L. Addadi, S. Raz, and S. Weiner, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization, Adv. Mater, vol.15, pp.959-970, 2003.

J. Aizenberg, J. Hanson, T. F. Koetzle, S. Weiner, and L. Addadi, Control of macromolecule distribution within synthetic and biogenic single calcite crystals, J. Am. Chem. Soc, vol.119, pp.881-886, 1997.

M. Albéric, L. Bertinetti, Z. Y. Zou, P. Fratzl, and W. Habraken, The crystallization of amorphous calcium carbonate is kinetically governed by ion impurities and water, Adv. Sci, vol.5, 2018.

M. Albéric, E. N. Caspi, M. Bennet, W. Ajili, and N. Nassif, Interplay between calcite, amorphous calcium carbonate, and intracrystalline organics in sea urchin skeletal elements, Cryst. Growth Des, vol.18, pp.2189-2201, 2018.

L. Ameye, G. De-becker, C. Killian, F. Wilt, and R. Kemps, Proteins and saccharides of the sea urchin organic matrix of mineralization: characterization and localization in the spine skeleton, J. Struct. Biol, vol.134, pp.56-66, 2001.

S. Y. Bahn, B. H. Jo, Y. S. Choi, and H. J. Cha, Control of nacre biomineralization by Pif80 in pearl oyster, Sci. Adv, vol.3, p.9, 2017.

A. Baronnet, J. P. Cuif, Y. Dauphin, F. Farre, and J. Nouet, Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the Pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometre ranges, Mineral. Mag, vol.72, pp.617-626, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00386949

E. Beniash, L. Addadi, and S. Weiner, Cellular control over spicule formation in sea urchin embryos: a structural approach, J. Struct. Biol, vol.125, pp.50-62, 1999.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. B-Biol. Sci, vol.264, pp.461-465, 1997.

A. Berman, L. Addadi, A. Kvick, L. Leiserowitz, and M. Nelson, Intercalation of sea-urchin proteins in calcite -study of a crystalline composite-material, Science, vol.250, pp.664-667, 1990.

R. Chopdekar, Photoemission Electron Microscopy, 2018.

J. P. Cuif, Y. Dauphin, B. Farre, G. Nehrke, and J. Nouet, Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units, Mineral. Mag, vol.72, pp.233-237, 2008.

M. Cusack, Y. Dauphin, P. Chung, A. Perez-huerta, and J. P. Cuif, Multiscale structure of calcite fibres of the shell of the brachiopod Terebratulina retusa, J Struct Biol, vol.164, pp.96-100, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357200

F. M. De-groot, Z. W. Hu, M. F. Lopez, G. Kaindl, and F. Guillot, Differences between L3 and L2 x-ray absorption spectra of transition metal compounds, J. Chem. Phys, vol.101, pp.6570-6576, 1994.

G. De-stasio, B. H. Frazer, B. Gilbert, K. L. Richter, and J. W. Valley, Compensation of charging in X-PEEM: a successful test on mineral inclusions in 4.4 Ga old zircon, Ultramicroscopy, vol.98, pp.57-62, 2003.

R. T. Devol, C. Y. Sun, M. A. Marcus, S. N. Coppersmith, and S. C. Myneni, Nanoscale transforming mineral phases in fresh nacre, J. Am. Chem. Soc, vol.137, pp.13325-13333, 2015.

A. L. Drozdov, V. V. Sharmankina, L. A. Zemnukhova, and N. V. Polyakova, Chemical composition of spines and tests of sea urchins, Biol. Bull, vol.43, pp.521-531, 2016.

P. Dubois and L. Ameye, Regeneration of spines and pedicellariae in echinoderms: a review, Microsc. Res. Tech, vol.55, pp.427-437, 2001.

. Gg-macros, , 2019.

M. Gilis, O. Grauby, P. Willenz, P. Dubois, and L. Legras, Multi-scale mineralogical characterization of the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea), J. Struct. Biol, vol.176, pp.315-329, 2011.

A. J. Goetz, D. R. Steinmetz, E. Griesshaber, S. Zaefferer, and D. Raabe, Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells, Acta Biomater, vol.7, pp.2237-2243, 2011.

