, the inter-site interaction has to be small compared to the on-site repulsion.
This condition can be achieved when the lattice potential depth V is large compared to the recoil energy
Ep = /%?/2m,, with k = 27/ X and m,, the atom mass, as previously shown in the case of elementary
bosons [27].

In the following, we shall refer to fermionic atoms simply as fermions, and refer to delocalized bound pairs as
dimers. The dimer creation operators

N,
By =3 By (RIQ) )
i=1
with a distribution which is flat, (R;|Q) = elQRi/,/N,, in the large lattice limit. As the dimer spatial extension ap
is essentially zero, it cannot enter the dimensionless parameter that controls many-body effects. Instead, this
dimensionless parameter for N dimers in an optical lattice having N; sites reads, like for Frenkel excitons
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[10,28,29], as

n= N (5)

To produce two condensates made from such dimers, we propose to first prepare a single condensate in an
optical lattice having a lattice spacing equal to a few hundreds of nanometers, depending on the laser wavelength.
Then, we ramp up a potential barrier in the middle of the lattice using an external field in order to split this
condensate into two spatially separated condensates, which are ultimately let to interfere, and we measure the
correlation function. The potential barrier in the middle of the experimental setup can be produced by imposing
another optical lattice with a much larger lattice spacing. Lattice spacing of the order of a hundred micrometers
has been experimentally produced [30] by using two near-infrared laser beams with A wavelength intersecting at
asmall angle 0, the lattice spacing being equal to A /2 sin(#/2). For nearly collimated beams, that is, for 6 ~ 0,
the lattice spacing can become very large, of the order of hundreds of micrometers.

We predict that, compared to elementary bosons, the interference pattern has additional high frequency
modes that come from fermion exchanges between condensates. These interferences constitute a striking
signature of the dimer composite nature. As these additional modes are many-body in essence, a sizeable 1is
required to observe them. This is why previous experiments performed with two rather dilute condensates made
of small bosonic atoms like rubidium [5] or sodium [6-8], with momenta Q and Q' = —Q, have only seen
interferences ruled by the momentum difference, Q — Q' = 2Q. Such interferences can be obtained by taking
the bosonic atoms as elementary bosons [31-33]. The higher frequency modes we predict come from fermion
exchanges involving more than one dimer from each of the two Q and Q’ condensates. They can produce
momentum differences m(Q — Q') with m > 2:them = 2 mode appears when at least one fermion exchange
in each condensate enters into play; so, its amplitude is 77* smaller than the m = 1 mode. Fermion exchanges also
affect the m = (0,1) modes present for elementary bosons, but only through 7 corrections in their prefactors.

2. Physics of the problem

In this section, we use simple physical arguments to understand the form of the interference pattern resulting
from the collision of two dimer condensates. An appropriate way to derive this interference pattern is through
the dimer—dimer spatial correlation function

(nn| By B, Br,Brlvn,n)

GO N(Ry, Ry) = ) (6)
o (N N1PN N )
the two-condensate state made of N dimers of momentum Q and N’ dimers of momentum Q’ reading as
[¥n ) = BYN BN 7). @)

Taking N’ == N and Q' = —Q makes the physics easier to grasp.

Let us first deal without fermion exchanges, which corresponds to taking the dimers as elementary bosons.
The operator By, destroys one of the (N + N') dimers of the |ty n) state at the R; site. Let this destroyed dimer
have amomentum Q. If By, also destroys a Q dimer, these two detections generate a N(N — 1) factor from the
number of ways to choose the two Q dimers among N. Due to momentum conservation in the G 53) v Ri, Ry)
numerator, By and Bj must recreate two Q dimers. The associated phase factors e2® and e 'R to detecta Q
dimer at R, then cancel; same at R;. So, the term in N(N — 1) does not bring any oscillatory contribution to
g 5\2,) ~/(Ri> Ry) (figure 1(a)). In the same way, no oscillation occurs if two Q' dimers (figure 1(b)) or one Q dimer
and one Q' dimer (figure 1(c)) are destroyed and recreated at the same site, their counting factor being,
respectively, N'(N/ — 1) and 2NN’, the 2 coming from detecting the Q dimer at R; or at R,. So, we end up with
acontributionto G (13) (R, Ry) equal to

