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The infectious period of a transmissible disease is a key factor for

disease spread and persistence. Epidemic models on networks

typically assume an identical average infectious period for all

individuals, thus allowing an analytical treatment. This

simplifying assumption is, however, often unrealistic, as hosts

may have different infectious periods, due, for instance, to

individual host–pathogen interactions or inhomogeneous

access to treatment. While previous work accounted for this

heterogeneity in static networks, a full theoretical understanding

of the interplay of varying infectious periods and time-evolving

contacts is still missing. Here, we consider a susceptible-

infectious-susceptible epidemic on a temporal network with

host-specific average infectious periods, and develop an

analytical framework to estimate the epidemic threshold, i.e. the

critical transmissibility for disease spread in the host population.

Integrating contact data for transmission with outbreak data and

epidemiological estimates, we apply our framework to three

real-world case studies exploring different epidemic contexts—

the persistence of bovine tuberculosis in southern Italy, the

spread of nosocomial infections in a hospital, and the diffusion

of pandemic influenza in a school. We find that the

homogeneous parametrization may cause important biases in

the assessment of the epidemic risk of the host population. Our

approach is also able to identify groups of hosts mostly

responsible for disease diffusion who may be targeted for

prevention and control, aiding public health interventions.
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1. Introduction

Mathematical modelling of infectious diseases provides an important tool in understanding patterns and

determinants of disease spread [1,2]. The foundations of this field rest upon compartmental models, in

which the population is divided into different classes (compartments) according to the individual

health status, and disease progression is modelled through transitions between compartments. This

allows the mathematical description of the epidemic outcome, using, for instance, coupled differential

equations [2,3]. While usually being tractable, this framework, however, often relies on two important

simplifying assumptions. The first is the homogeneous mixing approximation for which the

probability of having a contact with an infectious host is identical for each individual of the

population, neglecting any underlying social or spatial structure. Such approximation, unrealistic in

many circumstances [4–9], was overcome by accounting for host contact heterogeneities in different

ways. In this work, we focus on the network epidemiology approach where each individual is

represented by a node in a network and edges encode the interactions between nodes. The contact

network can be static [10–14] or dynamic [7–9,15–21], representing interactions that evolve in time.

In both cases, network structure strongly influences the spreading process, since it depends on the

interplay between the infection dynamics and the structural and temporal features of the networks.

The second assumption involves the recovery process, when infected hosts recover from infection either

going back to the susceptible state, or acquiring immunity. Typically, models assume that all the infected

individuals have identical constant recovery rate [2,3]. This implies that the average duration of the

infectious period (the interval during which an infectious host can transmit the disease) is the same for

each individual and is exponentially distributed. Recovery is, therefore, described by an identical

Markovian process for all individuals in the population that, while being analytically more tractable, can

be unrealistic in many contexts. Individuals may indeed be characterized by different genetic [22] and

immunogenetic [23] profiles, or may differ regarding age, medical treatment and vaccination [24]. These

features, combined with specific epidemiological characteristics, may cause large deviations from the

exponential distribution [25–27], and lead to large heterogeneities in the duration of the infectious

period at the individual level. An increasing body of the literature started to account for individual

heterogeneities, considering mainly individual variations in infectivity [5,28] and susceptibility [29–31].

Preliminary works incorporated this feature only in homogeneously mixed populations through integro-

differential equations [10,32], partial differential equations or through the method of stages [27,33–37].

Only recently, the effects of infectious period heterogeneity are analysed on static networks, using

message passing approaches [38,39] and heterogeneous mean-field models [40]. These works provide a

description of the susceptible-infectious-recovered (SIR) model on static networks and the computation

of the basic reproductive number R0 [2,3]. These approaches, however, neglect the temporal dynamics of

the network of contacts between hosts, which becomes particularly relevant if the timescale of the

evolution of contacts is comparable to the one of the spreading process [7–9,17,18].

