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ON MONTE-CARLO TREE SEARCH FOR DETERMINISTIC GAMES

WITH ALTERNATE MOVES AND COMPLETE INFORMATIONI

Sylvain Delattre1,* and Nicolas Fournier2

Abstract. We consider a deterministic game with alternate moves and complete information, of
which the issue is always the victory of one of the two opponents. We assume that this game is the
realization of a random model enjoying some independence properties. We consider algorithms in the
spirit of Monte-Carlo Tree Search, to estimate at best the minimax value of a given position: it consists
in simulating, successively, n well-chosen matches, starting from this position. We build an algorithm,
which is optimal, step by step, in some sense: once the n first matches are simulated, the algorithm
decides from the statistics furnished by the n first matches (and the a priori we have on the game)
how to simulate the (n + 1)th match in such a way that the increase of information concerning the
minimax value of the position under study is maximal. This algorithm is remarkably quick. We prove
that our step by step optimal algorithm is not globally optimal and that it always converges in a finite
number of steps, even if the a priori we have on the game is completely irrelevant. We finally test our
algorithm, against MCTS, on Pearl’s game [Pearl, Artif. Intell. 14 (1980) 113–138] and, with a very
simple and universal a priori, on the game Connect Four and some variants. The numerical results are
rather disappointing. We however exhibit some situations in which our algorithm seems efficient.
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1. Introduction

1.1. Monte-Carlo Tree Search algorithms

Monte-Carlo Tree Search (MCTS) are popular algorithms for heuristic search in two-player games. Let us
mention the book of Munos [17] and the survey paper of Browne et al. [4], which we tried to briefly summarize
here and to which we refer for a much more complete introduction on the topic.

We consider a deterministic game with complete information and alternate moves involving two players, that
we call J1 and J0. We think of Go, Hex, Connect Four, etc. Such a game can always be represented as a discrete
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tree, of which the nodes are the positions of the game. Indeed, even if a single position can be thought as the
child of two different positions, we can always reduce to this case by including the whole history of the game in
the position. Also, we assume that the only possible outcomes of the game, which are represented by values on
the leaves of the tree, are either 1 (if J1 wins) or 0 (if J0 wins). If draw is a possible outcome, we e.g. identify
it to a victory of J0.

Let r be a configuration in which J1 has to choose between several moves. The problem we deal with is: how
to select at best one of these moves with a computer and a given amount of time.

If having a huge amount of time, such a question can classically be completely solved by computing recursively,
starting from the leaves, the minimax values (R(x))x∈T , see Remark 2.1. Here T is the tree (with root r and set of
leaves L) representing the game when starting from r, and for each x ∈ T , R(x) is the value of the game starting
from x. In other words, R(x) = 1 if J1 has a winning strategy when starting from x and 0 else. So we compute
R(x) for all the children x of r and choose a move leading to some x such that R(x) = 1, if such a child exists.

In practice, this is not feasible, except if the game (starting from r) is very small. One possibility is to cut the
tree at some reasonable depth K, to assign some estimated values to all positions of depth K, and to compute
the resulting (approximate) minimax values on the subtree above depth K. For example if playing Connect
Four, one can assign to a position the value remaining number of possible alignments for J1 minus remaining
number of possible alignments for J0. Of course, the choice of such a value is highly debatable, and heavily
depends on the game.

A more universal possibility, introduced by Abramson [1], is to use some Monte-Carlo simulations: from each
position with depth K, we handle a certain number N of uniformly random matches (or matches with a simple
default policy), and we evaluate this position by the number of these matches that led to a victory of J1 divided
by N . Such a procedure is now called Flat MCTS, see Coquelin and Munos [8], Browne et al. [4], see also
Ginsberg [13] and Sheppard [19].

Coulom [9] introduced the class of MCTS algorithms. Here are the main ideas: we have a default policy and
a selection procedure. We make J1 play against J0 a certain number of times and make grow a subtree of the
game. Initially, the subtree T0 consists of the root and its children. After n steps, we have the subtree Tn and
some statistics (C(x),W (x))x∈Tn provided by the previous matches: C(x) is the number of times the node x
has been crossed and W (x) is the number of times this has led to a victory of J1. Then we select a leave y of Tn
using the selection procedure (which relies on the statistics (C(x),W (x))x∈Tn) and we end the match (from y)
by using the default policy. We then build Tn+1 by adding to Tn the children of y, and we increment the values
of (C(x),W (x))x∈Tn+1 according to the issue of the match (actually, it suffices to compute these values for x
in the branch from r to y and for the children of y). Once the given amount of time is elapsed, we choose the
move leading to the child x of r with the highest W (x)/C(x).

Actually, this procedure throws away a lot of data: C(x) is not exactly the number of times x has been
crossed, it is rather the number of times it has been crossed since x ∈ Tn, and a similar fact holds for W (x). In
practice, this limits the memory used by the algorithm.

The most simple and universal default policy is to choose each move at uniform random and this is the case
we will study in the present paper. It is of course more efficient to use a simplified strategy, depending on the
game under study, but this is another topic.

Another important problem is to decide how to select the leave y of Tn. Kocsis and Szepesvári [15] proposed
to use some bandit ideas, developed (and shown to be optimal, in a very weak sense, for bandit problems)
by Auer et al. [2], see Bubeck and Cesa-Bianchi [5] for a survey paper. They introduced a version of MCTS
called UCT (for UCB for trees, UCB meaning Upper Confidence Bounds), in which the selection procedure is as
follows. We start from the root r and we go down in Tn: when in position x where J1 (resp. J0) has to play, we
choose the child z of x maximizing W (z)/C(z) +

√
c(log n)/C(z) (resp. (C(z)−W (z))/C(z) +

√
c(log n)/C(z)).

At some time we arrive at some leave y of Tn, this is the selected leave. Here c > 0 is a constant to be chosen
empirically. Kocsis and Szepesvári [15] proved the convergence of UCT.

Chaslot et al. [7] have broaden the framework of MCTS. Also, they proposed different ways to select the
best child (after all the computations): either the one with the highest W/C, the one with the highest C, or
something intermediate.
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Gelly et al. [12] experimented MCTS (UCT) on Go. They built the program MoGo, which also uses some
pruning procedures, and obtained impressive results on a 9× 9 board.

The early paper of Coquelin and Munos [8] contains many results. They showed that UCT can be inefficient
on some particular trees and proposed a modification taking into account some possible smoothness of the tree
and outcomes (in some sense). They also studied Flat MCTS.

Lee et al. [16] studied the problem of fitting precisely the parameters of the selection process. Of course,
W/C means nothing if C = 0, so they empirically investigated what happens when using (W + a)/(C + b) +√
c(log n)/(C + 1), for some constants a, b, c > 0. They conclude that c = 0 is often the best choice. This is not

so surprising, since the logarithmic term is here to prevent from large deviation events, which do asymptotically
not exist for deterministic games. MoGo uses c = 0 and ad hoc constants a and b. This version of MCTS is the
one presented in Appendix A and the one we used to test our algorithm.