N(N — 1) + N/(N’ — 1) + 2NN". 8)

For an oscillatory term to appear in the correlation function, the dimers destroyed and recreated at the R;
site must have different momenta (figure 1(d)). The term in which By, destroysa Q dimer and 3 1&1 recreatesa Q’
dimer brings a factor e®(Q-Q) with a NN’ prefactor coming from the number of ways to choose these (Q, Q')
dimers. To conserve momentum, By, then has to destroya Q' dimer and B ;&2 to create a Q dimer, which brings a

factor R (Q'~Q), So, we end up with a contribution to G (1\2,) (R, Ry) equal to

NN/(ei(RﬁRﬂ'(Q*Q/) + ei(leRz)'(Q/*Q)) — 2NN'cos(Q — Q') - Ry, )
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Figure 1. Correlation function gng/(Rl, R,) defined in equation (6), in the absence of fermion exchanges. A dimer is destroyed and
recreated from the same fermion pair at the same position with same momentum (a, b, ¢) or with different momenta (d), the total
momentum being conserved. The oscillatory cos(Q — Q') - Ry, term of equation (9) comes from (d). In Shiva diagrams, a coboson
dimer is represented by a double line, the solid and dashed lines representing its two different fermionic atoms. See [34] for a detailed
description of Shiva diagrams.

20'-0,—20-0,
o — R ——— — 0
’ _Q_‘ //___ Q Q :/ I_ll \:>:/
, Qozz” Toooooioooo- SRS
_______ Pl - Ql
20-0, 20'-0, ,
e ey
»7 e
_________ Q’ Q___/ T S oo Q’
9,
(a) () (©)

Figure 2. Shiva diagrams for fermion exchanges: (a) exchanges within the Q condensate do not change the momentum of the dimer
detected at Ry; so, they do notlead to oscillatory terms. (b, c) Exchanges involving the two condensates can lead to dimers detected at
the same site having momentum differences m(Q’ — Q), withm = lasin (b), or m = 2asin (c). Modes with m > 2 are the
signature of the dimer composite nature we predict.

where Rj; = R; — R;. Thisleads to the m = 1 mode previously found for elementary bosons. Indeed, when

N = N’and Q' = —Q, the spatial correlation function for elementary bosons corresponds to
a (2N)!
G nR), Ry) = 1 0s2Q - Ry ¢, 10
NN(R, Ro) NN — )1 N1 Q- Rp (10)

as first given in [31]. For completeness, we rederive in appendix A the n-particle correlation function for free
elementary bosons using a different approach. The amplitudes of the m = (0, 1) terms both scale as
N2/N? ~ n?*and no other mode exists in the case of elementary bosons.

The dimer composite nature brings a far richer physics because By can destroy any two fermions. These two
fermions can simply be the ones of the BZ) or Bg, pair in |¢)y,n). Or, since identical fermions are
indistinguishable, they can also be any pair resulting from fermion exchanges in the |y n) state. As exchanges
conserve momentum, fermion exchange inside the Q condensate does not change the momentum of the dimer
detected at R, site, as shown in the Shiva diagram of figure 2a. So, this does not bring any oscillatory
contribution. However, as each fermion exchange brings a 1/N; factor, this term appears with a prefactor
equal to

NN — 1)(N — 2) /N, ~ yN(N — 1). (11)

It thus is 7 times smaller that the leading N(N — 1) term obtained in the absence of fermion exchange, shown in
figure 1(a).

By contrast, fermion exchanges between the Q and Q' condensates can lead to terms in which the detected
dimers have a momentum difference equal to m(Q — Q’), withm = 1asin figure 2(b), m = 2 as in figure 2(c),
andm > 3 for exchanges involving more dimers from each condensate. The term corresponding to the Shiva
diagram of figure 2(b) produces the same cos(Q — Q') - Ry, oscillatory term as the one of equation (9), but its
prefactor

NN — DN/(N’ — 1) /N2 ~ m/NN’ (12)
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is 7m’ times smaller due to the two exchanges it contains. More generally, the m = 1 terms in which fermion
exchanges enter bring density-dependent corrections to the amplitude of the interference terms already present
for elementary bosons.