The aim of this work is to understand how heterogeneous durations of the infectious period impact

the conditions for the spreading of an epidemic on a time-evolving contact network, in the particularly

interesting scenario of the disease timescale being comparable to the one of the underlying network. By

extending the infection propagator approach developed in [41,42], we build an analytical framework that

allows us to go beyond the two aforementioned assumptions providing an analytical form for the

epidemic threshold, i.e. the critical transmission probability below which a pathogen would go extinct

in the population. The epidemic threshold is a key epidemiological quantity as it can measure the

vulnerability of a system to the introduction of a specific pathogen.

Lastly, we apply this methodology to evaluate the vulnerability of three different real-world systems:

bovine tuberculosis in Southern Italy, nosocomial carriage of pathogenic bacteria in hospital facilities and

pandemic influenza in closed settings. We show that using compartmental models with homogeneous

infectious periods may introduce important biases in the estimate of the epidemic threshold and thus

of the epidemic risk of a host population.

2. Methods
2.1. Infection propagator for heterogeneous infectious periods
In this section, we introduce the analytical framework that allows us to compute the epidemic threshold

for a spreading process on a time-varying contact network, considering that infected hosts have a

constant rate of recovery, but each host is associated with an individual average infectious period.
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We start from a susceptible-infectious-susceptible (SIS) disease progression [2,3], and assume a

discrete time evolution for both the network and the spreading process. Each node of the network

represents a host, and each link a time-resolved contact that is relevant to pathogen transmission. The

temporal network is characterized by a finite number of snapshots T (network period) and formally it

can be represented by a list of adjacency matrices whose element W (t)
ij corresponds to the weight of

the link made from node i to node j at time t. At each time step, infected nodes transmit the infection

to the susceptible neighbours with a probability that depends both on the weight of the link and on

the specific disease transmissibility l. The weight may correspond to different quantities (e.g. duration

or strength of a contact) depending on the context under study, as we will see in the real-world systems

addressed in this work. Infectious nodes can spontaneously recover with probability m. Recovery is a

Poisson process with an average infectious period t ¼ 1/m that in the classic compartmental model

formulation is the same for each individual.

Following the approach introduced in [41], the critical behaviour of the epidemic spreading process is

completely described by the following quantity, called infection propagator:

P(W ; l, m) ¼
YT
t¼1

(1� mþ L(T�t)) with L
(t)
ij ¼ 1� (1� l)

W (t)
ij and m ¼ mI: (2:1)

The sufficient and necessary condition for the existence of the asymptomatically stable disease-free

solution is that the spectral radius of P (i.e. its lead eigenvalue) is smaller than 1. Therefore, for a

given value of m, the critical value of the transmissibility lc for which the spectral radius is equal to 1

corresponds to the epidemic threshold.

To account for hosts with individual average infectious period ti, with i corresponding to the node

index, we define m as a vector where each element mi is the inverse of the individual infectious period

mi ¼ 1/ti. The infection propagator can then be written as

P(W ; l, m) ¼
YT
t¼1

M(T�t) with M(t)
ij ¼ dij(1� mi)þ 1� (1� l)

W (t)
ij , (2:2)

with dij being the Kronecker delta, so that the epidemic threshold expression becomes

r[P(W ; l ¼ lc, m)] ¼ 1, (2:3)

where m is a diagonal matrix with ~m on the diagonal.
2.2. Epidemic threshold computation
We compute the spectral radius of the infection propagator P, given by the expression of equation (2.2)

using the power iteration method. To compute the threshold, we find the zero for r[P(W; l ¼ lc, m)]1/T 2

1 ¼ 0 using Brent algorithm [43], where l is a variable and m is informed from epidemiological data. This

procedure returns the value of l for which the spectral radius is equal to one. A Python library to

compute the critical transmissibility is publicly available online for interested researchers [44].
2.3. Epidemic risk assessment in the heterogeneous versus homogeneous cases
We compute the epidemic threshold with the infection propagator approach to assess the epidemic risk

of a host population in three real case studies. In each one of them, actual epidemiological data allow us

to inform the infection propagator P(W; l, m) with empirical estimates for mi, corresponding to the actual

heterogeneous context. We then compare our findings with the epidemic threshold obtained under the

assumption that all hosts have the same infectious period (referred to as the homogeneous case) obtained

as a population average, i.e. tall ¼
P

i ti=N, where N is the total number of hosts (nodes) in the

population. This quantity enables a parametrization for the comparison of the two cases.
2.4. Network properties
We define the activity potential of a node in an empirical network as the fraction of the number of time

steps during which it makes contact with other nodes over the period of the network T, as defined in [21].

