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ARTICLE

Supersonic plasma turbulence in the laboratory
T.G. White1,2, M.T. Oliver1,2, P. Mabey1,3, M. Kühn-Kauffeldt4, A.F.A. Bott1, L.N.K. Döhl 5, A.R. Bell1,

R. Bingham6,7, R. Clarke6, J. Foster8, G. Giacinti9, P. Graham8, R. Heathcote6, M. Koenig3,10, Y. Kuramitsu10,

D.Q. Lamb11, J. Meinecke1, Th. Michel3, F. Miniati1, M. Notley6, B. Reville 12, D. Ryu13, S. Sarkar 1, Y. Sakawa14,

M.P. Selwood 6, J. Squire15,16, R.H.H. Scott 6, P. Tzeferacos11, N. Woolsey 5, A.A. Schekochihin1 &

G. Gregori1

The properties of supersonic, compressible plasma turbulence determine the behavior of

many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds,

compressible turbulence plays a vital role in star formation and the evolution of our galaxy.

Observations of the density and velocity power spectra in the Orion B and Perseus molecular

clouds show large deviations from those predicted for incompressible turbulence. Hydro-

dynamic simulations attribute this to the high Mach number in the interstellar medium (ISM),

although the exact details of this dependence are not well understood. Here we investigate

experimentally the statistical behavior of boundary-free supersonic turbulence created by the

collision of two laser-driven high-velocity turbulent plasma jets. The Mach number depen-

dence of the slopes of the density and velocity power spectra agree with astrophysical

observations, and supports the notion that the turbulence transitions from being

Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.
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Supersonic turbulence occurs in many terrestrial1–3 and
astrophysical systems4–6. For example, in giant molecular
clouds (MCs), where Mach numbers can be as large as 206,

supersonic plasma turbulence drives the star formation rate and
their initial mass function7. Star formation is a complex problem
involving chaotic supersonic motions of the interstellar medium
where self-gravity, magnetic fields, chemistry, heating, cooling,
and radiative transfer all play a role8–10. Even the purely
hydrodynamic aspects of supersonic turbulence remain poorly
understood. Attempts to characterize the statistical behavior of
supersonic turbulence have thus far comprised theoretical pre-
dictions11–14, astrophysical observations15–17, and hydrodynamic
simulations8,18–20. The major challenge for the latter has been
achieving an inertial range with sufficient separation between the
driving and the dissipation scales to allow determination of the
density and velocity power-law exponents, characteristic of the
structure of turbulent fluctuations, and a popular metric for
comparison between observations and simulations. Relatively few
experimental studies exist, with those that do concentrating on
the large velocity gradients present at the compressible turbulent
boundary layers with relevance to supersonic propulsion3,21. To
the authors’ knowledge, no experimental investigation of statis-
tical properties of boundary-free supersonic turbulence has ever
been carried out.

We provide a detailed characterization of the bulk properties of
compressible turbulence in a super-Alfvénic plasma based on
laboratory experiments performed with high-power lasers. We
launch two counter-propagating supersonic jets by laser irradia-
tion of thin fluorinated plastic foils (Fig. 1), with their collision
forming a central region of strong compressible turbulence, pri-
marily via Kelvin-Helmholtz shearing instabilities22,23. The outer-
scale motions are made more chaotic by letting the jets pass
through two offset grids before the collision, driving turbulence at
a scale-length of roughly twice the grid spacing, or 2 mm (see
Supplementary Note 1). The evolving density power spectrum is
measured by means of gated Schlieren imaging, delayed with
respect to the jet collision. The velocity power spectrum is probed
by introducing a dynamically unimportant magnetic-field tracer,
measured in the collision region by an induction loop (“B-dot
probe”). Plasma density (ni), temperature (Te), ionization (Z*),
and turbulent velocity (Vturb) are obtained at different times by
means of gated optical interferometry and spectroscopy, allowing
calculation of the Mach number of the turbulent motions (Mturb).
The experiments were conducted on the Vulcan laser at the
Central Laser Facility located at the Rutherford Appleton
Laboratory (UK). Further experimental details are given in the
Methods section.

Results
Measurement of the plasma conditions. The evolution of the
spatial density fluctuations measured by Schlieren imaging is
shown in Fig. 2, along with the corresponding plasma properties,
which have been extracted by fitting the spatially resolved emis-
sion spectrum using the collisional-radiative code PrismSPECT
(details of the fitting procedure are given in the supplementary
methods). The temporally resolved magnetic-field fluctuations,
measured in the central region by the induction loop, are shown
in Fig. 1. The ionization state of the plasma was inferred to be
Z* ≈ 1–2, from both optical interferometry and spectral-line fits,
while the electron temperature was found to be Te ≈ 3–4 eV. The
collisional electron-ion temperature equilibration time is ≈10 ns,
suggesting that the plasma quickly achieves thermodynamic
equilibrium, Te ≈ Ti, with a sound speed of cs ≈ 10–12 km s−1.