Momentum changes m(Q — Q') with m > 2 are a definite signature of the condensate composite nature
because they generate new oscillatory modes. The 2(Q — Q') momentum change in figure 2(c) produces a
c0s2(Q — Q') - Ry, contribution. This m = 2 term has four exchanges, but two sums over Q; and Q, which cancel
two N, factors coming from exchanges; so, it also appears with a prefactor N(N — 1)N/(N’ — 1)/N? ~ nm’NN".
Note that in order to produce these higher modes, similar exchanges must occur in the Q and the Q' condensates; so,
m cannot be larger than Min{N, N'}.

Last but not least, the fact that two identical fermions cannot be at the same site must hold sway over the
possibility of seeing two dimers at the same site. Indeed, (ag)* = 0imposes (B)? = 0. So, gg? /R, Ry) must
cancel for R; = R,.

All this shows that fermion exchanges inside each condensate and between the two condensates change the
interference pattern compared to that obtained with elementary bosons in three ways:

(i) the amplitudes of the elementary-boson terms have many-body corrections reading in powers of densities,
nand n';

(ii) higher oscillatory modes in cos m(Q — Q') - Ry, with m = (2, 3, ...) up to Min{N, N’} appear, with ever
weaker amplitudes;

(iii) adip atthe scale of the optical lattice constant exists for R} = R,.

The spatial correlation function for fermionic-atom dimers thus has to read

@ B B Min{N,N’} - o
G (R, Ry) = (1 = bror,) D AYkcos| m(Q — Q) - Ry. (13)
m=0

The amplitudes of the m = (0, 1) modes are equal to the elementary-boson values within density corrections
coming from fermion exchanges, namely AI(\?’)I\], ~ (n + 7)1 + O, n"))and Aﬁ}’)N, ~ 21’ (1 + O@Gm")).
The larger number of exchanges required for the in = 2 mode appears in its amplitude which scales as

Al(\?)N’ ~ (nn")? within density corrections. And so on for larger m.

3. Theoretical approach

For dimers characterized by a single quantum index Q, as dimers in an optical lattice, it is possible to perform an
exact calculation of the n-coboson spatial correlation function, g(ﬁ?N,(Rl, ... R), in spite of the tricky fermion
exchanges that occur not only within each condensate, but also between the Q and Q' condensates—from
which the most interesting physics arises. To do it, we have developed an original procedure in which |ty n) is

5 131
2Bq+2'By|v) where (z, z') are complex scalars, as

written in terms of the generalized coherent states | ¢, /) = e
explained in appendix B. Using it, we can obtain G %)N,(Rl, ...» R,)) analytically for arbitrary n. As its expression is
extremely complicated, even for n = 2, we shall here only discuss two limiting cases that best illustrate the

involved physics, and refer the interested readers to appendix B for the general form.

4. Analytical results for limiting cases

Forn = 1, the function G S\l]) /Ry stays equal to its elementary-boson value, (N + N’) /N;, which physically
corresponds to the total dimer density of the two condensates at the scale of the lattice site number N. This result
follows from the fact that (i) G (1\1]) /(Rp) does not depend on Ry, and (ii) the mean value of the number operator
>q BBBQ =>R B;BR in the |9y nv) state is equal to the total dimer number, N + N'.

To grasp how fermion exchanges affect the interference pattern of two condensates, let us consider the
simplest case in which the predicted m = 2 oscillatory mode exists, thatis N = N’ = 2. The explicit expression
of the spatial correlation function then reads (see equation (B.28))

(1 — dr,»y) {
Nz

S

GOARy, Ry) = 12(1 + x0) + 8(1 + x)cos(Q — Q') - Ry + xc0s2(Q — Q') - R12}- (14)

The changes from the elementary-boson result given in equation (10), induced by exchanges, appear in the x;’s,
asillustrated in figure 3. Theyread xo = (5/3N, — 15/N? + 36/N?)/Fy,, x = (—7/N? + 36/N?) /F,,,and
% = (8/N?)/F,,.The F, , factor,equalto 1 — 10/N; + 33/N? — 36/N_, comes from the norm, N!N'!Fy n/,
of the |1y n/) state given in equation (B.26). Fermion exchanges like the one of figure 2(a) give the 1/N; term of
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Figure 3. Spatial correlation function G (ﬂ(Rl, R,) for (2, Q) and (2, —Q) cobosons when N; = 5 (red circles, equation (14)). For
periodic lattice, the red circles correspond to the set of values for Q - Ry,. The blue circles correspond to elementary bosons
(equation (10)). The curves are plotted by taking Q - Ry, continuous to guide the eye. The inset shows each term in equation (14).

