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in the neuromuscular field
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Abstract

Background: The approach of building large collections of gene sets and then systematically testing hypotheses
across these collections is a powerful tool in functional genomics, both in the pathway analysis of omics data and
to uncover the polygenic effects associated with complex diseases in genome-wide association study. The
Molecular Signatures Database includes collections of oncogenic and immunologic signatures enabling researchers
to compare transcriptional datasets across hundreds of previous studies and leading to important insights in these
fields, but such a resource does not currently exist for neuromuscular research. In previous work, we have shown
the utility of gene set approaches to understand muscle cell physiology and pathology.

Methods: Following a systematic survey of public muscle data, we passed gene expression profiles from 4305
samples through a robust pre-processing and standardized data analysis pipeline. Two hundred eighty-two samples
were discarded based on a battery of rigorous global quality controls. From among the remaining studies, 578
comparisons of interest were identified by a combination of text mining and manual curation of the study meta-
data. For each comparison, significantly dysregulated genes (FDR adjusted p < 0.05) were identified.

Results: Lists of dysregulated genes were divided between upregulated and downregulated to give 1156 Muscle
Gene Sets (MGS). This resource is available for download (www.sys-myo.com/muscle_gene_sets) and is accessible
through three commonly used functional genomics platforms (GSEA, EnrichR, and WebGestalt). Basic guidance and
recommendations are provided for the use of MGS through these platforms. In addition, consensus muscle gene
sets were created to capture the overlap between the results of similar studies, and analysis of these highlighted
the potential for novel disease-relevant findings.

Conclusions: The MGS resource can be used to investigate the behaviour of any list of genes across previous
comparisons of muscle conditions, to compare previous studies to one another, and to explore the functional
relationship of muscle dysregulation to the Gene Ontology. Its major intended use is in enrichment testing for
functional genomics analysis.

Keywords: Gene sets, Skeletal muscle, Neuromuscular, Functional genomics, Pathway analysis, Functional
enrichment, GWAS, Gene expression, Transcriptomics
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Background
Gene sets in functional genomics
A gene set is a list of genes that share a common feature.
Examples include common pathway membership, shared
dysregulation in a gene expression study, participation to
the same protein complex, or sequence homology
(reviewed [1]). Usage of the term overlaps with the con-
cept of a molecular signature, which can take the form of
a simple gene list or a more complex data structure, for
example, including weightings for each gene. Gene sets, or
molecular signatures, have been a key feature of major
studies [2–5]. The approach of building large collections
of gene sets and then systematically testing hypotheses
across these collections is a powerful tool in functional
genomics, both in the pathway analysis of omics data
(reviewed [6, 7]), and to uncover the polygenic effects as-
sociated with complex diseases in genome-wide associ-
ation study (GWAS) analyses (reviewed [8, 9]).

Gene set analysis tools and gene set collections
A commonly used approach to pathway analysis is func-
tional enrichment testing. In this approach, the gene set
is considered to represent a biological function, and stat-
istical tools are applied to test how this function behaves
within the omics dataset under study. Functional enrich-
ment tools often use a standard statistical method called
Fisher’s exact test or the hypergeometric test, which
evaluates whether the proportion of genes in a results
list that also belongs to a given gene set is greater than
expected by chance. An example of such a tool is
EnrichR, which applies hypergeometric testing across a
large variety of gene set collections relating to pathways,
ontologies, transcriptional regulation, disease, and other
biological themes [10]. The well-known DAVID tool
takes a similar approach but also identifies clusters of
enriched gene sets based on the proportion of genes that
they share with one another [11]. More conceptually
subtle approaches make use of the structure of omics
data—for example, Gene Set Enrichment Analysis
(GSEA) tests the distribution of each gene set within a
list of genes that have been ranked based on their degree
of differential expression between two experimental
groups (from most strongly upregulated to most strongly
downregulated) [12]. In GSEA, gene sets having their
members clustered disproportionately (as determined by
permutation-based statistics) within one region of the
list are considered to be enriched, and a weighting is
used to score more highly those regions representing
strong upregulation or downregulation (i.e. the two ends
of the distribution). GSEA and similar tools have re-
cently been systematically compared [13]. Another tool,
WebGestalt, provides multiple analytical approaches
within a single framework [14].