The Schlieren imaging and interferometry show that the jet
collision occurs at ≈300 ns, implying an initial mean jet velocity

of Vjet ≈ 66 ± 11 km s−1 and a jet Mach number Mjet ≈Vjet/cs ≈ 6
for the plasma. We define the turbulent Mach number, Mturb,
characterizing plasma turbulence after the collision, as the ratio
between the three-dimensional (3-D) turbulent velocity (Vturb)
and the sound speed, where the former is estimated from the
non-thermal broadening of the carbon and fluorine emission
lines23. We find that the turbulent Mach number increases from
Mturb ≈ 0.5 ± 0.5 at t= 400 ns to Mturb ≈ 5.4 ± 0.8 at t= 700 ns.
From the increase in Mach number, we conclude that the
interaction of the two plasma jets continuously drives turbulence
for a time much longer than the pulse duration of laser beams.
The range of values of Mturb implies that the turbulence evolves
from a subsonic to a highly supersonic regime as time progresses,
and eventually decaying off at the very end of our measurements.

The temperature of the plasma, measured by spectral-line
fitting, remains between 3 and 4 eV for all times probed
and across the extent of the plasma. A radiative cooling rate of
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Fig. 1 Experimental configuration and magnetic-field fluctuations.
a Experimental configuration. Two counter-propagating supersonic jets
are launched by means of optical-laser ablation of thin fluorinated plastic
foils separated by 4 cm. Each foil is irradiated by three frequency-doubled
(527-nm-wavelength) lasers, each carrying 130 ± 20 J of energy in a 2 ns
pulse. The jets are passed through two misaligned plastic grids and collide,
forming a central region of supersonic turbulence. Magnetic fluctuations,
created as the magnetic field imposed by external permanent magnets
(gray dashed lines) is advected by the flow, are measured with an induction
coil and used to deduce velocity fluctuations. b Temporal evolution of the
y-component (vertical in the top panel) of the magnetic field, as measured
by the induction loop. The shaded regions represent the intervals over which
the FFT was performed in calculating the magnetic-field power spectra
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0.5 eV/ns per ion was calculated with PrismSPECT. As shown in
previous experimental work23, these colliding turbulent plasmas
exhibit an energy balance between radiative cooling and heating,
the latter presumably due to turbulent or shock dissipation. Such
isothermal conditions are analogous to what is found in MCs,
albeit in the astrophysical case, the balance is between cosmic ray
heating and cooling via molecular-line emission24.

The density power spectrum. We first consider density fluctua-
tions extracted from the Schlieren intensity images, and secondly,
the velocity fluctuations extracted from the time-resolved mag-
netic-field measurements. Assuming homogeneous ionization,
the measured Schlieren signal is proportional to the integral of the
density gradient along the light-path through the plasma. Thus, the
two-dimensional (2-D) discrete Fourier transform of the Schlieren
intensity can be related to the slope of the one-dimensional (1-D)
power spectrum of the electron-density fluctuations (see supple-
mentary methods). Figure 3a–c show the 1-D density power
spectra at 500 ns, 600 ns, and 700 ns, respectively. During the initial
stages of the jet collision, the turbulence is subsonic (Mturb ~ 0.5),
and the spectrum is, unsurprisingly, consistent with a Kolmogorov
power-law25, P(k)∝ k−5/3 (where k is the wave number). At later
times, the turbulent velocity increases and the plasma becomes
increasingly supersonic, up to Mturb ~ 5.5, with the spectrum
flattening to P(k)∝ k−0.86 at 700 ns. At each time, an apparent

inertial range spanning approximately a decade is achieved. The
cutoff scale associated with the resolution of the measurement
remains above the viscous dissipation scale, which is ≈100 nm. The
similarity of the spectra at 600 and 700 ns suggests that we have
fully developed, steady-state turbulence. In addition, we note that
the lifetime of the plasma is much longer than the typical outer-
scale turnover time, which is ≤100 ns if we estimate the outer-scale
to be between 2 and 5mm (see Supplementary Note 1). The
observed flattening of the spectra with increasing Mturb is con-
sistent with the development of fine-scale density perturbations
due to shock formation, whose sharp features produce a broad
power spectrum. The formation of small-scale shocks is char-
acteristic of supersonic turbulence7,14.

