G. E. Palade, The fine structure of blood capillaries, J. Appl. Phys, vol.24, p.1424, 1953.

E. Yamada, The fine structure of the gall bladder epithelium of the mouse, J. Biophys. Biochem. Cytol, vol.1, pp.117-122, 1955.

N. Aboulaich, J. P. Vainonen, P. Stralfors, and A. V. Vener, Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes, Biochem. J, vol.383, pp.237-248, 2004.

C. G. Hansen, G. Howard, and B. J. Nichols, Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis, J. Cell Sci, vol.124, pp.2777-2785, 2011.

M. M. Hill, PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function, Cell, vol.132, pp.113-124, 2008.

B. Morén, EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization, Mol. Biol. Cell, vol.23, pp.1316-1329, 2012.

K. G. Rothberg, Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

P. E. Scherer, Identification, sequence, and expression of caveolin-2 defines a caveolin gene family, Proc. Natl. Acad. Sci. USA, vol.93, pp.131-135, 1996.

M. Way and G. Parton, M-caveolin, a muscle-specific caveolin-related protein, FEBS Lett, vol.376, pp.108-112, 1995.

M. Tagawa, MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis, Am. J. Physiol. Cell Physiol, vol.295, pp.490-498, 2008.

C. Minetti, Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency, Am. J. Pathol, vol.160, pp.265-270, 2002.

J. P. Cheng and B. J. Nichols, Caveolae: one function or many?, Trends Cell Biol, vol.26, pp.177-189, 2016.

C. Lamaze, N. Tardif, M. Dewulf, S. Vassilopoulos, and M. C. Blouin, The caveolae dress code: structure and signaling, Curr. Opin. Cell Biol, vol.47, pp.117-125, 2017.

B. Sinha, Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

J. P. Cheng, Caveolae protect endothelial cells from membrane rupture during increased cardiac output, J. Cell Biol, vol.211, pp.53-61, 2015.

H. P. Lo, The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle, J. Cell Biol, vol.210, pp.833-849, 2015.

J. Garcia, Sheath cell invasion and trans-differentiation repair mechanical damage caused by loss of caveolae in the zebrafish notochord, Curr. Biol, vol.27, 1982.

Y. Lim, Caveolae protect notochord cells against catastrophic mechanical failure during development, Curr. Biol, vol.27, 1968.

L. Lay, S. Kurzchalia, and T. V. , Getting rid of caveolins: phenotypes of caveolindeficient animals, Biochim. Biophys. Acta, vol.1746, pp.322-333, 2005.

C. Minetti, Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy, Nat. Genet, vol.18, pp.365-368, 1998.

I. Carbone, Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia, Neurology, vol.54, pp.1373-1376, 2000.

R. C. Betz, Mutation in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease, Nat. Genet, vol.28, pp.218-219, 2001.

M. Tateyama, Mutation in the caveolin-3 gene causes a peculiar form of distal myopathy, Neurology, vol.58, pp.323-325, 2002.

L. Merlini, Familial isolated hyperCKaemia associated with a new mutation in the caveolin-3 (CAV-3) gene, J. Neurol. Neurosurg. Psychiatry, vol.73, pp.65-67, 2002.

F. Sotgia, Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease, Am. J. Physiol. Cell Physiol, vol.285, pp.1150-1160, 2003.

E. Brauers, Differential effects of myopathy-associated caveolin-3 mutants on growth factor signaling, Am. J. Pathol, vol.177, pp.261-270, 2010.

D. J. Hernandez-deviez, Caveolin regulates endocytosis of the muscle repair protein, dysferlin, J. Biol. Chem, vol.283, pp.6476-6488, 2008.

C. Cai, Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin, J. Biol. Chem, vol.284, pp.15894-15902, 2009.

E. Sezgin, Elucidating membrane structure and protein behavior using giant plasma membrane vesicles, Nat. Protoc, vol.7, pp.1042-1051, 2012.

M. T. Tierney, STAT3 signaling controls satellite cell expansion and skeletal muscle repair, Nat. Med, vol.20, pp.1182-1186, 2014.

F. D. Price, Inhibition of JAK-STAT signaling stimulates adult satellite cell function, Nat. Med, vol.20, pp.1174-1181, 2014.