Let us mention the more recent theoretical work by Buşoniu et al. [6], as well as the paper of Garivier et al.
[11] who study in details a bandit model for a two-round two-player random game.

The survey paper of Browne et al. [4] discusses many tricks to improve the numerical results and, of course,
all this has been adapted with very special and accurate procedures to particular games. As everybody knows,
AlphaGo [20] became the first Go program to beat a human professional Go player on a full-sized board. Of
course, AlphaGo is far from using only MCTS, it also relies on deep-learning and many other things.

1.2. Our goal

We would like to study MCTS when using a probabilistic model for the game. To simplify the problem as
much as possible, we only consider the case where the default policy is play at uniform random, and we consider
the modified version of MCTS described in Appendix A, where we keep all the information. This may cause
memory problems in practice, but we do not discuss such difficulties. So the modified version is as follows, for
some constants a, b > 0 to be fitted empirically. We make J1 play against J0 a certain number of times and
make a subtree of the game grow. Initially, the subtree T0 consists in the root r and its children. After n steps,
we have the subtree Tn and some statistics (C(x),W (x))x∈Tn provided by the previous matches: C(x) is the
number of times the node x has been crossed and W (x) the number of times this has led to a victory of J1. The
(n+ 1)th step is as follows: start from r and go down in Tn by following the highest values of (W + a)/(C + b)
(resp. (C −W + a)/(C + b)) if it is J1’s turn to play (resp. J0’s turn to play), until we arrive at some leave z of
Tn. From there, complete the match at uniform random until we reach a leave y of T . We then build Tn+1 by
adding to Tn the whole branch from z to y together with all the brothers of the elements of this branch, and
we compute the values of (C(x),W (x))x∈Tn+1 (actually, it suffices to compute these values for x in the branch
from r to y). Once the given amount of time is elapsed, we choose the move leading to the child x of r with the
highest C(x)/W (x).

As shown by Coquelin and Munos [8], one can build games for which MCTS is not very efficient. So it would
be interesting to know for which class of games it is. This seems to be a very difficult problem. One possibility
is to study if MCTS works well in mean, i.e. when the game is chosen at random. In other words, we assume
that the tree and the outcomes are the realization of a random model. We use a simple toy model enjoying some
independance properties, which is far from convincing if modeling true games but for which we can handle a
complete theoretical study.

We consider a class of algorithms resembling the above mentioned modified version of MCTS. After n sim-
ulated matches, we have some information Fn on the game: we have visited n leaves, we know the outcomes
of the game at these n leaves, and we have the explored tree Tn = Bn ∪Dn, where Bn is the set of all crossed
positions, and Dn is the boundary of the explored tree (roughly, Dn consists of uncrossed positions of which
the father belongs to Bn).

So we can approximate R(r), which is the quantity of interest, by E[R(r)|Fn] (if the latter can be computed).
Using only this information Fn (and possibly some a priori on the game furnished by the model), how to
select z ∈ Dn so that, simulating a uniformly random match starting from z and updating the information,
E[R(r)|Fn+1] is as close as possible (in L2) to R(r)?
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We need a few assumptions. In words, (a) the tree and outcomes enjoy some independence properties, (b)
we can compute, at least numerically, for x ∈ Dn, m(x) = mean value of R(x) and s(x) = mean quantity of
information that a uniformly random match starting from x will provide. See Section 2.8 for precise definitions.

Under such conditions, we show that E[R(r)|Fn] can indeed be computed (numerically), and z can be selected
as desired. The procedure resembles in spirit MCTS, but is of course more complicated and requires more
computations.

This is extremely surprising: the computational cost to find the best z ∈ Dn does not increase with n, because
this choice requires to compute some values of which the update does not concern the whole tree Tn, but only
the last visited branch, as MCTS. (Actually, we also need to update all the brothers of the last visited branch,
but this remains rather reasonable). It seems miraculous that this theoretical algorithm behaves so well. Any
modification, such as taking draws into account or changing the notion of optimality, seems to lead to drastically
more expensive algorithms, that require to update some values on the whole visited tree Tn. We believe that
this is the most interesting fact of the paper.

The resulting algorithm is explained in details in the next section. We will prove that this algorithm is
convergent (in a finite number of steps) even if the model is completely irrelevant. This is not very surprising,
since all the leaves of the game are visited after a finite number of steps. We will also prove on an example that
our algorithm is myopic: it is not globally optimal. There is a theory showing that for a class of problems, a step
by step optimal algorithm is almost globally optimal, i.e. up to some reasonable factor, see Golovin and Kraus
[14]. However, it is unclear whether this class of problems includes ours.

1.3. Choice of the parameters

We will show, on different classes of models, how to compute the functions m and s required to implement
our algorithm. We studied essentially two possibilities.

In the first one, we assume that the tree T is the realization of an inhomogeneous Galton–Watson tree, with
known reproduction laws, and that the outcomes of the game are the realizations of i.i.d. Bernoulli random
variables of which the parameters depend only on the depths of the involved (terminal) positions. Then m(x)
and s(x) depend only on the depth of the node x. We can compute them numerically once for all, using rough
statistics we have on the true game we want to play (e.g. Connect Four), by handling a high number of uniformly
random matches.

The second possibility is much more universal and adaptive and works better in practice. At the beginning,
we prescribe that m(r) = a, for some fixed a ∈ (0, 1). Then each time a new litter {y1, . . . , yd} (with father x)
is created by the algorithm, we set m(y1) = · · · = m(yd) = m(x)1/d if x is a position where it is J0’s turn to
play, and m(y1) = · · · = m(yd) = 1− (1−m(x))1/d else. Observe here that d is discovered by the algorithm at
the same time as the new litter. Concerning s, we have different possibilities (see Sects. 2.14 and 6), more or
less justified from a theoretical point of view, among which s(x) = 1 for all x does not seem to be too bad.

The first possibility seems more realistic but works less well than the second one in practice and requires
some preliminary fitting. The second possibility relies on a symmetry modeling consideration: assuming that
all the individuals of the new litter behave similarly necessarily leads to such a function m. This is much more
universal in that once the value of a = m(r) is fixed (actually, a = 0.5 does not seem to be worse than another
value), everything can be computed in a way not depending on the true game. Of course, the choice of a = m(r)
is debatable, but does not seem to be very important in practice.

1.4. Comments and a few more references

Our class of models generalize a lot the Pearl model [18], which simply consists of a regular tree with degree
d, depth K, with i.i.d. Bernoulli(p) outcomes on the leaves. However, we still assume a lot of independence. This
is not fully realistic and is probably the main reason why our numerical experiments are rather disappointing.