Gene set analysis of GWAS data is a maturing field
[8], with tools such as MAGMA [15], MAGENTA [16],
and others enabling the discovery of genome-wide path-
way associations in a number of diseases [16–18].
Whereas classic GWAS seeks to identify associations to
one or more single nucleotide polymorphisms (SNPs),
gene set approaches summarize SNPs by gene and then
by gene set. This improves the power to detect statisti-
cally significant associations both because collapsing in-
dividual SNPs into gene sets results in fewer statistical
tests performed and because individual weak effects can
be combined to produce a strong association signal [9].
A widely used collection of gene sets is the Molecular

Signatures Database, MSigDB [19, 20], which is divided
into eight major collections. These include curated gene
sets from pathway databases such as KEGG [21], the
Gene Ontology (GO) [22], and genes with shared regula-
tory motifs or chromosomal positions. Importantly, in
the context of the present work, MSigDB also includes
collections of genes having shared dysregulation in can-
cer or immunologic gene expression studies. These last
two collections, ‘oncogenic signatures’ and ‘immunologic
signatures’ have been created by systematic analyses of
relevant datasets from the Gene Expression Omnibus
(GEO) [23], enabling researchers to compare later tran-
scriptional datasets across hundreds of previous studies
[24], and thereby contributing to leading publications in
their field [25, 26].

Gene sets for functional genomics in the study of skeletal
muscle tissue and neuromuscular pathology
Functional genomics is integral to the current study of
skeletal muscle tissue and neuromuscular pathology, as
evidenced by the vast quantities of omics data now gen-
erated by researchers in this field. Considering RNA ex-
pression alone, a simple search of ‘skeletal AND muscle’
in the ArrayExpress database returns more than 1000
separate experimental studies of gene/transcript and
microRNA expression [27]. These studies frequently
make use of pathway analysis approaches, but this is
done without the aid of gene set collections of the
subject-specific type that have been beneficial to re-
searchers in the fields of oncology and immunology.
In prior work, we have extracted gene sets from pub-

lished muscle gene expression data and applied these for
analytical purposes in three previous studies: (1) In a
study of human myotubes from old compared to young
subjects, we found a similar profile of dysregulation to
that observed in previous gene expression studies of
myoblast differentiation, despite that the fusion index of
old myotubes was unaffected—this led to the discovery
of a failure of re-quiescence in elderly myoblast cultures,
and the identification of SPRY1 methylation as an
underlying mechanism, with resultant loss of the stem
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cell pool having a potential role in sarcopenia [28]. (2) In
an analysis showing that the procedure of hTERT/cdk4
immortalization did not impact on the skeletal muscle
characteristics of human myoblasts, we studied the ex-
pression levels of consensus sets of genes that were up-
or downregulated consistently across multiple studies of
muscle differentiation [29]. (3) A collection of muscle
gene sets was also used to aid in the characterization of
a murine model of Annexin A2 knockout, to better
understand the role of this protein in sarcolemmal repair
and dysferlinopathy [30]. These studies demonstrated
the utility of muscle-specific gene sets for functional
genomics analyses.

Muscle Gene Sets
Here, we report the creation of the Muscle Gene Sets
(MGS) resource (sys-myo.com/muscle_gene_sets), a col-
lection of gene sets extracted from expression studies of
skeletal muscle cells and tissues, and a smaller number
of cardiac studies. These relate to various aspects of
muscle molecular physiology and pathology, including
myopathies, cardiomyopathies, metabolism, exercise,
ageing, development, regeneration, and others. The
MGS can be accessed through the site itself and also
through three analytical tools—Enrichr, MSigDB/GSEA,
and WebGestalt. We also generated consensus gene sets,
identifying genes that are commonly dysregulated in the
same experimental comparison across multiple different
studies.

Methods/implementation
Microarray data collection
Data were downloaded from public gene expression re-
sources, ArrayExpress and Gene Expression Omnibus
(GEO). Although ArrayExpress mirrors GEO, the mir-
roring is not perfect, so we searched both repositories
for striated muscle (skeletal and cardiac), cells, and cell
line experiments. In this initial screening, we found that
the most abundant microarray chips used for
muscle-related experiments were Affymetrix Human
Genome U133 Plus 2.0 GeneChip (GPL570 GEO plat-
form or A-AFFY-44 ArrayExpress ID) for human and
Affymetrix Mouse Genome 430 2.0 GeneChip (GPL1261
GEO platform or A-AFFY-45 ArrayExpress ID) for mur-
ine samples. In order to maintain a homogenous analyt-
ical approach, we narrowed down our next search to
these two platforms, which represent about 50% of all
muscle arrays on both repositories.
We searched ArrayExpress and GEO using the follow-

ing string: (muscle(s) OR myoblast(s) OR myotube(s) OR
myofiber(s) OR cardiomyocyte(s) OR myocyte(s) OR
heart(s) OR C2C12 OR HSMM OR HL1 OR G8 OR
SOL8) AND A-AFFY-44 for human and (muscle(s) OR
myoblast(s) OR myotube(s) OR myofiber(s) OR