Other quantities used in this study are basic network measures, including the degree, i.e. the number

of neighbours a given node has at time t, and the strength, i.e. the total sum of the weights on the
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connections that a given node establishes at time t. These quantities are also considered aggregated on a

given time interval [45].
oyalsocietypublishing.org/journal/rsos
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2.5. Hellinger distance
To compare two distributions of the epidemic threshold obtained by varying underlying conditions in

the host population under study, we use the Hellinger distance [46] that is defined for discrete

distributions as follows:

H(P1, P2) ¼ 1

2

X
i¼1,k

(
ffiffiffiffiffi
pi
p � ffiffiffiffi

qi
p

)2

 !1=2

where P1 and P2 are discrete probability distributions over k discrete values: P1 ¼ ( p1, . . ., pk) and P2 ¼ (q1,

. . ., qk). We also considered other measures quantifying the difference between the distributions and

obtained results similar to those presented in the next section.
.open
sci.6:181404
3. Results
3.1. Bovine tuberculosis in Italy
Livestock infectious diseases are of primary interest for animal health and welfare and for the economy

of a country, with the potential to produce devastating consequences [47]. Bovine tuberculosis is one of

the most widespread zoonotic diseases all over the world [48] and it is very difficult to contain since it

can spread while unnoticed, before detection in the animals [49]. Bovine tuberculosis is a notifiable

disease in Europe. In Italy, in particular, it has affected cattle population for decades and still

circulates in southern regions [50]. Here, we focus on Puglia region in the south of Italy where

outbreak data are available and the outbreak duration was shown to vary depending on the

production type of the affected premises.

We built the temporal network starting from the dataset of cattle trade movements of the whole

population of bovines in Puglia obtained from the Italian National Database for Animal Identification

and Registration that is managed by the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del

Molise (IZSAM) on behalf of the Italian Ministry of Health [51,52]. Each time-stamped cattle

movement record provides the animal unique identifier and the identifiers of both origin and

destination premises. Here, we consider the daily records of bovine trades in Puglia, from 1 January

2006 to 31 December 2012. In this region, 5430 animal holdings displaced 136 206 bovines through 44 272

trade movements in the time period under study. In the network representation, each node

corresponds to a farm, and directed links represent the animal movements, weighted with the number

of bovines moved [53,54].

Bovine displacements tend to concentrate in the countryside around the three majors cities of the

region: Foggia, Bari and Lecce (figure 1a). Outbreak locations correspond to these three geographical

clusters, and also appear to be grouped according to the production type of the affected premises (i.e.

meat, dairy or mixed production). We define the monthly aggregated average degree of an animal

holding as the average number of trading partners it has in a month. We compute this quantity by

averaging on all premises and averaging only on the ones trading at least once a month (defined as

active, including both sales and purchases). The evolution of these quantities over time shows the low

density of the network (figure 1b). Each month active premises represent between 8 and 14% of the

total number of premises and their average degree is around 3, leading to a very low overall average

degree. Further analysis of the Italian cattle trade network properties was performed in the previous

works [9,55,56].

For the outbreak data, we used records of bovine tuberculosis cases in cattle occurring in Puglia

between 1983 and 2015. These data were collected by the Italian National Animal Health Managing

Information System, an informatics system developed by IZSAM on behalf of the Ministry of Health