The model proposed by Devroye-Kamoun [10] seems much more relevant, as they introduce correlations
between the outcomes as follows. They consider that each edge of the tree has a value (e.g. Gaussian). The
value of the leave is then 1 if the sum of the values along the corresponding branch is positive, and 0 else. This
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more or less models that a player builds, little by little, his game. But from a theoretical point of view, it is
very difficult to study, because we only observe the values of the leaves, not of the edges. So this unfortunately
falls completely out of our scope. See also Coquelin and Munos [8] for a notion of smoothness of the tree, which
seems rather relevant from a modeling point of view.

Finally, our approach is often called Bayesian, because we have an a priori law for the game. This has already
been studied in the artificial intelligence literature. See Baum and Smith [3] and Tesauro, Rajan and Segal [22].
Both introduce some conditional expectations of the minimax values and formulas resembling (2.2) already
appear.

1.5. Pruning

Our algorithm automatically proceeds to some pruning, as AlphaBeta, which is a clever version to compute
exactly the minimax values of a (small) game. This can be understood if reading the proof of Proposition 2.13.
The basic idea is as follows: if we know from the information we have that R(x) = 0 for some internal node
x ∈ T and if the father v of x is a position where J0 plays, then there is no need to study the brothers of x,
because R(v) = 0. And indeed, our algorithm will never visit these brothers.

Some versions of MCTS with some additional pruning procedures have already been introduced empirically.
See Gelly et al. [12] for MoGo, as well as many other references in [4]. It seems rather nice that our algorithm
automatically prunes and this holds even if the a priori we have on the game is completely irrelevant. Of course,
if playing a large game, this pruning will occur only near the leaves.

1.6. Numerical experiments

We have tested our general algorithm against some general versions of MCTS. We would not have the least
chance if using some versions of MCTS modified in such a way that it takes into account some symmetries of
a particular game, with a more clever default policy, etc. But we hope our algorithm might also be adapted to
particular games.

Next, let us mention that our algorithm is subjected to some numerical problems, in that we have to compute
many products, that often lead numerically to 0 or 1. We overcome such problems by using some logarithms,
which complicates and slows down the program.

Let us now briefly summarize the results of our experiments, see Section 8.
We empirically observed on various games that, very roughly, each iteration of our algorithm requires between

2 and 4 times more computational time than MCTS.
When playing Pearl’s games, our algorithm seems rather competitive against MCTS (with a given amount

of time per move), which is not very surprising, since our algorithm is precisely designed for such games.
We also tried to play various versions of Connect Four. Globally, we are clearly beaten by MCTS. However,

there are two situations where we win.
The first one is when the game is so large, or the amount of time so small, that very few iterations can be

performed by the challengers. This is quite natural, because (a) our algorithm is only optimal step by step, (b)
it relies on some independence properties that are less and less true when performing more and more iterations.

The second one is when the game is so small that we can hope to find the winning strategy at the first move,
and where our algorithm finds it before MCTS. We believe this is due to the automatic pruning.

1.7. Comparison with AlphaBeta

Assume that T is a finite balanced tree, i.e. that all the nodes with the same depth have the same degree,
and that we have some i.i.d. outcomes on the leaves. This slightly generalizes Pearl’s game. Then Tarsi [21]
showed that AlphaBeta is optimal in the sense of the expected number of leaves necessary to perfectly find
R(r). For such a game, Bruno Scherrer told us that our algorithm visits the leaves precisely in the same order as
AlphaBeta, up to some random permutation (see also Sect. 8.11 for a rather convincing numerical indication in
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this direction). The advantage is that we provide an estimated value during the whole process, while AlphaBeta
produces nothing before it really finds R(r).

This strict similarity with AlphaBeta does not hold generally, because our algorithm takes into account the
degrees of the nodes. On the one hand, a player is happy to find a node with more possible moves than expected.
On the other hand, the value of such a node may be difficult to determine. So the way our algorithm takes
degrees into account is complicated and not very transparent.

1.8. Organization of the paper

In the next section, we precisely state our main results and describe our algorithm. Section 3 is devoted to the
convergence proof. In Sections 4 and 5, we establish our main result. Section 6 is devoted to the computation of
the functions m and s for particular models. In Section 7, we show on an example that global optimality fails.
We present numerical experiments in Section 8. In Appendix A, we precisely describe the versions of MCTS
and its variant we used to test our algorithms.

2. Notation and main results

2.1. Notation

We first introduce once for all the whole notation we need concerning trees.
Let T be the complete discrete ordered tree with root r and infinite degree. An element of T is a finite word

composed of letters in N∗. The root r is the empty word. If e.g. x = n1n2n3, this means that x is the n3th child
of the n2th child of the n1th child of the root. We consider ordered trees to simplify the presentation, but the
order will not play any role.

The depth (or generation) |x| of x ∈ T is the number of letters of x. In particular, |r| = 0.
We say that y ∈ T is the father of x ∈ T \ {r} (or that x is a child of y) if there is n ∈ N∗ such that x = yn.

We denote by f(x) the father of x.
For x ∈ T, we call Cx = {y ∈ T : f(y) = x} the set of all the children of x and Tx the whole progeny of x:

Tx is the subtree of T composed of x, its children, its grandchildren, etc.
We say that x, y ∈ T are brothers if they are different and have the same father. For x ∈ T \ {r}, we denote

by Hx = Cf(x) \ {x} the set of all the brothers of x. Of course, Hr = ∅.
For x ∈ T and y ∈ Tx, we denote by Bxy is the branch from x to y. In other words, z ∈ Bxy if and only if

z ∈ Tx and y ∈ Tz.
For x ∈ T, we introduce Kx = {r} ∪

⋃
y∈Brx\{x}Cy = ∪y∈Brx

({y} ∪Hy), which consists of x, its brothers, its
father and uncles, its grandfather and granduncles, etc.

For x ⊂ T, we introduce Bx = ∪x∈xBrx, the finite subtree of T with root r and set of leaves x.
For x ⊂ T, we also set Dx = (∪x∈BxHx) \ Bx, the set of all the brothers of the elements of Bx that do not

belong to Bx. Observe that Bx ∪ Dx = ∪x∈xKx.
Let Sf be the set of all finite subtrees of T with root r. For T a finite subset of T, it holds that T ∈ Sf if and

only if for all x ∈ T , Brx ⊂ T .
For T ∈ Sf and x ∈ T , we introduce CT

x = T ∩ Cx the set of the children of x in T , HT
x = T ∩ Hx the set

of the brothers of x in T , Tx = T ∩ Tx the whole progeny of x in T , and KT
x = T ∩ Kx which contains x, its

brothers (in T ), its father and uncles (in T ), its grandfather and granduncles (in T ), etc. See Figure 1.
We denote by LT = {x ∈ T : Tx = {x}} the set of the leaves of T ∈ Sf . We have BLT

= T .
Finally, for T ∈ Sf and x ⊂ T , we introduce DT

x = T ∩Dx, the set of all the brothers (in T ) of the elements
of Bx not belonging to Bx (observe that Bx ⊂ T ), see Figure 2. It holds that Bx ∪DT

x = ∪x∈xKT
x .