cardiomyocyte(s) OR myocyte(s) OR heart(s) OR C2C12
OR HSMM OR HL1 OR G8 OR SOL8) AND A-AFFY-45
for mouse organisms. However, it is getting more and
more usual for researchers to use an alternative probe to
gene mapping file, called Chip Description File (CDF),
than the original from Affymetrix, for better probe to
probeset and probeset to gene targeting accuracy. GEO
and ArrayExpress assign a unique GPL or ID key re-
spectively for each of the alternative GEO platforms or
ArrayExpress IDs while microarray chips remain the
same. In order to find the alternative platforms, GEO
provides a list of them on the original platform GPL, but
this is not well maintained and many are missing. A
more certain way to identify them is to search on
ArrayExpress (which is manually curated) for alternative
IDs. On ArrayExpress’s browse page (https://www.ebi.ac.
uk/arrayexpress/arrays/browse.html), we searched for
U133 Plus 2.0, MG 430 2.0 and retrieved all the alterna-
tive GEO platforms and IDs to A-AFFY-44 (GPL570) for
human and to A-AFFY-45 (GPL1261) for mouse.
Next, we parsed their MIAME [31] conformed meta-

data by text mining and confirmed them manually,
selecting only those pertinent to muscle research. We
excluded all series that did not include the raw CEL files
(Affymetrix fluorescence light intensity files) in order to
homogenize the data even further by preprocessing all
raw files with a robust pre-processing and data analysis
pipeline [32].

Affymetrix microarray quality assessment
Despite that the arrays are published and have already
passed quality controls (QCs), these QC steps have been
applied differently by different authors. For this reason,
we performed a global quality control using a battery of
Bioconductor [33, 34] packages: ‘simpleaffy’ [35], ‘affyQ-
CReport’, and ‘affyPLM’ [36], using the MAS 5.0 algo-
rithm [37] and the Affymetrix default Chip Description
File (CDF). We used the Affymetrix chip embedded sin-
gle array quality metrics for each sample, such as aver-
age background, scale factor, the percentage of genes
called present, and 3′ to 5′ RNA hybridization ratios for
β-actin and GAPDH. We also used two multi-array
quality metrics for each series, Normalized Unscaled
Standard Error (NUSE) and Relative Log Expression
(RLE). As a general guideline, we followed Affymetrix
recommended thresholds: differences in average back-
ground per sample not higher than 20, scale factor
within a threefold change of one sample to another, no
higher than 10% difference of percent present genes and
3′ to 5′ ratio threshold of GAPDH to 1.25 and β-actin
to 3. Also, the NUSE boxplots should be centered on 1
with bad-quality samples ranging above 1.1. Samples
were also deemed as low quality if they had globally
higher spread of NUSE distribution than others. Because
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it is assumed that most probes are not changed across
the arrays, the ratio of probeset expression and the me-
dian probeset expression across all samples of a series
are expected to be around 0 on a log scale. The RLE
boxplots presenting the distribution of these log ratios
should be centered near 0 and have similar spread with
low-quality samples having a spread higher than 0.2. Ar-
rays that had extreme values or were above our set
thresholds on the combined QCs were not used for any
further analysis. In total, we removed 160 human and
122 mouse samples. In our case, percent present and
RLE performed better than the other metrics, as also re-
ported by McCall et al [38].

Data normalization
Pre-processing algorithms, usually termed normalization
algorithms, are three-step processes: background correc-
tion, normalization, and probe summarization. The ar-
rays that passed quality controls were pre-processed
with the Robust Multi-array Average algorithm [39],
with default parameters except for the CDFs that were
downloaded from BrainArray ENSG version 20.0.0 [40].

Probes to gene mapping
The microarray Affymetrix GeneChips we collected to
create the MGS are the most abundantly used chips for
human and mouse microarray experiments. However,
their selection of probes relied on early genome and
transcriptome annotation (2003–2004) which is signifi-
cantly different from our current knowledge. Most of
the genes on the microarray chips are usually repre-
sented by a few probesets, and in many cases, a probeset
could target multiple genes. Probesets that target a gene
could exhibit wildly different expression levels making
downstream analysis challenging. Dai et al. had foreseen
these limitations and created the BrainArray portal [40]
where they reorganize probes with up-to-date genome,
cDNA, and single nucleotide polymorphisms (SNPs) in-
formation in order to create a more accurate and precise
CDF, which is widely used in gene mapping [41]. Brai-
nArray’s CDF is updated annually with most microarray
algorithms and tools supporting its CDF by default.

Allocation of samples to comparisons of interest
Sample meta-data were mined from GEO or ArrayEx-
press and manually inspected to allocate samples to
comparisons of interest, as well as to name each com-
parison. During this manual process, reference was fre-
quently made to the original GEO pages for individual
samples, and often back to the publication associated to
the data, in order to confirm sample designations and
points of methodology. In cases where the relevant char-
acteristic of samples could not be clearly established, the

comparison was not used. Selected comparisons were
taken forward to differential expression analysis.