[51,52]. For each outbreak, we considered data reporting the identifiers of the affected animal holding,

its production type, and the start and end of the outbreak based on the date of first infection

detection and date of clearing of the infection, respectively. The farm is considered to be cleared from

the infection after two consecutive negative tests on all animals that need to be performed each after a

minimum of four and a maximum of six weeks from the previous control activity (either the
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Figure 1. Bovine tuberculosis in Puglia, Italy. (a) Aggregated network of the cattle trade movements in Puglia and location of
bovine tuberculosis outbreaks in this region, in the period 1983 – 2015. Only the links with an aggregated strength higher than
30 are represented. Affected farms are identified according to their production type (dairy, meat, mixed). (b) Activity patterns
of the cattle trade network in time. The red line shows the proportion of active nodes. Blue bars show the monthly average
degree of all nodes and grey bars show the monthly average degree of active nodes. (c) Epidemic threshold estimate
comparison between homogeneous and heterogeneous parametrizations. The plot shows the relative variation of the epidemic
threshold (expressed in %) as a function of the population average infectious period. The reference for the relative variation is
the epidemic threshold obtained in the homogeneous assumption obtained with the population average infectious period tall

computed from the data (table 1). The red star shows the epidemic threshold estimate in the heterogeneous case. Blue
markers show particular cases of the threshold estimate in various homogeneous parametrizations. The blue line shows the
full dependence of the epidemic threshold estimate in the homogeneous case as a function of the population average
infectious period.
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slaughtering or the first test). As shown in table 1, outbreak durations in the region vary with production

types, as observed in other contexts [57]. We split the premises population in groups corresponding to

their production type, and we set to each node the data-driven infectious period corresponding to the

associated production type.

Predicted epidemic risks in the homogeneous or heterogeneous case are rather different (figure 1c).

The epidemic threshold computed on heterogeneous durations of the outbreak is about 30% smaller

than the estimate obtained with the population average. As a result, the homogeneous assumption

overestimates the epidemic threshold. Even if we vary the population average infectious period

(used in the homogeneous model), for example, by assuming that all premises are either dairy or

meat farms, we obtain a higher epidemic threshold, thus systematically underestimating the

vulnerability of the livestock system. In more detail, we obtain the largest bias when we parametrize

all premises as if they were all of mixed production. Under this assumption, the obtained epidemic

threshold is equal to 1, meaning that the pathogen would not be able to persist in the system, in

clear contradiction with the current epidemiological status of Puglia with respect to bovine

tuberculosis.



Table 1. Estimated outbreak duration of bovine tuberculosis per production type of the affected farm.

production type outbreak duration (min – max) (days) [51,52]

meat tmeat ¼ 181 (74 – 2029)

dairy tdairy ¼ 170 (65 – 274)

mixed tmixed ¼ 82 (41 – 292)

all tall ¼ 153

Table 2. Number and proportion of individuals in each class in the hospital network and corresponding estimated carriage
duration for S. Aureus.

role no. of nodes (%) carriage duration (days) [61 – 63]

patients 29 (38.67) tp ¼ 10

nurses 27 (36) tn ¼ 2.5

medical doctors 11 (14.66) tm ¼ 2.5

administrative personnel 8 (10.67) ta ¼ 2.5

all 75 (100) tall ¼ 5.4
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3.2. Nosocomial infection carriage in hospital facilities
The definition of nosocomial infection applies both to infections acquired by patients while being in a

healthcare facility, and to occupational infections of medical staff [58]. Their control is a great concern

in public health. Several pathogens cause nosocomial infections, such as viruses (e.g. nosocomial

influenza, rotaviruses), or pathogenic and non-pathogenic bacteria (e.g. Mycobacterium tuberculosis,

Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus, Staphylococcus aureus) [59]. While host

colonization can last for months in the absence of intervention [60], it can be dramatically shortened

by detection and intervention protocols, or by the hygiene measures adopted by hospital personnel

[61]. In addition, patients are known to take longer to clear nasal colonization than healthcare workers

[61,62]. In order to understand how these differences may affect the vulnerability of a hospital setting

to nosocomial infections, we focus here on the case of S. aureus, for which colonization durations are

documented [61–63].

Close proximity interactions are acknowledged to be a route along which nosocomial infections may

be transmitted [62,63]. Here, we use a temporal network of contacts within a hospital ward in Lyon,

France, collected by the SocioPatterns project [64,65]. The dataset records face-to-face interactions

among patients and hospital workers over 4 days, at a 20 s resolution. It includes also individual

information that allows us to divide the population into four groups: patients, nurses, medical doctors

and administrative personnel (table 2). Spatial constraints appear to be major drivers in network

topology, as, for instance, patients are mostly confined to rooms, and administrative personnel to

offices. Nurses, moreover, are the most connected, sharing links with all other groups and among

themselves (figure 2a). The number of contacts follows a daily cycle, featuring peaks during the

daytime, and troughs at night (figure 2b).