A. Bonetto, STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia, PLoS One, vol.6, p.22538, 2011.

K. Podar, Essential role of caveolae in interleukin-6-and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells, J. Biol. Chem, vol.278, pp.5794-5801, 2003.

P. C. Heinrich, Principles of interleukin (IL)-6-type cytokine signalling and its regulation, Biochem. J, vol.374, pp.1-20, 2003.

D. E. Levy and C. K. Lee, What does Stat3 do?, J. Clin. Invest, vol.109, pp.1143-1148, 2002.

P. Nassoy and C. Lamaze, Stressing caveolae new role in cell mechanics, Trends Cell Biol, vol.22, pp.381-389, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00821324

L. Prescott and M. W. Brightman, The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations, Tissue Cell, vol.8, pp.241-258, 1976.

A. F. Dulhunty and C. Franzini-armstrong, The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths, J. Physiol, vol.250, pp.513-539, 1975.

E. Gazzerro, F. Sotgia, C. Bruno, M. P. Lisanti, and C. Minetti, Caveolinopathies: from the biology of caveolin-3 to human diseases, Eur. J. Hum. Genet, vol.18, pp.137-145, 2010.

K. Mamchaoui, Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders, Skelet. Muscle, vol.1, p.34, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00651121

N. Weiss, Expression of the muscular dystrophy-associated caveolin-3P104L mutant in adult mouse skeletal muscle specifically alters the Ca 2+ channel function of the dihydropyridine receptor, Eur. J. Physiol, vol.457, pp.361-375, 2008.

K. Fecchi, D. Volonte, M. P. Hezel, K. Schmeck, and F. Galbiati, Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells, FASEB J, vol.20, pp.705-707, 2006.

P. Muñoz-cánoves, C. Scheele, B. K. Pedersen, and A. L. Serrano, Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?, FEBS J, vol.280, pp.4131-4148, 2013.

K. Ostrowski, T. Rohde, M. Zacho, S. Asp, and B. Pedersen, Evidence that IL-6 is produced in skeletal muscle during intense long-term muscle activity, J. Physiol, vol.508, pp.949-953, 1998.

T. Igarashi, Short-time exposure of hyperosmolarity triggers interleukin-6 expression in corneal epithelial cells, Cornea, vol.33, pp.1342-1347, 2014.

A. Hubert, B. Cauliez, A. Chedeville, A. Husson, and A. Lavoinne, Osmotic stress, a proinflammatory signal in Caco-2 cells, Biochimie, vol.86, pp.533-541, 2014.

J. J. Williams, Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability, Nat. Commun, vol.9, p.168, 2018.

B. Bjerregard, I. Ziomkiewicz, A. Schulz, and L. Larsson, Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin, Cell Tissue Res, vol.357, pp.355-362, 2014.

F. Galbiati, Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and Ttubule abnormalities, J. Biol. Chem, vol.276, pp.21425-21433, 2001.

K. S. Song, Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells: caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins, J. Biol. Chem, vol.271, pp.15160-15165, 1996.

D. J. Hernández-deviez, Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3, Hum. Mol. Genet, vol.15, pp.129-142, 2006.

D. P. Byrne, C. Dart, and D. J. Rigden, Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif?, PLoS ONE, vol.7, p.44879, 2012.
DOI : 10.1371/journal.pone.0044879

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0044879&type=printable

P. N. Bernatchez, Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides, Proc. Natl. Acad. Sci. USA, vol.102, pp.761-766, 2005.

J. A. González-coraspe, Biochemical and pathological changes result from mutated caveolin-3 in muscle, Skelet. Muscle, vol.8, p.28, 2018.

S. Bolte and F. P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, J. Microsc, vol.224, pp.213-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481

N. Carpi, M. Piel, A. Azioune, and J. Fink, Micropatterning on glass with deep UV, Protoc. Exch, 2011.

, was funded by Polish Ministry of Science and Higher Education Mobility Plus program, Centre at Institut Curie-CNRS and the France-BioImaging infrastructure (No. ANR-10-INSB-04) are acknowledged. The electron microscope facility was supported by the French National Research Agency through the "Investments for the Future" program, 1668.