Differential expression analysis and gene mapping
We used the ‘limma’ package [42, 43] for differential ex-
pression analysis. We included into gene sets all genes
with Benjamini-Hochberg FDR adjusted p value < 0.05
for each experimental comparison, up to a maximum of
300 genes, taking the top 300 after ranking by the sig-
nificance of differential expression (Limma’s B statistic).
Before the eBayes step, we also removed 25% of the
genes that had the lowest average expression values. To
map Ensembl gene IDs to gene symbols, we used
Ensembl BioMart [44]. We extracted the required infor-
mation from GRCh38.p5 assembly for human and
GRCm38.p4 assembly for mouse. Following the standard
of MSigDB, standard gene names were used that are ap-
proved by the Human Gene Nomenclature Committee
(HGNC) and Mouse Genome Informatics (MGI) groups.

Batch effect correction
For batch effect identification and correction, we used
the surrogate variable analysis (sva) algorithm [45] from
the ‘SVA’ Bioconductor package [46]. We used the ‘leek’
method to detect the number of surrogate variables, if
present, but we also set a limit of up to two surrogate
variables to avoid overcorrecting the data. The sva algo-
rithm found and corrected technical variation in 256 out
of a total of 578 experiments.

Consensus set enrichment analysis
Genes of selected consensus sets were tested for enrich-
ment against the Gene Ontology sections, biological pro-
cesses, and cell compartments, using the EnrichR tool.

Contents of the MGS website
The full downloadable MGS collection includes 1517 gene
sets: 1156 gene sets from the current work, which for com-
pleteness include 245 empty gene sets for which no signifi-
cantly differentially expressed genes were identified; 122
gene sets derived from post-2005 studies of myoblasts and
myotubes, referenced in our previous work [29]; 185 gene
sets extracted from a previous meta-analysis of early muscle
microarray data (pre-2005; [47]); and 54 gene sets identified
by searching for muscle-relevant terms within the MSigDB
collections (mostly comprising muscle-related pathways
from Reactome or Biocarta databases and omitting any
gene sets that could duplicate those created in the present
analysis).

Results
Creation of gene sets
Following a systematic survey of public gene expression
data repositories, we downloaded raw expression data
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from 302 studies of muscle gene expression, including
4305 separate samples. After robust pre-processing
through a standardized data analysis pipeline, 282 samples
were discarded based on a battery of rigorous global qual-
ity controls. From among the remaining studies, 578 com-
parisons of interest were identified by a combination of
text mining and manual curation of the study meta-data.
For each comparison, significantly dysregulated genes
(FDR p < 0.05) were identified and divided into two lists of
up to 300 each: those that were most significantly upregu-
lated and those that were most significantly downregu-
lated. Each of these 1156 lists was considered a Muscle
Gene Set and was given a name tag intended to be both
succinct and readily understandable (Fig. 1).
The primary format in which the MGS collection is

stored is as a gmt file of the type used by MSigDB [19]
and GSEA [12]. This is a tab-delimited plain text format
in which each gene set is represented by a new line. The
name of the gene set is given first, followed by an informa-
tion field that includes an identifier (usually a GEO or
ArrayExpress series number) linking back to the original
data source. Member genes of the gene set are then listed.

Content of the MGS collection
Each muscle gene set represents either the up- or down-
regulated genes from a single comparison within a gene
expression study. The studies included human or murine
muscle tissues and cells, and the comparisons are made
between different muscle tissues, ages and developmen-
tal stages, pathologies, experimental treatments, and
genetic interventions. A breakdown of the composition
of the MGS by tissue, research theme, and type of myop-
athy is shown in Fig. 2.
Murine studies accounted for 65.9% of muscle gene

sets, being about twice as common as human studies
(34%), and cardiac-related gene sets accounted for a

large proportion (44.7%) of these (Fig. 2a). Of skeletal
muscle gene sets, murine samples were frequently
(22.4%) derived from the gastrocnemius, which was rela-
tively rarely studied (3.2%) in humans. Conversely, the
vastus lateralis was the most common origin of human
muscle gene sets, while this muscle is not much studied
in mice. We also tagged gene sets according to specific
research themes (Fig. 2b). Many murine gene sets were
related to regeneration and/or differentiation, largely
due to studies of C2C12 myoblasts. A substantial pro-
portion of both human (23.9%) and murine (24.7%) gene
sets relates to studies of metabolism, obesity, and/or dia-
betes, while gene sets relating to exercise are almost all
derived from human studies. Myopathies accounted for
11.8% and 21.1% of human and murine gene sets, with
other common research themes including ageing and de-
velopment, miRNA regulation, disuse atrophy, cancer
cachexia, and sepsis.
Among myopathy-related gene sets (Fig. 2c), precisely

50% are derived from a large number (~ 40) of studies of
the murine model (mdx) of Duchenne muscular dys-
trophy (DMD). DMD also accounted for 26% of human
myopathy gene sets, although in humans facioscapulo-
humeral muscular dystrophy (FSHD) had the most com-
monly studied gene expression, accounting for 47% of
human myopathy gene sets. Limb-girdle muscular dys-
trophy type 2B (LGMD2B) and the myotonic dystrophies
(DM1 and DM2) account for around 10% each of hu-
man and murine myopathy gene sets, while a small
number of gene sets were derived from murine studies
of other limb-girdle muscular dystrophies and of
Emery-Dreifuss muscular dystrophy (EDMD).