Analogously to the case of bovine tuberculosis, we compare the epidemic threshold obtained under

homogeneous and heterogeneous parametrizations of the infection propagator approach. In the

heterogeneous case, patients and personnel colonization durations are set to, respectively, 10 and 2.5

days [61–63] while tall ¼ 5.4 days (table 2). The epidemic risk analysis presented in figure 2c shows

that the epidemic threshold in the heterogeneous case yields a 100% relative variation with respect to

the homogeneous parametrization with tall. This hints at the presence of a group of potential hosts

that are critical to the spread of the pathogen, but have a short infectious period. To obtain the same

estimates of the epidemic threshold of the heterogeneous case with the homogeneous parametrization

we would need to reduce the average infectious period to tall ¼ 2.8 days.

To understand the contribution of each class of individuals to the epidemic risk, we computed the

epidemic threshold in the heterogeneous parametrization by reducing the carriage duration parameter

of a single class at a time for each of the four classes. For the hospital staff, we set the carriage
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duration to 1 day, and for the patients, we explored a reduction in their carriage duration from 10 to 4

days. This allows us to understand the performance of an intervention aimed at reducing the epidemic

risk for the ward, using, for instance, more frequent hand washing for a given class of staff, or enhanced

screening and treatment of patients. We observe that while the intervention on administrative personnel

or medical doctors would have almost no impact on the epidemic threshold, targeting nurses would

dramatically increase the epidemic threshold, yielding a relative variation larger than 200% with

respect to the homogeneous assumption. This highlights the important role of nurses in the network

of contacts, and their potential of largely facilitating the dispersal of nosocomial infections in the

hospital setting [63,66–68].

3.3. Pandemic influenza in closed settings
Influenza is a respiratory infectious disease that can spread through proximity contacts, and affects 10–

30% of European population every year [69]. High-risk individuals, such as elderly or immune-deficient,
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may experience a severe form requiring hospitalization. Particular attention is given to schoolchildren

[70,71] since epidemiological evidence suggests that they are critical in the early transmission chains

of the disease favouring then the diffusion in the general population. Hosts infected with influenza

may develop symptoms or may be asymptomatic, also exhibiting a shorter infectious period in the

absence of symptoms [24]. We aim at understanding how the presence of asymptomatic individuals

impacts the pandemic risk for a population of students at a school.

We build the temporal network from data reporting time-resolved contacts in a French school [72,73]

collected by the SocioPatterns project [64], over a period of 2 days, at a resolution of 20 s. As for hospital

facilities, proximity sensors were used to record face-to-face contacts between individuals. The resulting

network is composed of N ¼ 242 individuals divided into 11 classes, corresponding to 10 classes

distributed on five consecutive grades, plus teachers. The network exhibits strong community

structure, as children connect more within the same class or the same grade (figure 3a). While

teachers connect with students from different classes, those links have a lower weight, as they occur

less frequently and are shorter in time. The hourly activity timeline shows clearly the three main

breaks of the day (figure 3b). The proportion of active nodes is very high, showing a high degree of

interaction among students [74,75]. It is possible to distinguish the morning and afternoon breaks,

characterized by a proportion of active nodes close to 1, from the lunch break where students have

lunch or leave the school to eat at home decreasing the network activity. Detailed analysis of the

network was reported in the previous work [72,73].