xo; the one of figure 2(b) gives the 1/N? term of x; the one of figure 2(c) gives the x, prefactor of the m = 2 term.
Figure 3 shows the resulting correlation function for N; = 5, from which we clearly see the next-to-lowest
oscillatory mode, and the singularity at R;, = 0.

So far, we have considered bound fermion pair a;{i b;{i with no relative-motion extension. Pauli blocking
then appears in the strongest way by forbidding two dimers to be at the same site through the (1 — dg,g,)
prefactor in equation (13). In reality, physical dimers are trapped in lattice potential wells with finite depth and
width; so they have a finite spatial extension. This physically broadens the effect of Pauli blocking and transforms
the singular dip of equation (13) into a smooth dip (see figure 3). However, such dimer granularity must not
affect the interference pattern at larger scale. Interestingly, a similar dip feature has been found for elementary
bosons with hardcore repulsion [35].

5. Conclusion

In this work, we address the commonly bypassed consequences of the particle composite nature in cold-atom
physics, by considering the interference pattern of two condensates made of dimers. We predict the existence of
additional high frequency modes, in contrast to a unique low-frequency mode existing when the particle
composite nature is neglected. With the help of analytical calculations and Shiva diagrams that visualize
composite boson many-body effects, we evidence that these high modes come from dimensionless fermion
exchanges between condensates. Being many-body in essence, the amplitude of these high modes depends on
density; therefore, their observation requires rather dense condensates, that is, sizeable many-body parameter 7,
as possibly obtained by using optical lattices. In addition, Pauli blocking between the particle fermionic
components produces a dip in the interference pattern that constitutes another signature of the dimer
granularity.

Just like the composite nature of semiconductor excitons has revealed a breadth of remarkable effects, we
anticipate cold-atom systems to provide a novel, fully controllable playground to investigate further in depth the
very unique many-body effects that result from dimensionless fermion exchanges, that is, exchange in the
absence of fermion-fermion interaction. Recent optical lattices already reach densities high enough for these
new many-body effects to be observable, including the signatures we here predict.
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Appendix A. Elementary bosons

Elementary boson operators obey the commutation relations [Bg,, Ba], = 0and [EQ/, Bg], = 0q'q; 50, by
iteration,
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This commutator immediately gives the normalization factor of the state |y /) = (B(E)N (B&)N "|v) as
(Yn.n1thn N7y = NIN'!where |v) denotes the vacuum, and with a little more work, the value of

353?N/({Ri}) = (¢n'| By, ... Bg, Br, .. Br|¢nn7) (A.2)
with By = >q B(S (QJR), that enters the n-particle spatial correlation function

Slow((Ri})
(NN 1NN
The R-space and Q-space creation operators are linked through (Q|R) = e '@R/LP/2 for continuous R ina
finite volume L?, with L” replaced by N, for a discrete lattice of N; sites located at {R;}.

In this work, we propose an original procedure to evaluate the spatial correlation function (A.3). Although
this procedure might appear as overcomplicated for elementary bosons, it allows handling more complex
cobosons in an exact way. We introduce a generalized elementary-boson coherent state

GO R = (A.3)

_ =t at
|6, ) = eBat=Baly), (A.4)
where (z, z') are complex scalars. The residue theorem gives the two-condensate state |y, x7) as
- dz 1 dz 1 -
N = NIN'! @) = Rt
[T) = NIN'L s oS i) (A5)

Turning from | ¢, ) to | ¢, ) allows controlling the total number N + N’ of bosons with momentum Q and Q’
through z, and the number N’ of Q' bosons through z’. This will later on facilitate expansion in the boson
density through z factors.

