F. Wang, R. Robert, N. A. Chernova, N. Pereira, F. Omenya et al.,

Y. Amatucci, J. Zhu, and . Graetz, Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes, J. Am. Chem. Soc, vol.133, pp.18828-18836, 2011.

Y. T. Teng, S. S. Pramana, J. Ding, T. Wu, and R. Yazami, Investigation of the conversion mechanism of nanosized CoF2, Electrochim. Acta, vol.107, pp.301-312, 2013.

X. Hua, R. Robert, L. Du, K. M. Wiaderek, M. Leskes et al.,

. Grey, Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery, J. Phys. Chem. C, vol.118, pp.15169-15184, 2014.

F. Badway, F. Cosandey, N. Pereira, and G. G. Amatucci, Carbon Metal Fluoride Nanocomposites, J. Electrochem. Soc, vol.150, p.1318, 2003.

K. Rui, Z. Wen, X. Huang, Y. Lu, J. Jin et al., High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction, Phys. Chem. Chem. Phys, vol.18, pp.3780-3787, 2016.

K. Rui, Z. Wen, Y. Lu, J. Jin, and C. Shen, One-Step solvothermal synthesis of nanostructured manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism, Adv. Energy Mater, vol.5, 2015.

N. Bensalah, D. Turki, F. Z. Kamand, and K. Saoud, Hierarchical Nanostructured MWCNT-MnF2

, Composites With Stable Electrochemical Properties as Cathode Material for Lithium Ion Batteries, Phys. Status Solidi, vol.215, p.1800151, 2018.

L. M. Da-veiga, L. R. Andrade, and W. Gonschorek, The crystal structure of manganese difluoride (MnF2): Reliability test of hypothetical intensity variances by means of ? 2 distributions, Zeitschrift Für Krist, vol.160, pp.171-178, 1982.

F. Badway, F. Cosandey, N. Pereira, and G. G. Amatucci, Carbon Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries, J. Electrochem. Soc, vol.150, 2003.

S. S. Kabalkina and S. V. Popova, Phase Transitions in Zinc and Manganese Fluorides at High Pressures and Temperatures, Sov. Phys. Dokl, vol.8, p.1141, 1964.

I. Hernández and F. Rodríguez, Spectroscopic study of milled MnF 2 nanoparticles. Size-andstrain-induced photoluminescence enhancement, J. Phys. Condens. Matter, vol.19, p.356220, 2007.

A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards et al., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater, vol.1, p.11002, 2013.

S. S. Kabalkina and S. V. Popova, Phase transition in high temperatures, Dokl. Akad. Nauk SSSR, vol.153, pp.1310-1312, 1963.

D. A. Keen, A comparison of various commonly used correlation functions for describing total scattering, J. Appl. Crystallogr, vol.34, pp.172-177, 2001.

A. S. Masadeh, E. S. Bo?in, C. L. Farrow, G. Paglia, P. Juhas et al., Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis, Phys. Rev. B, vol.76, p.115413, 2007.

B. Shyam, K. W. Chapman, M. Balasubramanian, R. J. Klingler, G. Srajer et al., Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis, Angew. Chemie -Int. Ed, vol.51, pp.4852-4855, 2012.
DOI : 10.1002/ange.201200244

K. M. Jensen, P. Juhas, M. A. Tofanelli, C. L. Heinecke, G. Vaughan et al.,

. Billinge, Polymorphism in magic-sized Au144(SR)60 clusters, Nat. Commun, vol.7, p.11859, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01572856

D. W. Meng, X. L. Wu, F. Sun, L. W. Huang, F. Liu et al., High-pressure polymorphic transformation of rutile to ?-PbO2-type TiO2 at {011}R twin boundaries, Micron, vol.39, pp.280-286, 2008.

J. Wittkamper, Z. Xu, B. Kombaiah, F. Ram, M. De-graef et al., Competitive Growth of Scrutinyite (?-PbO2) and Rutile Polymorphs of SnO2 on All Orientations of Columbite CoNb2O6 Substrates, Cryst. Growth Des, vol.17, pp.3929-3939, 2017.

Y. Hu, Z. Liu, K. Nam, O. J. Borkiewicz, J. Cheng et al., Origin of additional capacities in metal oxide lithium-ion battery electrodes, Nat. Mater, vol.12, pp.1130-1136, 2013.

S. Komaba, N. Yabuuchi, T. Ozeki, Z. Han, K. Shimomura et al., Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries, J. Phys. Chem. C, vol.116, pp.1380-1389, 2012.

I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, vol.334, pp.75-79, 2011.

L. Ling, Y. Bai, Z. Wang, Q. Ni, G. Chen et al., Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO2 as High-Performance Anode in Sodium Ion Batteries, ACS Appl. Mater. Interfaces, vol.10, pp.5560-5568, 2018.

W. M. Haynes, CRC Handbook of Chemistry and Physics, 2014.

Y. Oumellal, A. Rougier, G. A. Nazri, J. M. Tarascon, and L. Aymard, Metal hydrides for lithiumion batteries, Nat. Mater, vol.7, pp.916-921, 2008.
DOI : 10.1038/nmat2288

P. J. Chupas, K. W. Chapman, and P. L. Lee, Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements, J. Appl. Crystallogr, vol.40, pp.463-470, 2007.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey et al., Rapid-acquisition pair distribution function (RA-PDF) analysis, J. Appl. Crystallogr, vol.36, pp.1342-1347, 2003.
DOI : 10.1107/s0021889803017564

URL : http://arxiv.org/pdf/cond-mat/0304638

A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, , pp.235-248, 1996.

X. Qiu, J. W. Thompson, and S. J. Billinge, PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, J. Appl. Crystallogr, vol.37, p.678, 2004.

C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bo?in et al., PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals, J. Phys

, Condens. Matter, vol.19, 2007.

E. Raymundo-piñero, M. Cadek, and F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds, Supporting Information Synthesis and Optimized Formulation for High-Capacity Manganese Fluoride (MnF2) Electrodes for Lithium-ion Batteries, vol.19, pp.1032-1039, 2009.

A. Grenier-a,b, A. Porras-gutierrez-a, A. Desrues-a,b, S. Leclerc-a,b, and O. J. , Borkiewicz c , Henri Groult a,b , Damien Dambournet a,b* a Sorbonne Université, CNRS, Physico-chimie des électrolytes et nano-systèmes interfaciaux

X. , Advanced Photon Source, Science Division

, All syntheses gave pure single-phase MnF2 with rutile-type structure (P42/mnm space group), as shown in Figure S1. Crystallite size estimated from Scherrer's equation from the (110) peak and the yield of the reaction are gathered in Table S1, * Corresponding author: damien.dambournet@sorbonne-universite.fr Optimized synthesis conditions -Solvents: Preliminary syntheses in pure ethanol, pure water and a mixture of ethanol and water