Table 3. Estimated infectious period per symptomatic or asymptomatic influenza infections. The population average tall depends
on the assumed proportion pa of asymptomatic individuals in the schoolchildren population.

type of infection infectious period (days) [24]

symptomatic ts ¼ 3.4

asymptomatic ta ¼ 1

all tall ¼ tall( pa)
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We model the epidemic using infectious period estimates from 2009 influenza pandemic [24,76],

yielding 3.4 days for symptomatic infections and 1 day for asymptomatic infections (table 3). We

investigate proportions of asymptomatically infected schoolchildren (pa) in agreement with empirical

estimates, i.e. pa ¼ 0.669 (95% CI: 0.556–0.772) [77]. In addition to these values, we also explore the

full range from pa ¼ 0 to pa ¼ 1 for a comprehensive analysis. For a given proportion pa of

asymptomatic individuals, we compute the epidemic threshold randomly extracting the asymptomatic

nodes paN in the population. Repeating this operation 500 times, we obtain a distribution of epidemic

threshold values for each value or pa depending on the assumed symptomatic response of the host

population of schoolchildren.

Figure 3c reports the results of the comparison between the homogeneous and heterogeneous

parametrizations. We observe that without any asymptomatic individual (i.e. pa ¼ 0 and population

average infectious period equal to 3.4 days) the threshold is lower than when considering the

presence of asymptomatic, as expected. While it may be natural to think that asymptomatic

individuals may create unnoticed paths of infection, their shorter infectious periods indeed play a role

in reducing the epidemic vulnerability of the population. When we consider the heterogeneous

parametrization, we find that the homogeneous epidemic threshold is almost equal to the median

heterogeneous one. This observation is not only true for values of pa in the confidence interval of the

empirical estimates, but also for the whole range from 0 to 1. There are, however, significant

fluctuations around the median value, whose width corresponds to approximately 40% of the

homogeneous estimate. The epidemic risk assessment assuming homogeneous infectious periods in

the population may therefore introduce a large bias leading either to underestimating or

overestimating population’s risk to infection.

We now want to understand the mechanisms responsible for those fluctuations, specifically, by

identifying the hosts that play a key role in shaping the vulnerability. In what follows, we fix the

proportion of asymptomatic individuals to the empirical estimate pa ¼ 0.669 [77]. For each node, we

determine the two threshold distributions obtained considering the given node as either

symptomatically or asymptomatically infected. We then compute the Hellinger distance between these

two distributions to quantifies their dissimilarity: the higher the distance is, the more different the two

distributions are (see Methods). This quantity will be higher for nodes whose status has a larger

impact on the epidemic threshold. The distribution of the Hellinger distance of all nodes, shown in

figure 4a, is bimodal and the subset of nodes mainly responsible for the epidemic threshold variation

is clearly visible. It is a small group composed of only seven nodes, corresponding to 2.9% of the

school population. In figure 4b, we show two examples of the distributions obtained for a node

selected in each mode of the distance distribution.

We also observe that these seven nodes belong to the same class (see circled nodes in figure 3a) and

do not correspond to hubs in the whole network. They are likely to be a single group of friends. In order

to highlight the patterns making these specific nodes more responsible than others for the threshold

variation, we investigate various network properties. We find that these nodes exhibit higher strength

(figure 4c) and activity potential (not shown).
4. Discussion
Mathematical models have been highly successful in the study and understanding of infectious disease

epidemics [2,3]. Some simplifying assumptions, however, have sometimes hindered their applicability to

real-world scenarios. Our work helps adding realism to modelling a wide class of highly relevant

diseases, as it provides a synthetic and solvable framework for considering individual hosts (or host
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classes) that have different characteristic infectious periods. By building on the methodology described in

[41,42], we have defined and computed the epidemic threshold with arbitrarily heterogeneous recovery

probabilities, assuming them to be constant. We then applied our analytical framework to three relevant

case studies, showing that we can successfully measure how such heterogeneity impacts the vulnerability

of a particular population to disease introduction, considering bovine tuberculosis in southern Italy,

nosocomial infections in hospital wards, and influenza-like epidemics in schools.

We stress that, while an increasing body of the literature has already demonstrated the importance of

including contact structure [4–16] and host-specific heterogeneities [25–31,37,78], few studies have

considered the combined impact of these two factors in the estimation of the epidemic risk.

Theoretical works that include host-specific heterogeneities were previously carried out while

assuming homogeneously mixed population [10,27,32,33,37] or using a static contact network [38–40],

neglecting the possible interplay between the spreading process timescale and the contact evolution.