2.2. The general model

We have two players J0 and J1. The game is modeled by a finite tree T ∈ Sf with root r and leaves L = LT .
An element x ∈ T represents a configuration of the game. On each node x ∈ T \ L, we set t(x) = 1 if it is J1’s
turn to play when in the configuration x and t(x) = 0 else. The move is alternate and the player J1 starts, so
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Figure 1. The subtree KT
x of T is thick.

Figure 2. DT
{x1,x2} consists of the bullets.

that we have t(x) = 1{|x| is even}, where |x| is the depth of x. We have some outcomes (R(x))x∈L in {0, 1}. We
say that x ∈ L is a winning outcome for J1 (resp. J0) if R(x) = 1 (resp. R(x) = 0).

So J1 starts, he chooses a node x1 among the children of r, then J0 chooses a node x2 among the children of
x1, and so on, until we reach a leave y ∈ L, and J1 is the winner if R(y) = 1, while J0 is the winner if R(y) = 0.

2.3. Notation

For x ∈ T , we set Cx = CTx , Hx = HTx and Kx = KTx and, for x ⊂ T , Dx = DTx .

2.4. Minimax values

Given the whole tree T and the outcomes (R(x))x∈L, we can theoretically completely solve the game. We
classically define the minimax values (R(x))x∈T as follows. For any x ∈ T , R(x) = 1 if J1 has a winning strategy
when starting from x and R(x) = 0 else (in which case J0 necessarily has a winning strategy when starting
from x).

Remark 2.1. For x ∈ L, the value of R(x) is prescribed. For x ∈ T \ L,

R(x) = 1{t(x)=0}min{R(y) : y ∈ Cx}+ 1{t(x)=1}max{R(y) : y ∈ Cx}. (2.1)

It is thus possible to compute R(x) for all x ∈ T by backward induction, starting from the leaves.

This is easily checked: for x ∈ T with t(x) = 0, we have R(x) = 0 if x has at least one child y ∈ T such that
R(y) = 0 (because J0 can choose y from which J1 has no winning strategy) and R(x) = 1 else (because any choice
of J0 leads to a position y from which J1 has a winning strategy). This rewrites R(x) = min{R(y) : y ∈ Cx}.
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If now t(x) = 1, then R(x) = 1 if x has at least one child y ∈ T such that R(y) = 1 (because J1 can choose
y, from where it has a winning strategy) and R(x) = 0 else (because any choice of J1 leads to a position from
which he has no winning strategy). This can be rewritten as R(x) = max{R(y) : y ∈ Cx}.

2.5. The goal

Our goal is to estimate at best R(r) with a computer and a given amount of time.
In practice, we (say, J1) are playing at some true game such as Connect Four or any deterministic game with

alternate moves, against a true opponent (say, J0). As already mentioned in the introduction, we may always
consider that such a game is represented by a tree, and we may remove draws by identifying them to victories
of J0 (or of J1).

We are in some given configuration (after a certain number of true moves of both players). We call this
configuration r. We have to decide between several possibilities. We thus want to estimate at best from which
of these possibilities there is a winning strategy for J1. In other words, given a position r (which will be the
root of our tree), we want to know at best R(r) = max{R(y) : y ∈ Cr}: if our estimate suggests that R(r) = 0,
then any move is similarly desperate. If our estimate suggests that R(r) = 1, this necessarily relies on the fact
that we think that some (identified) child y0 of r satisfies R(y0) = 1. Then in the true game, we will play y0.

Of course, except for very small games, it is not possible in practice to compute R(r) as in Remark 2.1,
because the tree is too large.

The computer knows nothing about the true game except the rules: when it sees a position (node) x ∈ T , it
is able to decide if x is terminal position (i.e. x ∈ L) or not; if x is a terminal position, it knows the outcome
(i.e. R(x)); if x is not a terminal position, it knows who’s turn it is to play (i.e. t(x)) and the possible moves
(i.e. Cx).

The true game is deterministic and our study does not apply at all to games of chance such as Backgammon
(because games of chance are more difficult to represent as trees, their minimax values or not clearly well-
defined, etc.). However, it is a very large game and, in some sense, unknown, so one might hope it resembles the
realization of a random model. We will thus assume that T , as well as the outcomes (R(x))x∈L, are given by
the realization of some random model satisfying some independence properties. It is not clear whether such an
assumption is reasonable. In any case, our theoretical results completely break down without such a condition.

2.6. A class of algorithms

We consider a large class of algorithms resembling the Monte Carlo Tree Search algorithm, of which a version
is recalled in details in Appendix A. The idea is to make J1 play against J0 a large number of times: the first
match is completely random, but then we use the statistics of the preceding matches. MCTS makes J1 and J0
rather play some moves that often led them to victories. At the end, this provides some ratings for the children
of r. In the true game, against the true opponent, we then play the move leading to the child of r with the
highest rating.

Definition 2.2. We call a uniformly random match starting from x ∈ T , with y ∈ L as a resulting leave, the
following procedure. Put y0 = x. If y0 ∈ L, set y = y0. Else, choose y1 uniformly among Cy0

. If y1 ∈ L, set
y = y1. Else, choose y2 uniformly among Cy1

. If y2 ∈ L, set y = y2. Etc. Since T is finite, this always ends up.

The class of algorithms we consider is the following.

Definition 2.3. An admissible algorithm is a procedure of the following form.

Step 1. Simulate a uniformly random match from r, call x1 the resulting leave and set x1 = {x1}. Keep track
of R(x1), of Bx1

= Brx1
and of Dx1

= ∪y∈Brx1
Hy.

Step n+1. Using only the knowledge of Bxn
, Dxn

and (R(x))x∈xn
, choose some (possibly randomized) zn ∈

Dxn
∪ xn.

If zn ∈ xn, set xn+1 = zn, xn+1 = xn, Bxn+1 = Bxn and Dxn+1 = Dxn .
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If zn ∈ Dxn
, simulate a uniformly random match starting from zn and call xn+1 the resulting leave. Set

xn+1 = xn ∪ {xn+1} and keep track of R(xn+1), of Bxn+1
= Bxn

∪ Brxn+1
and of Dxn+1

= (Dxn
\ {zn}) ∪⋃

y∈Bznxn+1
\{zn}Hy.

Conclusion. Stop after a given number of iterations n0 (or after a given amount of time). Choose some (possibly
randomized) best child x∗ of r, using only the knowledge of Bxn0

, Dxn0
and (R(x))x∈xn0

.

After n matches, Bxn
represents the explored part of T , while Dxn

represents its boundary.
Note that we assume we that know Dxn (the set of all the brothers, in T , of the elements of Bxn that are not

in Bxn) after the simulation some matches leading to the set of leaves xn. This is motivated by the following
reason. Any y ∈ Dxn

has its father in Bxn
. Thus at some point of the simulation, we visited f(y) for the first

time and we had to decide (at random) between all its children: we are aware of the fact that y ∈ T .
Also note that we assume that the best thing to do, when visiting a position for the first time (i.e. when

arriving at some element of Dxn
), is to simulate from there a uniformly random match. This models that fact

that we know nothing of the game, except the rules.
The randomization will allow us, in practice, to make some uniform choice in case of equality.
Finally, it seems stupid to allow xn+1 to belong to xn, because this means we will simulate precisely a match

we have already simulated: this will not give us some new information. But this avoids many useless discussions.
Anyway, a good algorithm will always, or almost always, exclude such a possibility.