Y. U. Gong, C. E. Killian, I. C. Olson, N. P. Appathurai, and A. L. Amasino, Phase transitions in biogenic amorphous calcium carbonate, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.6088-6093, 2012.

P. Gorzelak, J. Stolarski, P. Dubois, C. Kopp, and A. Meibom, (26)mg labeling of the sea urchin regenerating spine: insights into echinoderm biomineralization process, J. Struct. Biol, vol.176, pp.119-126, 2011.

E. Griesshaber, K. Kelm, A. Sehrbrock, and W. Mader-mutterlose, Amorphous calcium carbonate in the shell material of the brachiopod Megerlia truncata, Eur. J. Mineral, vol.21, pp.715-723, 2009.

B. M. Heatfield, Origin of calcified tissue in regenerating spines of the sea urchin, Strongylocentrotus purpuratus (Stimpson): a quantitative radioautographic study with tritiated thymidine, J. Exp. Zool, vol.178, pp.233-246, 1971.

B. M. Heatfield, Growth of the calcareous skeleton during regeneration of spines of the sea urchin, strongylocentrotus purpuratus (stimpson): a light and scanning electron microscopic study, J. Morphol, vol.134, pp.57-89, 1971.

B. M. Heatfield, Growth of calcareous skeleton during regeneration of spines of sea urchin, strongylocentrotus-purpuratus (stimpson) -light and scanning electron microscopic study, J. Morphol, vol.134, pp.57-90, 1971.

B. M. Heatfield and D. F. Travis, Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. II. Cell types with spherules, J. Morphol, vol.145, pp.51-71, 1975.

B. M. Heatfield and D. F. Travis, Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus I. Cell types without spherules, J. Morphol, vol.145, pp.13-49, 1975.

D. E. Jacob, A. L. Soldati, R. Wirth, J. Huth, and U. Wehrmeister, Nanostructure, composition and mechanisms of bivalve shell growth, Geochim. Cosmochim. Acta, vol.72, pp.5401-5415, 2008.

J. M. Kanold, N. Guichard, F. Immel, L. Plasseraud, and M. Corneillat, Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula -a comparative characterization of their sugar signature, Febs J, vol.282, pp.1891-1905, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01154626

G. M. Khalifa, K. Kahil, J. Erez, I. K. Ashiri, and E. Shimoni, Characterization of unusual MgCa particles involved in the formation of foraminifera shells using a novel quantitative cryo SEM/EDS protocol, Acta Biomater, vol.77, pp.342-351, 2018.

C. E. Killian and F. H. Wilt, Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis, Exp. Cell Res, vol.359, pp.205-214, 2017.

C. E. Killian, R. A. Metzler, Y. U. Gong, I. C. Olson, and J. Aizenberg, Mechanism of calcite co-orientation in the sea urchin tooth, J. Am. Chem. Soc, vol.131, pp.18404-18409, 2009.

J. Y. Ko, X. T. Zhou, F. Heigl, T. Regier, and R. Blyth, X-ray absorption nearedge structure (XANES) of calcium L3,2 edges of various calcium compounds and Xray excited optical luminescence (XEOL) studies of luminescent calcium compounds, AIP Conf. Proc, vol.882, pp.538-540, 2007.

F. Kronast and S. Valencia-molina, SPEEM: the photoemission microscope at the M. Albéric, et al. Journal of Structural Biology: X xxx (xxxx) xxxx dedicated microfocus PGM beamline UE49-PGMa at BESSY II, J. Large-scale Res. Facilities, vol.2, p.90, 2016.

Y. Ma, S. Weiner, and L. Addadi, Mineral deposition and crystal growth in the continuously forming teeth of sea urchins, Adv. Funct. Mater, vol.17, pp.2693-2700, 2007.

K. Märkel and U. Röser, The spine tissues in the echinoid Eucidaris tribuloides, Zoomorphology, vol.103, pp.25-41, 1983.

K. Märkel, U. Röser, and M. Stauber, On the ultrastructure and the supposed function of the mineralizing matrix coat of sea urchins (Echinodermata, Echinoida), Zoomorphology, vol.109, pp.79-87, 1989.

T. Mass, A. J. Giuffre, C. Y. Sun, C. A. Stifler, and M. J. Frazier, Amorphous calcium carbonate particles form coral skeletons, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.7670-7678, 2017.