We note that the only part of | (_bl‘l> = eBo+By) |v) that gives a non-zero contribution when projected over
|1n ) is the one that has the same particle number and momentum, i.e. |1y /) itself. This remark helps seeing
that

dz 1 dz 1 - - - _
(NIN'E P o vewT 95 2 v Puildez) = (UniPn). (A.6)

In the same way, equation (A.2) can be rewritten as

o) N o o dz 1 dz 1
SR} = (NIN")? § v $ o
X <(51,1| Blz ‘“Bl:nBRn"‘BRll(&z,zz’>‘ (A7)

The trick now is to calculate the above scalar product by using commutators in real space instead of
momentum space as in equation (A.1). We first note that | ¢, ,,) is eigenstate of the By operator

Brlg,,) = £, (B, ., (A.8)

with the eigenvalue f, ,(R) = z(R|Q) + z/(R|Q’). So, we readily find

b .| Bi ...Bi B, ..Br|®, . " =" (R;
(P11 By, Br,Br, - Bri®,) [ Gow(®) = # (A.9)
<¢1,1|¢z,z’> i=1 Ln

with G, /(R) = fffl(R) f...(R). The major advantage of this new procedure is to avoid enforcing momentum
conservation at each commutation step; instead, the relevant momentum-conserving processes are selected

at the very end only, directly through E(ZT;/({Ri}): indeed, for n = 1, equation (A.9) readily gives E(Zg,(R) =

z + z' + zelRQ-Q) 4 7/eR(Q-Q jn which the term that converses momentum is z + z’, so that EQ;(R)
must reduce to z + z’. In the same way, E(z’z/({Ri}) forn = 2isequalto (z + z)*> + 22z’ cos(Q — Q') - Ryy;
forn = 3itisequalto (z + z)* + 2zz'(z + z’)(cos(Q — Q') - Rz + cos(Q — Q') - Ry + cos(Q — Q') - Rs)),
and so on... The above results used for the scalar product in equation (A.7) give, with the help of equation (A.6),
the first n-particle correlation functions for free elementary bosons as

Gﬁbe/(Rl) = %(N + N, (A.10)

iR R) = — { NN - 1)+ NN’ — 1) + 2NN’ + 2NN'cos(Q — Q') - Ru}, (A1)
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GO N(Ry, Ry, Ry) = {N(N — (N —2) + N'(N' — 1)(N’ — 2) + 3N'N(N — 1)
+ 3NN'/(N’ — 1) + @N'N(N — 1) + 2NN'(N’ — 1))(cos(Q - Q) Ry

+ cos(Q — Q) - Ry3 + cos(Q — Q') - R31)}, (A.12)

with L replaced by N, in the case of discrete R;’s.

The 1-particle function G (1\1]) ~/(Rp) physically corresponds to the total density of the Q and Q' elementary
bosons in the sample volume L, while the other results evidence that the collision of two elementary-boson
condensates leads to wave-like interference patterns associated with the momentum difference (Q — Q’). This
pattern can be observed by measuring the n-particle correlation function Q%?N/({ R;}) forn > 2. The expression
of this correlation function for N = N’ and Q' = —Q has already been reported in [31].

It can be of interest to note that the quantity

_ 2N — n)! (n)
PP({R;}}) = L"D(—g R;}), A.13
(R O R (A13)
corresponds to the probability of detecting 7 bosons located at (Ry, ..., R,) in the |ty n) condensate, as

suggested in [31]: Indeed, P{]’(R,) = 1while the P{’’s are linked by
dR,, - S
SR R R) = Py Ry R, (A.14)

as physically required for probabilities. In the case of composite bosons, the correlation functions have
additional terms induced by the fermion exchanges that prevent such identification.

Appendix B. Composite bosons: fermionic-atom dimers

We now consider an optical lattice of Njsites, each site possibly hosting a bound pair of different fermionic
atoms, with creation operator By = aﬁl bﬁi. Due to inter-site interaction, the resulting coboson dimer creation

operatorsread Bh = YN | B} (R}|Q), with (R;|Q) = /% //N,. They obey the commutation relations

[BQf, Bg] = 6qq — Do (B.1)

1 oo
Doqg=— Z e—i@Q *Q)»Rl(a};jaRj + bl;jij)' (B.2)
s j=1

As usual [10], the deviation-from-boson operator D generates the dimensionless Pauli scatterings A (QzQZ)

responsible for fermion exchanges between cobosons. In the case of the single-index cobosons we here c0n31der,
they reduce to