Consensus Muscle Gene Sets
Since comparisons of similar conditions were sometimes
carried out in multiple different published studies, we

Fig. 1 Naming convention for Muscle Gene Sets. Each name was chosen to be both succinct and readily understandable. This was not an
automated process—consideration was given to the name of each gene set. The first segment, before the triple underscore, has the generic
form ‘up_in_Group1_v_Group2’ or ‘down_in_Group1_v_Group2’, referring to genes that were up- or downregulated in the comparison of group
1 (e.g. mdx) to group 2 (e.g. WT), for which ‘up’ indicates greater expression in group1 compared to group2, and ‘down’ means lesser expression
in group1. Following the triple underscore, species name is then given, then age/timepoint and/or tissue description and/or gender (in any
order). Finally, each gene set is given a MGS ID number. List of time abbreviations used: h = hour(s); d = day(s); wk. = week(s); mo =month(s); y =
year(s). List of other abbreviation conventions used (ordered by appearance in the complete MGS gmt file): ctl = control; WT = wild-type; gastroc/
gastr = gastrocnemius muscle; DMD = Duchenne muscular dystrophy; quad = quadriceps muscle; skel = skeletal; dysf = dysferlinopathy; EDMD =
Emery-Dreifuss muscular dystrophy; EDL = extensor digitorum longus muscle; TA/tib_anterior = tibialis anterior muscle; diff = differentiation/
differentiated (of myotubes); prim = primary cells; vast_lat/vastus_lat = vastus lateralis; KO = knock-out; mir = microRNA. Some study-specific
abbreviations are used, which are assumed to be understandable from context or occasionally requiring reference to the source GEO entry
indicated in the information column of the gmt file

Malatras et al. Skeletal Muscle            (2019) 9:10 Page 5 of 12



created high-confidence consensus sets containing only
those genes that were consistently dysregulated in the
same direction for the same comparison across those
studies. For this purpose, we manually identified 250

gene sets belonging to 14 different comparisons
(Table 1), each comparison having a minimum of 8 gene
sets (4 upregulated and 4 downregulated). For each com-
parison, we identified genes that were consistently

Fig. 2 Proportional composition of the MGS collection broken down by tissue type, research theme, and myopathy sub-type, for human and
murine species. a Tissue types. Shown are all tissue categories containing 10 or more gene sets. ‘Mixed’ indicates that the comparison is between
different tissue types (e.g. gastrocnemius vs vastus lateralis). The ‘unspecified’ category indicates gene sets from studies in which the specific
muscle tissue was not given in the published work. b Research themes. Shown are all themes containing 10 or more gene sets. c Myopathy sub-
types. These are sub-categories of the myopathy set in b. All are shown
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upregulated, downregulated, or dysregulated (and in the
same direction). For each of these 3 cases (up, down,
and same), we created consensus sets for genes shared
by at least 30%, 50%, or 70% of the gene sets, giving a
total of 9 consensus sets for each comparison.
In general, consensus sets consisted of genes that

would be expected according to previous literature. For
example, functional analysis of 39 consensus genes that
were dysregulated by a high-fat diet in murine skeletal
muscle (Additional file 1: Figure S1A), drawn from 18
gene sets from 7 different published studies, showed up-
regulation of fatty acid oxidation and the mitochondria,
these two processes being driven by upregulated mito-
chondrial genes ACADVL (very long-chain specific
acyl-CoA dehydrogenase), ACAA2 (3-ketoacyl-CoA
thiolase), ECI1 (Enoyl-CoA delta isomerase 1), ACADM
(medium-chain specific acyl-CoA dehydrogenase),
HADH (hydroxyacyl-coenzyme A dehydrogenase),
DECR1 (2,4-dienoyl-CoA reductase), and ACAT1 (Acet-
yl-CoA acetyltransferase). Change to expression levels of
fatty acid oxidation genes was also the major process
enriched 1 day following exercise in human skeletal
muscles (Additional file 1: Figure S1B).
Expectedly, myotube differentiation up to 9 h consist-

ently involved changes in the expression patterns of
genes involved in chromatin remodelling (Add-
itional file 1: Figure S1C), which was succeeded at 12–
24 h (Additional file 1: Figure S1D) by changes in cell
cycle gene regulation, with significant but less pro-
nounced enrichment of sarcoplasmic reticulum (SR) and
calcium channel genes. After 2 or more days of mat-
uration, the dominant dysregulated process (compared
to day 0) was muscle contraction (Additional file 1:
Figure S1E).