Remark 2.4.

(i) In Step n+1, by “using only the knowledge of Bxn , Dxn and (R(x))x∈xn choose some (possibly randomized)
zn ∈ Dxn

∪ xn”, we mean that zn = F (Bxn
,Dxn

, (R(x))x∈xn
, Xn), where Xn ∼ U([0, 1]) is independent

of everything else and where F is a deterministic measurable application from A to T, where A is the set
of all w = (B,D, (ρ(x))x∈x, u), with B ∈ Sf , with x = LB , with D ⊂ Dx finite, with (ρ(x))x∈x ∈ {0, 1}x,
and with u ∈ [0, 1], such that F (w) ∈ x ∪D.

(ii) In Conclusion, by “choose some (possibly randomized) best child x∗ of r, using only the knowledge of
Bxn0

,Dxn0
, (R(x))x∈xn0

”, we mean that x∗ = G(Bxn0
,Dxn0

, (R(x))x∈xn0
, Xn0

), where Xn0
∼ U([0, 1]) is

independent of everything else and where G is a deterministic application from A to T such that, for
w ∈ A as above, G(w) ∈ CB∪D

r .
(iii) The two applications F,G completely characterize an admissible algorithm.

2.7. Assumption

Except for the convergence of our class of algorithms, the proof of which being purely deterministic, we will
suppose at least the following condition.

Assumption 2.5. The tree T is a random element of Sf . We denote by L = LT and, as already mentioned,
we set Cx = CTx , Hx = HTx and Kx = KTx for x ∈ T and Dx = DTx for x ⊂ T . Conditionally on T , we have
some random outcomes (R(x))x∈L in {0, 1}. We assume that for any T ∈ Sf with leaves LT , the family

((Tx, (R(y))y∈L∩Tx), x ∈ LT )

is independent conditionally on AT = {T ⊂ T and DLT
= ∅} as soon as Pr(AT ) > 0.

Observe that AT = {T ⊂ T and x ∈ T implies Hx ⊂ T} = {T ⊂ T and ∀x ∈ T , Kx = KT
x }.

This condition is a branching property: knowing AT , i.e. knowing that T ⊂ T and that all the brothers
(in T ) of x ∈ T belong to T , we can write T = T ∪

⋃
x∈LT

Tx, and the family ((Tx, (R(y))y∈L∩Tx), x ∈ LT ) is
independent. A first consequence is as follows.

Remark 2.6. Suppose Assumption 2.5. For T ∈ Sf such that Pr(AT ) > 0 and z ∈ LT , we denote by GT,z the
law of (Tz, (R(y))y∈L∩Tz ) conditionally on AT . We have GT,z = GKT

z ,z.
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Indeed, put S = KT
z ⊂ T and observe that AT = AS ∩

⋂
x∈LS\{z}A

′
x, where we have set A′x = {Tx ⊂

Tx,DLT
∩ Tx = ∅}. But for each x ∈ LS \ {z}, A′x ∈ σ(Tx). It thus follows from Assumption 2.5 that

(Tz, (R(y))y∈L∩Tz ) is independent of
⋂

x∈LS\{z}A
′
x knowing AS . Hence its law knowing AT is the same as

knowing AS .
Assumption 2.5 is of course satisfied if T is deterministic and if the family (R(x))x∈L is independent. It also

holds true if T is an inhomogeneous Galton–Watson tree and if, conditionally on T , the family (R(x))x∈L is
independent and (for example) R(x) is Bernoulli with some parameter depending only on the depth |x|. But
there are many other possibilities, see Section 6 for precise examples of models satisfying Assumption 2.5.

2.8. Two relevant quantities

Here we introduce two mean quantities necessary to our study.

Definition 2.7. Suppose Assumption 2.5. Let T ∈ Sf such that Pr(AT ) > 0, and z ∈ LT . Observe that on AT ,
z ∈ T .

(i) We set m(T, z) = Pr(R(z) = 1|AT ). By Remark 2.6, m(T, z) = m(KT
z , z), because R(z) is of course a

deterministic function of (Tz, (R(y))y∈L∩Tz ), see Remark 2.1.
(ii) Simulate a uniformly random match starting from z, denote by y the resulting leave. We putKzy = Ky∩Tz

and introduce G = σ(y,Kzy, R(y)). We set

s(T, z) = E
[(

Pr(R(z) = 1|G ∨ σ(AT ))−m(T, z)
)2∣∣∣AT

]
.

By Remark 2.6, s(T, z) = s(KT
z , z).

Since E[Pr(R(z) = 1|G ∨ σ(AT ))|AT ] = m(T, z), s(T, z) is a conditional variance.
We will see in Section 6 that for some particular classes of models, m and s can be computed.
Recall that our goal is to produce some admissible algorithm. Assume we have explored n leaves x1, . . . , xn

and set xn = {x1, . . . , xn}. Recall that Bxn
is the explored tree and that Dxn

is, in some sense, its boundary.
For z ∈ xn, we perfectly know R(z). But for z ∈ Dxn , we only know that z ∈ T and we precisely know Kz, since

Kz = KTz = K
Bxn∪Dxn
z . Thus the best thing we can say is that R(z) equals 1 with (conditional) probability

m(Kz, z). Also, s(Kz, z) quantifies some mean amount of information we will get if handling a uniformly random
match starting from z.

2.9. The conditional minimax values

From now on, we work with the following setting.
Fix n ≥ 1. Using an admissible algorithm, we have simulated n matches, leading to the leaves xn =

{x1, . . . , xn} ⊂ L. Hence the σ-field Fn = σ(xn,Dxn
, (R(x))x∈xn

) represents our knowledge of the game. Observe
that Bxn is of course Fn-measurable. Also, for any x ∈ Bxn ∪ Dxn , Kx and Hx are Fn-measurable, as well as
Cx if x ∈ Bxn \ {xn}.

This last assertion easily follows from the fact that for any x ⊂ T , any element of Bx ∪Dx has all its brothers
(in T ) in Bx ∪ Dx.

We first want to compute Rn(r) = E[R(r)|Fn] = Pr(R(r) = 1|Fn), which is, in some obvious sense, the best
approximation of R(r) knowing Fn. Of course, we will have to compute Rn(x) on the whole explored subtree
of T . We will check the following result in Section 5.