The velocity power spectrum. The ratio of the kinetic-energy
density to the magnetic pressure is βturb= 150, and the thermal
pressure to magnetic pressure is βth= 40. Therefore, the magnetic
field is dynamically insignificant. In a poorly conducting plasma
(the experimentally measured magnetic Reynolds number is Rm ~
0.2), the power spectrum of velocity fluctuations is related to the
power spectrum of the magnetic field. Thus, the magnetic field
can be viewed (and diagnostically used) as a passive tracer in
otherwise hydrodynamic turbulence.

The spectrum of such passive magnetic-field fluctuations,
M(k), is related to that of the velocity fluctuations, E(k), by
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M(k)∝ k−2E(k). This relationship is a natural consequence of the
induction equation and has previously been derived for
incompressible fluids26,27. It is also valid in a compressible fluid
with an imposed external magnetic field (see supplementary
methods). Extracting E(k) from magnetic-field data obtained by
the B-dot probe is, however, complicated as the induction coil of
the probe measures the frequency spectrum, M(ω), rather than
the wave-number spectrum M(k). In the supplementary methods,
we argue that, under certain physical assumptions about the
structure of the turbulence and its effect on the B-dot probe, the
scaling exponent of the wave-number spectrum E(k)∝ kσ can be
deduced from the scaling exponent of the measured frequency
spectrum M(ω)∝ ωξ according to σ=−(3ξ+ 5)/(ξ− 1). For
reference, the Kolmogorov power spectrum σ=−5/3 corre-
sponds to ξ=−5, and the Burgers spectrum σ=−2 to ξ=−7.

Figure 3d–f shows the power spectra of the magnetic
fluctuations, at 500 ns, 600 ns, and 700 ns, respectively. During
the subsonic phase of the turbulence, the power spectrum follows
a M(ω)∝ ω−5 power-law. At later times, when the turbulent
velocity increases, the spectrum begins to steepen, approaching a
maximum value of M(ω)∝ ω−6.5. Utilizing our relationship

between this slope and the slope of the velocity spectrum, we find
initially the Kolmogorov power-law, E(k)∝ k−5/3, which steepens,
and remains close to, E(k)∝ k−1.9 at later times, suggesting a
steady state is reached. This is close to the spectrum of shock-
dominated Burgers turbulence, for which theory predicts a
slope of E(k)∝ k−2, due to the development of step-like velocity
profiles associated with the formation of small-scale shock
structures8,11,20. The numerical values for the spectral exponents
of the wave-number spectra of the velocity field depend on the
validity of a number of (rather qualitative) assumptions required
for their extraction from the frequency spectra of the magnetic
field (see supplementary methods for more details). However, the
steepening of the velocity spectrum is likely to be a more robust
result, which we consider to be reliably established.

Discussion
The evolution of the spectral slope for both the density and
velocity power spectra for three different times after the collision
is shown in Fig. 4. At low Mach number (the subsonic case), the
density fluctuations and velocity fluctuations both exhibit a
Kolmogorov-like spectrum, close to k−5/3. Similar slopes for these
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spectra are indeed expected in nearly incompressible fluids, where
perturbed density behaves like a passive scalar28. At higher Mach
numbers, the slopes of the two power spectra diverge. The shal-
lowing of the density power spectrum is a direct result of mass
becoming concentrated in shock discontinuities14,18. We observe
large density fluctuations (Fig. 2b, c), perhaps consistent with the
formation of three-dimensional small-scale shock structures, i.e.,
thin sheets, and consistent also with steepened velocity spectra,
discussed above—also attributed to the formation of small-scale
shocks.

For context, we have also plotted in Fig. 4 the slopes of the
power spectrum obtained from astrophysical observations of
MCs, where large deviations from Kolmogorov turbulence are
believed to exist. The Orion B MC15 is estimated to have a
median Mach number of ~5, and observations suggest that the
angularly integrated power spectrum of the column density is
proportional to k−2.83, equivalent to a 1-D density power spec-
trum of P(k)∝ k−0.83. Similar slopes have been found for the
Perseus, Taurus, and Rosetta MCs16,17, which all exhibit slopes
close to P(k)∝ k−0.75. All these results fall within the error bars of
our experimentally measured spectral exponents. Similarly, the
velocity power spectrum in the Perseus MC29 is found to be
E(k)∝ k−1.81 for M ~ 6, again, in agreement with the results
obtained here. The MCs discussed here are in similar hydro-
dynamic conditions to the experiment, with similar Mach and
Reynolds numbers (Re ~ 105), although the MC plasma is mag-
netized and most likely has a plasma β and magnetic Reynolds

number much lower and much higher, respectively, than achieved
experimentally. The effect of the magnetic field on the dynamics
of MCs is a topic of active research30. Although magnetohy-
drodynamic simulations predict changes in the density power
spectrum with increasing magnetic field31, this is beyond the
scope of this work.