C. Moureaux, A. Perez-huerta, P. Compere, W. Zhu, and T. Leloup, Structure, composition and mechanical relations to function in sea urchin spine, J. Struct. Biol, vol.170, pp.41-49, 2010.

F. Neues, S. Hild, M. Epple, O. Marti, and A. Ziegler, Amorphous and crystalline calcium carbonate distribution in the tergite cuticle of moulting Porcellio scaber (Isopoda, Crustacea), J. Struct. Biol, vol.175, pp.10-20, 2011.

J. Nouet, A. Baronnet, and L. Howard, Crystallization in organo-mineral micro-domains in the crossed-lamellar layer of Nerita undata (Gastropoda, Neritopsina), Micron, vol.43, pp.456-462, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00674941

Y. Politi, T. Arad, E. Klein, S. Weiner, and L. Addadi, Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase, Science, vol.306, pp.1161-1164, 2004.

Y. Politi, Y. Levi-kalisman, S. Raz, F. Wilt, and L. Addadi, Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos, Adv. Funct. Mater, vol.16, pp.1289-1298, 2006.

Y. Politi, R. A. Metzler, M. Abrecht, B. Gilbert, and F. H. Wilt, Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.17362-17366, 2008.

R. Przenioslo, J. Stolarski, M. Mazur, and M. Brunelli, Hierarchically structured scleractinian coral biocrystals, J. Struct. Biol, vol.161, pp.74-82, 2008.

S. Raz, P. C. Hamilton, F. H. Wilt, S. Weiner, and L. Addadi, The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization, Adv. Funct. Mater, vol.13, pp.480-486, 2003.

P. Rez and A. Blackwell, Ca L23 spectrum in amorphous and crystalline phases of calcium carbonate, J. Phys. Chem. B, vol.115, pp.11193-11198, 2011.

C. Rollion-bard, D. Blamart, J. P. Cuif, and Y. Dauphin, In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: re-examination of the current geochemical models of biomineralization, Geochim. Cosmochim. Acta, vol.74, pp.1338-1349, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00455144

A. Scholl, , 2014.

J. Seto, Y. R. Ma, S. A. Davis, F. Meldrum, and A. Gourrier, Structure-property relationships of a biological mesocrystal in the adult sea urchin spine, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.3699-3704, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01391153

N. Vidavsky, A. Masic, A. Schertel, S. Weiner, and L. Addadi, Mineral-bearing vesicle transport in sea urchin embryos, J. Struct. Biol, vol.192, pp.358-365, 2015.

N. Vidavsky, S. Addadi, A. Schertel, D. Ben-ezra, and M. Shpigel, Calcium transport into the cells of the sea urchin larva in relation to spicule formation, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.12637-12642, 2016.

N. Vidavsky, S. Addadi, J. Mahamid, E. Shimoni, and D. Ben-ezra, Initial stages of calcium uptake and mineral deposition in sea urchin embryos, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.39-44, 2014.

V. V. Vinnikova and A. L. Drozdov, The ultrastructure of spines in sea urchins of the family Strongylocentrotidae, Biol. Bull, vol.38, pp.861-867, 2011.

V. Euw, S. Zhang, Q. H. Manichev, V. Murali, N. Gross et al., Biological control of aragonite formation in stony corals, Science, vol.356, pp.933-938, 2017.

I. M. Weiss, N. Tuross, L. Addadi, and S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, J. Exp. Zool, vol.293, pp.478-491, 2002.

F. H. Wilt, Biomineralization of the spicules of sea urchin embryos, Zool. Sci, vol.19, pp.253-261, 2002.

L. Xiang, W. Kong, J. T. Su, J. Liang, G. Y. Zhang et al., Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata, PLoS One, vol.9, 2014.

L. Yang, C. E. Killian, M. Kunz, N. Tamura, and P. U. Gilbert, Biomineral nanoparticles are space filling, Nanoscale, vol.3, pp.603-609, 2011.

Z. Zou, L. Bertinetti, Y. Politi, A. C. Jensen, S. Weiner et al., Opposite particle size effect on amorphous calcium carbonate crystallization in water and during heating in air, Chem. Mater, vol.27, pp.4237-4246, 2015.

M. Albéric, Journal of Structural Biology: X xxx