Proposition 2.8. Grant Assumption 2.5 and Setting 2.9. For all x ∈ Bxn
∪ Dxn

, define Rn(x) = Pr(R(x) =
1|Fn). They can be computed by backward induction, starting from xn∪Dxn , as follows. For all x ∈ xn, Rn(x) =
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R(x). For all x ∈ Dxn
, Rn(x) = m(Kx, x). For all x ∈ Bxn

\ xn,

Rn(x) = 1{t(x)=0}
∏
y∈Cx

Rn(y) + 1{t(x)=1}

(
1−

∏
y∈Cx

(1−Rn(y))
)
. (2.2)

2.10. Main result

We still work under Setting 2.9. We want to simulate a (n+1)th match. We thus want to choose some z ∈ Dxn

and then simulate a uniformly random match starting from z, in such a way that the increase of information
concerning R(r) is as large as possible. We unfortunately need a few more notation.

Notation 2.1. Adopt Setting 2.9.

(i) For x ∈ (Bxn
∪ Dxn

) \ {r}, we set

Un(x) = 1{t(f(x))=0}
∏

y∈Hx

Rn(y) + 1{t(f(x))=1}
∏

y∈Hx

(1−Rn(y)). (2.3)

(ii) Define Zn(x), for all x ∈ Bxn
∪Dxn

, by backward induction, starting from xn ∪Dxn
, as follows. If x ∈ xn,

set Zn(x) = 0. If x ∈ Dxn
, set Zn(x) = s(Kx, x). If x ∈ Bxn

\ xn, set

Zn(x) = max{(Un(y))2Zn(y) : y ∈ Cx}. (2.4)

(iii) Fix z ∈ Dxn , handle a uniformly random match starting from z, with resulting leave yz, set xz
n+1 = xn ∪

{yz} and denote by Fz
n+1 = σ(xz

n+1,Dxz
n+1

, (R(x))xz
n+1

) the resulting knowledge. Set Rz
n+1(x) = Pr(R(x) =

1|Fz
n+1) for all x ∈ Bxz

n+1
∪ Dxz

n+1
.

Our main result reads as follows.

Theorem 2.9. Suppose Assumption 2.5 and adopt Setting 2.9 and Notation 2.1. Define z∗ ∈ Dxn ∪ xn as
follows. Put y0 = r and set y1 = argmax{(Un(y))2Zn(y) : y ∈ Cy0}. If y1 ∈ Dxn ∪ xn, set z∗ = y1. Else, put
y2 = argmax{(Un(y))2Zn(y) : y ∈ Cy1

}. If y2 ∈ Dxn
∪ xn, set z∗ = y2. Else, put y3 = argmax{(Un(y))2Zn(y) :

y ∈ Cy2
}, etc. This procedure necessarily stops since T is finite. Each time we use argmax, we choose e.g. at

uniform random in case of equality.
On the event {Rn(r) /∈ {0, 1}}, we have z∗ ∈ Dxn and

z∗ = argmin
{
E
[
(Rz

n+1(r)−R(r))2
∣∣∣Fn

]
: z ∈ Dxn

}
. (2.5)

Observe that if Rn(r) ∈ {0, 1}, then R(r) = Rn(r), because conditionally on Fn, R(x) is Bernoulli with
parameter Rn(r) = Pr(R(r) = 1|Fn). Hence on the event {Rn(r) ∈ {0, 1}}, we perfectly know R(r) from Fn

and thus the (n+ 1)th match is useless.
When Rn(r) /∈ {0, 1}, we have the knowledge Fn, and the theorem tells us how to choose z∗ ∈ Dxn

such that,
after a uniformly random match starting from z∗, we will estimate at best, in some L2-sense, R(r). In words, z∗
can be found by starting from the root, getting down in the tree Bxn ∪ Dxn by following the maximum values
of U2

nZn, until we arrive in Dxn
.

As noted by Bruno Scherrer, z∗ is also optimal if using a L1-criterion.

Remark 2.10. With the assumptions and notation of Theorem 2.9, it also holds that

z∗ = argmin
{
E
[
|Rz

n+1(r)−R(r)|
∣∣∣Fn

]
: z ∈ Dxn

}
. (2.6)
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This is easily deduced from (2.5), noting that conditionally on Fz
n+1 (which contains Fn), R(r) is

Bernoulli(Rz
n+1(r))-distributed, and that for X ∼Bernoulli(p), E[|X − p|] = 2E[(X − p)2].

2.11. The algorithm

The resulting algorithm is as follows.

Algorithm 2.11. Each time we use argmax, we e.g. choose at uniform random in case of equality.

Step 1. Simulate a uniformly random match from r, call x1 the resulting leave and set x1 = {x1}.
During this random match, keep track of R(x1), of Bx1

= Brx1
and of Dx1

= ∪y∈Brx1
Hy and set R1(x) =

m(Kx, x) and Z1(x) = s(Kx, x) for all x ∈ Dx1 .
Set x = x1, R1(x) = R(x1) and Z1(x) = 0.
Do {x=f(x), compute R1(x) using (2.2), (U1(y))y∈Cx using (2.3) and Z1(x) using (2.4)} until x = r.

Step n+1. Put z=r. Do z = argmax{(Un(y))2Zn(y) : y ∈ Cz} until z ∈ Dxn
. Set zn = z.

Simulate a uniformly random match from zn, call xn+1 the resulting leave, set xn+1 = xn ∪ {xn+1}.
During this random match, keep track of R(xn+1), of Bxn+1 = Bxn ∪Brxn+1 and of Dxn+1 = (Dxn \ {zn}) ∪⋃

y∈Bznxn+1
\{zn}Hy and set Rn+1(x) = m(Kx, x) and Zn+1(x) = s(Kx, x) for all x ∈

⋃
y∈Bznxn+1

\{zn}Hy.

For all x ∈ (Bxn+1 ∪ Dxn+1) \Brxn+1 , put Rn+1(x) = Rn(x) and Zn+1(x) = Zn(x).
For all x ∈ (Bxn+1 ∪ Dxn+1) \ Kxn+1 , put Un+1(x) = Un(x).
Set x = xn+1, put Rn+1(x) = R(xn+1) and Zn+1(x) = 0.
Do {x = f(x), compute Rn+1(x) using (2.2), compute (Un+1(y))y∈Cx using (2.3) and Zn+1(x) using (2.4)}

until x = r.
If Rn+1(r) ∈ {0, 1}, go directly to the conclusion.

Conclusion. Stop after a given number of iterations n0 (or after a given amount of time). As best child of r,
choose x∗ = argmax{Rn0

(x) : x ∈ Cr}.

2.12. The update is rather quick

For e.g. a (deterministic) regular tree T with degree d and depth K, the cost to achieve n steps of the above
algorithm is of order nKd, because at each step, we have to update the values of Rn(x) and Zn(x) for x ∈ Brxn

(which concerns K nodes) and the values of Un(x) for x ∈ Kxn+1
(which concerns Kd nodes).

Observe that MCTS algorithms (see Sects. 1 and A.2) enjoy a cost of order Kn, since the updates are done
only on the branch Brxn

(or even less than that, but in any case we have at least to simulate a random match,
of which the cost is proportional to K, at each step).