Our findings suggest that obtaining an accurate, individual or class-specific, estimate of the infectious

period is an important step for building realistic spreading models. Indeed we have shown that if we set

the same recovery probability to all hosts, we may greatly bias the estimate of the vulnerability, with the

sign of the error depending on the specific setting. For bovine tuberculosis in Puglia, any homogeneous

parametrization of the outbreak duration predicts a lower epidemic risk with respect to the

heterogeneous case. In particular, when the shortest recorded outbreak duration is considered in the

homogeneous approximation (t ¼ tmixed), the disease is predicted not to be able to persist in the

system, in evident contrast with the documented endemic presence of bovine tuberculosis in the

region. On the contrary, in the case of the S. Aureus infection within a hospital, the classic

homogeneous assumption causes to substantially overestimate the epidemic risk, with respect to the

heterogeneous case. The presence of medical personnel with a shorter carriage duration is able to

counteract the spreading potential of patients assumed to be carrying the pathogen for a longer time,

and to further reduce the risk with respect to a homogeneous parametrization with the population

average. Finally, for pandemic influenza in school settings, even though the median epidemic

threshold obtained from the heterogeneous assumption matches the homogeneous result, we observe

important fluctuations that may lead to either underestimating or overestimating vulnerability.

All these findings highlight the importance of properly accounting for heterogeneous infectious

periods, as ignoring this feature may lead to a biased estimate of the epidemic risk, and consequently

inefficient control strategies [79].

In addition, despite the fact that the responsibility of more active nodes in the epidemic risk has

already been proven [45,56], our approach was able to highlight them and show their contribution to

population vulnerability, depending on their individual infectious period and their network

properties. This can have clear implications in devising targeted interventions. For example, we have

shown that in the hospital ward hygiene practices that reduce carriage duration in nurses can lead to
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a strong reduction in nosocomial risk. No impact is instead observed reducing the carriage duration of

the administrative personnel or medical doctors. These findings are explained by the highly connected

role of nurses within the hospital facility, given they interact considerably with both patients and

other hospital personnel. As such, they represent an ideal target group for prevention measures aimed

at lowering the risk for pathogen diffusion [65,80–82]. Also in the case of pandemic influenza in

school, our approach allows the identification of those individuals who mostly contribute to disease

circulation and persistence.

Our findings provide useful insights for the understanding of host heterogeneities in disease spread

and can be used to build more realistic data-driven mathematical approaches for real case scenarios and

targeted control measures. However, several key theoretical and practical issues are still to be addressed.

First, empirical evidence shows that asymptomatically infected individuals with influenza tend to be less

infectious than those who develop symptoms [24]. Our approach, however, assumes that disease

transmissibility would not vary depending on host symptoms status, as our study was restricted to

the role of heterogeneity of infectious periods only. Such variation can be taken into account by

introducing a variation of the weights of the contacts established by an asymptomatic infectious

individual while infected. The framework with varying transmissibility may also apply to other

epidemic contexts, such as e.g. the spread of nosocomial infections. Nurses and doctors indeed are

expected to adopt hygiene measures (e.g. use of disposable gloves, hand washing, etc.) that can

reduce their transmissibility if infected. Another host-specific factor that is disregarded by our

approach, for the sake of simplicity, is individual susceptibility that may play an important role in the

dynamics of many infectious diseases (e.g. influenza).

Second, our study considered a basic intervention expressed with the reduction of the carriage

duration for medical personnel in the hospital. More realistic interventions may, however, be

considered, as e.g. pharmaceutical treatments aimed not only at reducing the infectious period but

also the probability of transmission of the disease (e.g. antiviral treatments for influenza infections

[24], or the use of antibiotics for bacterial infections). In addition, recent work highlighted the role of

heterogeneous carriage duration of bacterial strains in ruling the relative abundance of each strain

under antibiotic treatments [83]. Accounting for these aspects would allow a more realistic design of

targeted interventions aiming at raising the epidemic threshold in the most efficient way.