More notably, in Duchenne muscular dystrophy com-
pared to healthy controls, alongside expected observa-
tions such as downregulation of the
dystrophin-associated protein complex and upregulation
of extracellular matrix components expected as a result
of fibrosis, what may be surprising is the extent to which
lysosomal genes were consistently found to be upregu-
lated (Additional file 1: Figure S1F). Of 84 consensus
genes upregulated in 50% or more of DMD vs healthy
comparisons in human skeletal muscle, 11 lysosomal
genes were present (enrichment FDR p value 0.00002).
Four of these genes overlapped with the upregulated
extracellular matrix genes, but enrichment of the lyso-
some was still significant (FDR < 0.0001) when these 4
genes were omitted from the analysis. Very similar en-
richment results emerged from consensus genes in the
mdx murine model of DMD, with strong enrichment of
the lysosomal/ER lumen (Additional file 1: Figure S1H).
This was driven by a different set of genes in mouse
than in humans; the only lysosomal gene shared between
human and murine consensus sets was LGMN, which
encodes Legumain, a protein which hydrolyzes asparagi-
nyl bonds in lysosomal protein degradation.
Other comparisons for which consensus sets were iden-

tified included 6 studies of human and murine dysferlino-
pathy versus healthy, for which neutrophil-mediated
immunity and vacuolar/lysosomal lumen were the most
strongly dysregulated process and component, respect-
ively, each being upregulated (Additional file 1: Figure
S1I). Ageing compared to young human skeletal muscle
across 8 studies resulted in changes to mitochondrial ATP
synthesis coupled proton transport and regulation of RNA
transcription and, less expectedly, changes to regulation of
neuron apoptotic process, although this latter enrichment

Table 1 Consensus muscle gene sets

Category Consensus set name (indicating tissue type and comparison) # Muscle Gene Sets

Aging and development HumanSkelMusc_Aging_v_Young 16 (8 up, 8 down)

MurineSkelMusc_12orMoreMonths_v_1to5Months 8 (4 up, 4 down)

MurineSkelMusc6WkOrOlder_Mdx_v_Healthy 36 (18 up, 18 down)

Differentiation MurineMyotube_12to24hDiff_v_Undiff 14 (7 up, 7 down)

MurineMyotube_2orMoreDaysDiff_v_Undiff 38 (19 up, 19 down)

MurineMyotube_9hOrLessDiff_v_Undiff 18 (9 up, 9 down)

Disuse AnySpeciesSkelMusc_AtrophyDisuseOrInactivated_v_Control 28 (14 up, 14 down)

Exercise HumanSkelMusc_1DayOrLessAfterExercise_v_Before 18 (9 up, 9 down)

HumanSkelMusc_8wkOrMoreAfterResistanceTraining_v_Before 12 (6 up, 6 down)

Metabolism HumanSkelMusc_Type2_Diabetes_v_Healthy 10 (5 up, 5 down)

MurineSkelMusc_HighFatDiet_v_Control 18 (9 up, 9 down)

Myopathy HumanOrMurineSkelMusc_Dysferlinopathy_v_Control 12 (6 up, 6 down)

HumanSkelMusc_DMD_v_Healthy 8 (4 up, 4 down)

MurineSkelMusc_Calpainopathy_v_Healthy 14 (7 up, 7 down)
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was due to only 2 genes (PRNP and FOXO3) (Add-
itional file 1: Figure S1J). The most frequently recurring
impact of resistance training in 6 human studies was
changes to expression of collagens, which drove enrich-
ment of both extracellular matrix reorganization and of
endoplasmic reticulum lumen (Additional file 1: Figure
S1K). Changes to expression of collagens were also the
main consistent feature of murine skeletal muscle ageing
in 4 studies comparing 12 or more months against 1 to 5
months old (Additional file 1: Figure S1L).
Several attempts to generate consensus sets failed due

to low overlap between the results of different studies.
No genes were dysregulated in the same direction in 2
or more out of 5 studies of human type 2 diabetes vs
healthy (Additional file 1: Figure S1M). Across 7 studies
of murine calpainopathy, only 12 genes were consistently
dysregulated in 30% or more of the studies, and these 12
genes were not significantly enriched for any biological
process or cell component (Additional file 1: Figure
S1N). Only 4 genes were consistently dysregulated in
30% or more of 14 studies of muscle atrophy, disuse, or
inactivation, although here we did not attempt to gener-
ate consensus lists for human and murine separately
(Additional file 1: Figure S1O).