The cost in Kdn for Algorithm 2.11 seems miraculous. We have not found any deep reason, but calculus,
explaining why this theoretically optimal (in a loose sense) behaves so well. It would have been more natural,
see Remark 5.2, that the update would concern the whole explored tree Bxn

∪Dxn
, which contains much more

than Kd elements. Very roughly, its cardinal is of order Kdn, which would lead to a cost of order Kdn2 to
achieve n steps (Fig. 3). We did not write it down in the present paper, which is technical enough, but we also
studied two variations of Theorem 2.9:

• First, we considered the very same model, but we tried minimize Pr(1{Rz
n+1(r)}>1/2 6= R(r)|Fn) instead

of (2.5). This is more natural, since in practice, one would rather estimate R(r) by 1{Rn(r)>1/2} than
by Rn(r) (because R(r) takes values in {0, 1}). It is possible to extend our theory, but this leads to an
algorithm with a cost of order Kdn2 (at least, we found no way to reduce this cost).

• We also studied what happens in the case where the game may lead to draw. Then the outcomes (A(x))x∈T
can take three values, 0 (if J0 wins), 1 (if J1 wins) and 1/2 (if the issue is a draw). For any x ∈ T , we
can define the minimax rating A(x) as 0 (if J0 has a winning strategy), 1 (if J1 has a winning strategy)
and 1/2 (else). The family (A(x))x∈T satisfies the backward induction relation (2.1). A possibility is to
identify a draw to a victory of J0 (or of J1). Then, under Assumption 2.5 with R(x) = 1{A(x)=1}, we can
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Figure 3. After Step 3, we have the (thick) explored tree Bx3
, its boundary (bullets) Dx3

,
and the values of R3, Z3 and U3 on the whole picture. 1. Select z4 using the (U3, Z3)’s. 2.
Simulate a uniformly random match from z3,leading to a leave x4. This builds a new thick
branch and new bullets. 3. Observe R(x4) and compute R4, Z4, U4 on Kx4

. Everywhere else,
set (R4, Z4, U4) = (R3, Z3, U3).

apply directly Theorem 2.9. However, this leads to an algorithm that tries to find a winning move, but
gives up if it thinks it cannot win: the algorithm does not make any difference between a loss and a draw.
It is possible to adapt our theory to overcome this default by trying to estimate both R(x) = 1{A(x)=1}
and S(x) = 1{A(x)=0}, i.e. to minimize something like E[a(Rz

n+1(r)−R(r))2 + b(Sz
n+1(r)− S(r))2|Fn] for

some a, b ≥ 0. However, this leads, again, to an algorithm of which the cost is of order Kdn2, unless b = 0
(or a = 0), which means that we identify a draw to a victory of J0 (or of J1). Technically, this comes from
the fact that in such a framework, nothing like Observation (5.1) does occur, see also Remark 5.2.

In practice, one can produce an algorithm taking draws into account as follows: at each step,
we compute (Rn(x), Zn(x))x∈Bxn∪Dxn

identifying draws to victories of J0 and, with obvious nota-
tion, (R′n(x), Z ′n(x))x∈Bxn∪Dxn

identifying draws to victories of J1. We use our algorithm with
(Rn(x), Zn(x))x∈Bxn∪Dxn

while Rn(r) is not too small, and we then switch to (R′n(x), Z ′n(x))x∈Bxn∪Dxn
. We

have no clear idea of how to choose the threshold.
Finally, the situation is even worse for games with a large number (possibly infinite) of game values (repre-

senting the gain of J1). This could for example be modeled by independent Beta priors on the leaves. As first
crippling difficulty, Beta laws are not stable by maximum and minimum.

2.13. Convergence

It is not difficult to check that, even with a completely wrong model, Algorithm 2.11 always converges in a
finite (but likely to be very large) number of steps.

Remark 2.12.

(i) Forgetting everything about theory, we can use Algorithm 2.11 with any pair of functions m and s, both
defined on {(S, x) : S ∈ Sf , x ∈ LS}, m being valued in [0, 1] and s being valued in [0,∞).

(ii) For any constant λ > 0, the algorithm using the functions m and λs is precisely the same than the one
using m and s.

Note that we allow s to be larger than 1, which is never the case from a theoretical point of view. But in
view of (ii), it is very natural. We will prove the following result in Section 3.

Proposition 2.13. Consider any fixed tree T ∈ Sf with L its set of leaves and any fixed outcomes (R(x))x∈L.
Denote by (R(x))x∈T the corresponding minimax values. Apply Algorithm 2.11 with any given pair of functions m
and s on {(S, x) : S ∈ Sf , S ⊂ T , x ∈ LS} with values in [0, 1] and [0,∞) respectively and satisfying the following
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condition: for any S ∈ Sf with S ⊂ T and DLS
= ∅, any x ∈ LS, s(S, x) = 0 if and only if m(S, x) ∈ {0, 1},

and in such a case, m(S, x) = R(x).

(i) For every n ≥ 1, Rn(r) /∈ {0, 1} implies that xn+1 /∈ xn.
(ii) There is n0 ≥ 1 finite such that Rn0

(r) ∈ {0, 1} and we then have Rn0
(r) = R(r).

Let us emphasize this proposition assumes nothing but the fact that T is finite. Assumption 2.5 is absolutely
not necessary here. The condition on m and s is very general and obviously satisfied if e.g. m is (0, 1)-valued
and if s is (0,∞)-valued.

Once a sufficiently large part of the tree is explored (actually, almost all the tree up to some pruning), the
algorithm knows perfectly the minimax value of r, even if m and s are meaningless. Thus, the structure of the
algorithm looks rather nice. In practice, for a large game, the algorithm will never be able to explore such a
large part of the tree, so that the choice of the functions m and s is very important. However, Proposition 2.13 is
reassuring: we hope that even if the modeling is approximate, so that the choices of m and s are not completely
convincing, the algorithm might still behave well.

Lemma 2.14. Under Assumption 2.5, the functions m and s introduced in Definition 2.7 satisfy the condition of
Proposition 2.13: for any S ∈ Sf such that Pr(AS) > 0, any x ∈ LS, s(S, x) = 0 if and only if m(S, x) ∈ {0, 1},
and in such a case, R(x) = m(S, x) a.s. on AS.

Consequently, we can apply Proposition 2.13 under Assumption 2.5 with the functions m and s introduced
in Definition 2.7: for any fixed realization of T and (R(x))x∈L, if S ∈ Sf with S ⊂ T and DLS

= ∅, then AS

is realized, so that indeed, for any x ∈ LS , s(S, x) = 0 if and only if m(S, x) ∈ {0, 1}, and in such a case,
m(S, x) = R(x).

2.14. Practical choice of the functions m and s

In Section 6, we will describe a few models satisfying our conditions and for which we can compute the
functions m ans s. As seen in Definition 2.7 (see also Algorithm 2.11), it suffices to be able to compute m(Kx, x)
and s(Kx, x) for all x ∈ T (actually, for all x in the boundary Dxn

of the explored tree). Let us summarize the
two main examples.