Finally, here we considered a limited set of infectious period values instead of full distributions, for

the sake of simplicity (e.g. to highlight the role of productive types in the spread of bovine tuberculosis,

instead of focusing on farm-specific fluctuations) and because of lack of data (e.g. in the contexts of

pandemic flu or S. aureus spread). Nonetheless, the infectious propagator approach is able to integrate

host-specific recovery rates, as presented in the Methods section. Going beyond this, more realistic

and pathogen-specific distributions of infectious periods should be further considered, differently from

the exponential distributions with heterogeneous individual infectious periods assumed here. This

would probably require a radical redesign of the infection propagator approach to address the

inclusion of such distributions. These various future directions would help the theoretical

understanding of disease spreading processes with increasingly realistic epidemic models.
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53. Dubé C, Ribble C, Kelton D, McNab B. 2009 A
review of network analysis terminology and its
application to foot-and-mouth disease
modelling and policy development. Transbound.
Emerg. Dis. 56, 73 – 85. (doi:10.1111/jva.2009.
56.issue-3)
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C, Boëlle PY, Guillemot D. 2009 Peripatetic
health-care workers as potential superspreaders.
Proc. Natl Acad. Sci. USA 106, 18 420 – 18 425.
(doi:10.1073/pnas.0900974106)

62. Hornbeck T, Naylor D, Segre AM, Thomas G,
Herman T, Polgreen PM. 2012 Using sensor
networks to study the effect of peripatetic
healthcare workers on the spread of hospital-
associated infections. J. Infect. Dis. 206,
1549 – 1557. (doi:10.1093/infdis/jis542)

63. Obadia T et al. 2015 Detailed contact data and
the dissemination of Staphylococcus aureus in
hospitals. PLoS Comput. Biol. 11, e1004170.
(doi:10.1371/journal.pcbi.1004170)

64. 2008 SocioPatterns project. See www.
sociopatterns.org.
65. Vanhems P, Barrat A, Cattuto C, Pinton J-F,
Khanafer N, Régis C, Kim B-A, Comte B, Voirin
N. 2013 Estimating potential infection
transmission routes in hospital wards using
wearable proximity sensors. PLoS ONE 8,
e73970. (doi:10.1371/journal.pone.0073970)

66. Boyce JM, Pittet D, 2002 Guideline for hand
hygiene in health-care settings:
recommendations of the healthcare infection
control practices advisory committee and the
HICPAC/SHEA/APIC/IDSA hand hygiene task
force. Infect. Control Hosp. Epidemiol. 23, 3 – 40.
(doi:10.1086/503164)

67. Blok HEM, Troelstra A, Kamp-Hopmans TEM,
Gigengack-Baars ACM, Vandenbroucke-Grauls
CMJE, Weersink AJL, Verhoef J, Mascini EM.
2003 Role of healthcare workers in outbreaks of
methicillin-resistant Staphylococcus aureus: a
10-year evaluation from a Dutch University
Hospital. Infect. Control Hosp. Epidemiol. 24,
679 – 685. (doi:10.1086/502275)

68. Pittet D, Allegranzi B, Sax H, Dharan S, Pessoa-Silva
CL, Donaldson L, Boyce JM, 2006 Evidence-based
model for hand transmission during patient care and
the role of improved practices. Lancet Infect. Dis. 6,
641 –652. (doi:10.1016/S1473-3099(06)70600-4)

69. ECDC and WHO. 2018 Europe weekly influenza
update. See http://flunewseurope.org.

70. World Health Organization. 2009 Pandemic
H1N1 2009, WHO Regional Office for South-East
Asia technical report. See http://www.who.int/
iris/handle/10665/205605.

71. Lipsitch M, Riley S, Cauchemez S, Ghani AC,
Ferguson NM. 2009 Managing and reducing
uncertainty in an emerging influenza pandemic.
New England Journal of Medicine 361,
112 – 115. (doi:10.1056/NEJMp0904380)

72. Gemmetto V, Barrat A, Cattuto C. 2014 Mitigation
of infectious disease at school: targeted class
closure vs school closure. BMC Infect. Dis. 14,
695. (doi:10.1186/s12879-014-0695-9)
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