Accessibility and implementation of the Muscle Gene Sets
in functional genomics analysis
The MGS repository, including the complete collection
of MGS as well as, separately, the consensus sets, is
available for download in .gmt format from our Sys Myo
site (at https://www.sys-myo.com/muscle_gene_sets/).
We have also worked with other developers to include
the MGS in two online functional genomics analysis
tools, EnrichR [10] and WebGestalt [14].
The MGS is currently the last listed collection in

EnrichR’s ‘Crowd’ category. Using EnrichR, it is very
straightforward to submit a query list of gene names of
interest and carry out functional enrichment testing to
determine whether the query list is enriched for any of
the muscle gene sets. This facilitates rapid screening of
any list of genes against the genes that were dysregulated
in each of the previous muscle studies of gene
expression.
Analysis using the MGS in WebGestalt is achieved by

selecting either hsapiens or mmusculus as the organism of
interest, the Overrepresentation Enrichment Analysis
(ORA) or Gene Set Enrichment Analysis (GSEA) as the
method of interest, and selecting community-contributed
functional database. The MGS collection is then select-
able, and a list of genes can be uploaded for enrichment
testing against the MGS.
The .gmt format in which we provide the MGS gene

set collection was originally developed for the GSEA tool
[12] (http://software.broadinstitute.org/gsea/), and a

large variety of gene set collections are available in this
format for download from the Molecular Signatures
Database (MSigDB [19]). MSigDB are now listing gene
sets from community contributors, of which MGS is the
first listed (http://software.broadinstitute.org/gsea/
msigdb/contributed_genesets.jsp). Enrichment testing
can be carried out on the MGS collection using the
GSEA software by uploading the MGS .gmt file as a
local gene matrix from within the GSEA software’s gene
set database selection dialogue. We note that it is also
possible to concatenate .gmt files using a text editor or
scripting language, and it can be of interest to compare,
for instance, enrichment results of Gene Ontology terms
against those of the MGS. To facilitate deeper functional
interpretation of the results, the output from GSEA can
be visually displayed using the Enrichment Map plugin
[48] for Cytoscape, for example, to examine the overlap
of enriched MGS with enriched GO terms, as we have
done previously [28, 30].

Discussion
According to developed principles for the organization
of gene sets [1], MGS are phenotypic-level gene sets in
which genes share actual connections in the form of dif-
ferential expression in the same transcriptomic compari-
son. The MGS resource can be used to investigate the
behaviour of any list of genes across > 1100 previous
comparisons of muscle conditions, to compare previous
studies to one another, and to explore the functional re-
lationship of muscle dysregulation to the gene ontology.
Its major intended use is in enrichment testing for func-
tional genomics analysis, for which purpose it has been
made accessible through three commonly used analytical
tools (GSEA, EnrichR, and WebGestalt).

Optimal usage
Various statistical approaches are used for gene set en-
richment analysis, and their performances have been
evaluated and usage guidelines established [49]. GSEA is
an active field in which new methods are being devel-
oped, such as to identify gene sets that are specifically
enriched in one experiment among a large set of experi-
ments [50]. An important advantage of gene sets in ex-
pression pattern analysis is that they enable the
identification of gene groups whose constituents show
subtle but coordinated expression changes, which might
not be detected by the usual individual gene analysis
[51]. We consider that the GSEA algorithm is particu-
larly suited to this as it can detect subtle shifting of a
gene set within a differential expression profile, and be-
cause it profiles across the entire expression matrix, it is
not dependent on an arbitrary statistical cut-off to dis-
tinguish dysregulated from unaffected genes. Of the dif-
ferent methods to use the MGS, we consider that a very
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powerful approach is to concatenate the MGS with the
Gene Ontology (or another functional annotation such
as Reactome or KEGG pathways), then test a ranked
query gene list against this concatenated gene set collec-
tion using the GSEA tool, and visualize the results using
the enrichment mapping plugin for Cytoscape. This ap-
proach, which we have adopted in previous work [28,
30], makes it possible not only to identify the overlap of
query genes with previous muscle studies, but also to
understand the overlap of previous muscle studies with
elements of the Gene Ontology, including biological pro-
cesses and cell compartments, which greatly aids in the
understanding of what the enrichment results mean,
helping to interpret them in their biological context.
However, for rapid enrichment testing of a gene list

against the MGS collection, without deeper analysis of
overlap between gene sets, both EnrichR and WebGes-
talt are very convenient and robust resources and are
preferable in many instances due to their speed and rela-
tive ease of use. It should also be noted that EnrichR’s
z-score approach is an improvement over the standard
Fisher’s/hypergeometric enrichment test and that the
WebGestalt pipeline offers multiple implementations of
enrichment testing each with specific advantages.