In Fig. 4, we also compare our results to hydrodynamic
simulations of supersonic turbulence. For the velocity power
spectrum, our results appear to agree with the numerical ones
obtained for 3-D hydrodynamic, compressible turbulence by
Kritsuk et al.8 and Federrath et al.30. For the density power
spectrum, our results appear to agree with those of Kim & Ryu18

and Squire & Hopkins32. However, the experimental slopes are
shallower than those predicted by Konstandin et al.33 and by
Kritsuk et al.8, suggesting that noticeable differences still exist
between astrophysical situations, hydrodynamic simulations, and
laboratory experiments.

Thus, we have demonstrated that supersonic compressible
turbulence, with a duration many times the outer-scale turnover
time, can be investigated experimentally by arranging a collision
of two laser-driven high-velocity plasma jets. Statistical measures
of the turbulence such as the density and velocity power spectra
are extracted, along with the thermodynamic properties of the
plasma. Such experiments are able to provide information in
addition to astrophysical observations as well as rigorous tests of
numerical simulations. This opens up an avenue for the study of
supersonic turbulent plasmas. Future experimental work is
planned to explore the role of dynamically important magnetic
fields in supersonic turbulence.

Methods
Experimental design. Two 10 μm PVDF (Polyvinylidene fluoride) foils separated
by 4 cm are each illuminated by three 130 J, 2 ns pulse-length, frequency-doubled
(527 nm wavelength) laser beams with a 200 μm spot diameter, producing a col-
limated jet at the rear surface of each foil. All relevant plasma parameters are given
in Supplementary Table 1. The jets pass through two ring-shaped (1″ od × 5/16″
id × 1/4″) nickel-coated, N52 grade neodymium (NdFeB) magnets (K&J Magnetics,
Inc., Jamison, PA), with approximately a 6000 G field in the center. Further details
on the magnetic-field configuration are presented below. The spatial variation of
the field is shown in Supplementary Figure 1.

The magnetic diffusion time is τD ~ L2/η ≈ 100 ns, where L= 2 mm is
approximately the size of the plasma as it passes through the center of the disc
magnet and η= 4.1 × 105 cm2/s is the magnetic diffusivity of the plasma.
Therefore, the magnetic field is expected to penetrate fully into the plasma during
the initial stages of the experiment. After passing through the magnet, the flows are
perturbed by an ETFE (Ethylene tetrafluoroethylene) grid, with a 1000 μm nominal
aperture and 500 μm filaments, mounted on the surface of the magnets. The grids
are misaligned so that the centers of the apertures in one grid face the vertices of
the other. The misalignment of the two ETFE grids, as well as instabilities present
during the collision, make the outer-scale motions as chaotic as possible, giving rise
to vigorous turbulence.

Without the external magnet present, we measure fields of less than 50 G, with a
similar temporal profile. This suggests that small fields are generated in the plasma
by the laser-target interaction and, perhaps, by Biermann battery21. However, we
expect that the analysis performed does not depend on the exact source of the
magnetic field.

The Schlieren imaging was performed with a vertically aligned knife edge, i.e.,
aligned with the direction perpendicular to the bulk-flow motion. Both the
interferometry and Schlieren imaging used the same optical line and were back-lit
with a Photonic Solutions Powerlite Nd:YAG Laser. The laser has a wavelength of
532 nm with a ~5 ns pulse-length. Images were collected with an intensified
Princeton Instruments PI-MAX CCD camera with a 4 ns gate width, synchronized
to the peak of the probe laser pulse. The optical spectroscopy used a Princeton
Instruments PI-MAX CCD with a 20 ns gate width.

Data Availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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blue, and correspond to the times t= 500, 600, and 700 ns. Shown in red
are hydrodynamic results from Kim & Ryu18 (circles), Kritsuk et al.8

(diamonds), Squire and Hopkins32 (star), Konstandin et al.33 (dotted line),
and Federrath et al.30 (triangle). In green are astrophysical observations of
the scaling exponent of the density power spectrum of the Orion B MC15

(star), the density power spectrum of the Perseus MC16,17 (square), and
the velocity power spectrum of the Perseus MC29 (square). The Mach
number error bar is a consequence of uncertainties in the measurement of
the thermodynamic conditions of the plasma (see Fig. 2). The error bars for
the density spectral index show the variation across the four regions of the
plasma highlighted in Fig. 2b, and the error bars in the velocity spectral
index were found by shifting the Fourier transform window by 20 ns in
either direction
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