[DQ{QN QZ] ZBT { (QzQZ) + (Q14—>Qz)}

2 +

- EBQHrQrQ{' (B.3)
The correlation function for detecting  dimers for the state |1y x7) = (B )N (BT IN'|v) reads as
GUVARD = SR /(o nrltbw,nr) with
%)N/({RJ) = (Ynn| BR1 B}-{nBRn o Br| NN (B.4)
Here also, we introduce the generalized composite-boson coherent state | ¢, ;) = e285+2/85’lv>. As for
elementary bosons, we can rewrite equation (B.4) as
dz 1 dz/ 1
(1) — (NIN'1?2 Rt
SN n({Ri}) = (NIN"]) 27r1 ZN+N'+1 yﬂ' i 2N+
X (11| BY, .. By Br, ... Brlo, 1) (B.5)

The procedure is essentially the same as for elementary bosons, equations (A.5), (A.6), (A.7) staying valid for
cobosons. Momentum conservation at each commutation is even more cumbersome due to additional fermion
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exchanges, which are many-body in nature. This is why working with commutators in real space is really
advantageous.

It will appear as convenient to first note that the deviation-from-boson operator Drq = > p (R|P) Dpq
leads to

[DRQ, ezB&f] = 22(R|Q) (R|Q') Be?Ba. (B.6)
In the same way
[BR, eZBBJrZIBTQ’:l = 6Z86+Z/Bi2’(fzzr(R) — ZDRQ — Z/DRQ/), (B7)
with
fzz/(R) =f,(R) { 1 - )‘Z)Z,(R)B;} :fz’z,(R)e‘fz,z’(R)B'I‘i, (B.8)

since (BR)? = 0.
The above two commutators are obtained from iteration of the coboson commutation relations in
momentum space, equations (B.1), (B.3), namely

1 ¥ NN -1 )
[BQ/, (B&)N] — N(Bé)N_l(éQ’Q — Do) — (—)(BZQ)N_ZBZQfQ” (B.9)
N .
[DQ{QI: (BB)N] = ZE(B('))N’IB&Q_Q{. (B.10)
equation (B.7) then gives
Brlg, ) = FLR)|o,,). (B.11)

The curly bracket in equation (B.8), absent for elementary bosons (see equation (A.8)), results from fermion
exchanges occurring within the | ¢, ) state. It makes | ¢, ;) not an eigenstate of the fermion pair operator Bg. In
the same way, we find

Br,Brlo, ) = {1 — Srr,} F I (RIF T (R)|P, ), (B.12)

the curly bracket coming from Pauli blocking as Bg,Bg, = 0 when R, = Rj;and so on...
The major advantage of using commutators in real space is that (an readily gives zero for n > 2 whenever
itappears. Equations (B.8), (B.11) then give

<¢l,l| B;BR|¢Z,ZI> = fz,z’(R) <¢l,1| BTR|¢Z,2’> > (B13)
while for R} == R,, equation (B.12) gives
<¢1,1| BI{[BTRZBRZBRJ ¢z,z’> = fz,z’(Rl)fz,z’ (R2) <¢1,1| BTRIBTRzl ¢Z,ZI>' (B.14)

More generally, (¢, || BY, ... By Br, ... Br|®, ) reduces for different R;’s to
[]‘[ fz’z,(R,-))<¢1,1| By . BY |6,.0). (B.15)
i=1
If we now use equation (B.11) for (¢, , | B}, we end with

(¢1] BiBrl¢,.) G, (R)

= > (B.16)
<¢1,1|¢z,z’> 1+ Gz,z’(R)
and more generally
B} ... B} Bg,...B , (R
(91,1 By, By, Br, - Brl ) _ [ —Gex®) .17
<¢1,1|¢z,z’> i=1 1+ GZ,Z/(RI')

This result can also be obtained from the definition of the state | ¢, /) and the relation Bg = Y BR(RIQ), s0
that
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S (@ (RIQ)+2/(RIQ) B

|¢z,z’>:eR |V>
=11 (1 + fz,z,(R)B;)|v>. (B.18)
R

Comparing the result for coboson dimers (B.17) with that for elementary bosons (A.9), we can trace the
denominator in the RHS of equation (B.17) back to the curly bracket of F Zz/(R) given in equation (B.8).