Consensus muscle gene sets
In creating the MGS resource, we have observed that
many of the hundreds of published skeletal muscle gene
expression studies have made similar experimental or
pathology-relevant gene expression comparisons or identi-
fied overlapping sets of dysregulated genes. The MGS pro-
vides an opportunity for in-depth study of this overlap,
which may reveal new insights into skeletal muscle path-
ology. We have previously used a consensus MGS to study
differentiation in immortalized myoblasts [29].
For instance, an intriguing observation was that lyso-

somal genes were the most consistently upregulated cell
compartment across studies of DMD compared to
healthy skeletal muscle. This was true for consensus sets
of both human DMD and the murine Mdx model of
DMD. Among the publications associated to these data,
the lysosome was discussed only rarely [52], with attention
usually focused on more general inflammatory/immune
response or on other pathways such as calcium homeosta-
sis and fibrosis (extracellular matrix), although upregula-
tion of specific lysosomal genes was reported in 2 human
studies (lysosomal acid lipase, cholesteryl ester hydrolase
(LIPA) and lysozyme [53]; lysosomal-associated trans-
membrane protein 5 (LAPM5) [54]) and in 2 murine stud-
ies (Lysosome M [55]; Lysozyme [56]). Since the DMD
and Mdx consensus sets are drawn from studies of whole
muscle tissue, a trivial explanation could be the infiltration
of immune cells that is associated with muscle wasting in
the disease, and indeed, we observe an enrichment of T

cell proliferation and lymphocyte migration among the
consensus upregulated genes. However, it has been ob-
served that lysosomal-associated membrane protein,
LAMP1, and other vesicular trafficking proteins are over-
secreted from DMD myotubes and that disturbance of
protein export may make a low-level chronic contribution
to DMD pathology [57].
Lysosomal upregulation was also a feature of the dys-

ferlinopathy consensus MGS. Upregulation of the lyso-
some has not been reported in the literature specifically
for dysferlinopathy, although it has been reported as a
common feature of muscular dystrophies in a previous
gene expression meta-analysis [58], and previous studies
of dysferlinopathy have reported dysregulation of specific
lumen proteins such as Cathepsin K [59] and Cathepsin
S [60]. Similarly to DMD, this could be due to immune
cell infiltration or to gene expression changes in the
muscle fibres themselves.

Limitations and perspectives
This analysis captures and summarizes more than 300
studies of muscle gene expression published in the
period 2005–2016, and the full MGS collection available
for download extends back from 2005 thanks to a previ-
ous meta-analysis by Jelier et al. [47]. This does mean
that more recent studies are not yet represented. We es-
timate there could be upwards of 50 new studies since
we completed our data curation step. Included among
these are a rising number of RNA-Seq-based expression
analyses. It will be important to capture these newer
studies in future work. The inclusion of RNA-Seq stud-
ies will be difficult for the immediate future as they re-
quire large computational resources. Given current
hardware costs, re-analysis is possible by a small team
with limited resources on a per-study basis, but would
be challenging to carry out on a systematic multi-study
basis, if the analysis goes back to using raw read data. By
comparison, it is possible to process very large numbers
of microarray samples with only moderate computa-
tional demands. We welcome efforts to automate or
semi-automate gene set extraction [61–63], which can
help in this task, but we note that these require the use
of expression matrices that have been supplied to GEO/
ArrayExpress by the team making the data submission
and therefore depend on the data processing steps car-
ried out by each team, whereas we chose to re-analyse
raw probe intensities (.CEL files). We considered this to
be of strong importance in order to standardize data
processing and quality control. Interesting methods are
also being developed for the extraction of gene sets from
literature text mining [64].
Gene sets for pre-2005 muscle studies are included in

the full downloadable MGS collection. These were ob-
tained from a very thorough previous review and
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meta-analysis [47] in which gene sets were extracted
from publication tables and other sources. The raw data
were not re-analysed directly by the authors of the
meta-analysis, and a variety of different technological
platforms were used by the authors of each study. This
is understandable because, especially at that time, micro-
array platforms were considerably more disparate, so it
would have been less useful to focus the meta-analysis
on the market-leading platform, as we have been able to
do, and normalizing across technological platforms is
notoriously difficult [65, 66]. Although we believe there
is value in the comparison across these pre-2005 studies
collectively (and this is supported by the very interesting
meta-analysis that was previously performed on them),
due to improvements in microarray technology since
2005, we would urge caution in close interpretation of
any given gene from these studies, or any given study
treated alone.
We did not extend our analysis to proteomic data—

this would be interesting in future work as protein levels
more closely reflect the activities of biological pathways.
It would also be interesting to systematically cross-relate
gene expression to proteomic studies in order to identify
which muscle transcripts consistently serve as faithful
markers of the proteins that they encode.
Future work could allow selection by keyword, or au-

tomated subsetting of the MGS, similarly to that facili-
tated by the MSigDB resource for its current collections,
and perhaps by incorporation of the MGS into the
MSigDB, if that becomes an option that MSigDB would
provide to community contributors.

Conclusions
The MGS resource has multiple applications as a re-
search aid in the study of muscle physiology and disease
and should be a useful and versatile tool for functional
genomics analysis in the neuromuscular field.

Additional file

Additional file 1: Summary information for consensus muscle gene
sets. (PDF 936 kb)
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