Let us now focus on the correlation functions for one and two dimers. Extension to multiple dimers is
straightforward. As for elementary bosons, the relevant momentum-conserving processes are selected from

— " Gzzz’(Ri)
=) (R) = oz A B.19
=r =TT e (B.19)

We first expand in z, which is easy to do by noting that f

Z,2Z

© p . SN NSAY 2
Z(—I)P‘l(ﬁ) (e“R'Q + e“R'Q) (e‘R'Q + z’e‘R'Q) . (B.20)
p=1 s

Selecting momentum-conserving processes yields

2(R) = Z( DP” 1( N

S

/(R) = ﬁ’z,(R).Forn = 1, this gives

) Z (ChH*)™, (B.21)

where C?, denotes the binomial coefficient ( p ) Similarly, for n = 2, we find
m
p+p’ p ,
(zzlz’(Rl’ R2 Z Z ( ) Z Z e(ml mp)iR;(Q—Q )CP CP
p=1p'=1 =0 ml =0

/

X Z (Z/)m1+m2 sz C

my=0

(B.22)

my+my— m

To go further and obtain the spatial correlation function, we need the normalization factor (¢n n/| N, N7)-
This quantity is quite tricky to derive from a naive expansion, because fermion exchange not only occurs
between dimers carrying same momentum but also between dimers carrying different momenta. The same
procedure, that is, equation (A.6) rewritten for dimers, gives

Fo oy = SONNIONN)
NN NIN
1 dz 1
— /
= NIN v§£ 2mm¢ Z_ﬂwwl,l@w,), (B.23)
which also reads, through an integration by part over z, as
NIN" dz 1 dZ 1
— il !
FnNr = Non P oy P o — (B0l By + 2By, L) (B.24)

This quantity is best calculated from commutators in real space through Bf, = > (R|Q) Bt. We then find

| BS + 2/BE o, L. G, (R

(D11l Bq ol @z z0) -y 1,2/ (R) , (B.25)
(1,110,200 R 1+ Gz (R)

as obtained by using equation (B.11). The above sum over R has the effect of selecting momentum-conserving

processes, as obtained through an z expansion similar to the one performed in equation (B.20). Equation (B.24)

then leads to

1 N+N’ ~1 p—1 min{p,N’}
|
( N; )

N N

Fyn = m Z p Z CommCi Ch ENtm—pN'—m- (B.26)
p=1 m=max{p—N,0}

This equation provides an efficient iteration to obtain high Fy n’ terms, starting from Fy o = 1. The first ones

read

2
F,=1-—, (B.27a)
S
1
Fpo=Fo=1—- —, (B.27b)
s
6
FIZ_FZI_l_ﬁs—i_I\Iz’ (B.27¢)

10
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10 33 36
Pa=l-+ NN (B.27d)

The 1-dimer function follows from equation (B.21) divided by the norm of the |1y n') state, as obtained
from equation (B.26). We find that it simply reduces to the dimer density, namely G (1\1,) vR) =N+ N /I\]s’ as
obtained for elementary bosons. The physical reason for not having any correction is that it fundamentally deals
with detecting a single dimer.

The 2-dimer correlation function is modified by terms stemming from fermion exchanges. For n = 2, the
result already is quite complicated

N+N'—1 N+N'—p ( 1)p+p P

2 _ { —m)iR;»(Q—Q’
g(N3N/(R1’ R,) = Z Z Z Z C& Ci{e(ml mp)iR;(Q—Q")
p=1

+
p'=1 Np ? my=0 m{=0
min{p’,N'—m}
' op !
X Z C le+m27 /(p+p — my — my)!

my=max{0,m{ —m}

Fprprrmlerz,N’fmlfmz

X CP+P —my—my (m + my)! Cm1+mz (B.28)
Fy N
When N = N/ = 1, itreduces to
GRR;, Ry) = {1+ cos(Q — Q) - Rz} (B.29)

s 41,1

From the general form (B.28), we see that interferences in cos|m; — m/|(Q — Q') - Ry with |m; — m]| = 1do
existfor {N, N’} > {2, 2}. Theexplicitresult for N = N’ = 2 is given in equation (14).
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