(i) First, assume that T is an inhomogeneous Galton–Watson tree, with maximum depth K and known
reproduction laws, and that conditionally on T , the outcomes (R(x))x∈L are independent Bernoulli random
variables with parameters depending only on the depths of the involved nodes. Then we will show that
the functions m(Kx, x) and s(Kx, x) depend only on the depth of x and can be computed numerically,
once for all, from the parameters of the model. See Section 6.1 for precise statements. Let us mention
that the parameters of the model can be fitted to some real game such as Connect Four (even if it is not
clear at all that this model is reasonable) by handling a high number of uniformly random matches, see
Section 8.2 for a few more explanations.

(ii) Second, assume that T is some given random tree to be specified later. Fix some values a ∈ (0, 1) and
b ∈ R. Define m({r}, r) = a, s({r}, r) = 1 (or any other positive constant, see Rem. 2.12) and, recursively,
for all x ∈ T , define m(Kx, x) and s(Kx, x) from m(Kf(x), f(x)), s(Kf(x), f(x)) and |Cf(x)| by the formulas

m(Kx, x) =1{t(f(x))=0}[m(Kf(x), f(x))]1/|Cf(x)| + 1{t(f(x))=1}(1− [1−m(Kf(x), f(x))]1/|Cf(x)|),

s(Kx, x) =
(
1{t(f(x))=0}m(Kf(x), f(x)) + 1{t(f(x))=1}[1−m(Kf(x), f(x))])

)b(|Cf(x)|−1)
s(Kf(x), f(x)).

The formula for m is a modeling symmetry assumption rather well-justified and we can treat the following
cases, see in Section 6.3 for more details.



190 S. DELATTRE AND N. FOURNIER

(ii)-(a) If we consider Pearl’s model [18], i.e. T is the deterministic d-regular tree with depth K and the
outcomes are i.i.d. Bernoulli random variables with parameter p (explicit as a function of a, d,K), then
the above formula for s with b = 2 is theoretically justified, see Remark 6.5.

(ii)-(b) Assume next that T is a finite homogeneous Galton–Watson tree with reproduction law (1 −
p)δ0 +pδd (with pd ≤ 1) and that conditionally on T , the outcomes (R(x))x∈L are independent Bernoulli
random variables with parameters (m(Kx, x))x∈L (that do not need to be computed). Then if a = a0 is
well-chosen (as a function of p and d), the above formula for s with b = 0 (i.e. s ≡ 1) is theoretically
justified, see Remark 6.7.

We also experimented, without theoretical justification, other values of b. But we obtained so few success in
this direction that we will not present the corresponding numerical results.

Let us mention that while (i) requires to fit precisely the functions m and s using rough statistics on the
true game, (ii) is rather universal. In particular, it seems that the choice a = 0.5 and b = 0 works quite well in
practice, and this is very satisfying. Also, the implementation is very simple, since each time a new node x is
visited by the algorithm, we can compute m(Kx, x) from m(Kf(x), f(x)) and the number of children |Cf(x)| of
f(x).

Finally observe that for any tree T and any choices of a ∈ (0, 1) and b ∈ R, m is (0, 1)-valued and
s is (0,∞)-valued, so that Proposition 2.13 applies: the algorithm always converges in a finite number of
steps.

2.15. Global optimality fails

By Theorem 2.9, Algorithm 2.11 is optimal, in a loose sense, step by step. That is, if knowing, for some
n ≥ 1, Dxn and the values of R(x) for x ∈ xn ⊂ L, it tells us how to choose the next leave xn+1 ∈ L so that
E[(Rn+1(r)−R(r))2] is as small as possible. However, it is not globally optimal.

Remark 2.15. Let T be the (deterministic) binary tree with depth 3 and assume that the outcomes (R(x))x∈L
are i.i.d. and Bernoulli(1/2)-distributed. Then Assumption 2.5 is satisfied and we can compute the functions m
and s introduced in Definition 2.7. We thus may apply Algorithm 2.11, producing some random leaves x1, x2, . . ..
We set Fn = σ({Bxn

,Dxn
, (R(x))x∈xn

}) and Rn(r) = E[R(r)|Fn].
There is another admissible algorithm, producing some random leaves x̃1, x̃2, . . ., such that, for F̃n =

σ({Bx̃n ,Dx̃n , (R(x))x∈x̃n}) and R̃n(r) = E[R(r)|F̃n], we have

E[(R̃2(r)−R(r))2] > E[(R2(r)−R(r))2] but E[(R̃3(r)−R(r))2] < E[(R3(r)−R(r))2].

It looks very delicate to determine the globally optimal algorithm. Moreover, it is likely that such an algorithm
will be very intricate and will not enjoy the quick update property discussed in Section 2.12.

3. General convergence

We first show that Algorithm 2.11 is convergent with any reasonable parameters m and s.

Proof of Proposition 2.13. We consider some fixed tree T ∈ Sf with L its set of leaves, some fixed outcomes
(R(x))x∈L and we denote by (R(x))x∈T the corresponding minimax values. We also consider any pair of func-
tions m and s on {(S, x) : S ∈ Sf , x leave of S} with values in [0, 1] and [0,∞) respectively and we apply
Algorithm 2.11. We assume that for any S ∈ Sf of which x is a leave, s(S, x) = 0 if and only if m(S, x) ∈ {0, 1},
and that in such a case, m(S, x) = R(x).

Step 1. After the nth step of the algorithm, we have some values Rn(x) ∈ [0, 1], Un(x) ∈ [0, 1] and Zn(x) ≥ 0
for all x ∈ Bxn ∪ Dxn , for some xn = {x1, . . . , xn} ⊂ L. These quantities can generally not be interpreted in
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terms of conditional expectations, but they always obey, by construction, the following rules:

(a) If x ∈ xn, then Rn(x) = R(x) and Zn(x) = 0.
(b) If x ∈ Dxn

, then Rn(x) = m(Kx, x) and Zn(x) = s(Kx, x).
(c) If x ∈ Bxn

\ xn, Rn(x) = 1{t(x)=0}
∏

y∈Cx Rn(y) + 1{t(x)=1}[1−
∏

y∈Cx(1−Rn(y))].

(d) If x ∈ Bxn
\ xn, Zn(x) = max{U2

n(y)Zn(y) : y ∈ Cx}.
(e) If x ∈ (Bxn

∪ Dxn
) \{r}, Un(x) = 1{t(v(x))=0}

∏
y∈Hx

Rn(y) + 1{t(v(x))=1}
∏

y∈Hx
(1−Rn(y)).

We finally recall that, by Proposition 2.1,
(f) if x ∈ T \ L, R(x) = 1{t(x)=0}min{R(y) : y ∈ Cx}+ 1{t(x)=1}max{R(y) : y ∈ Cx}.

Step 2. Here we prove that for all x ∈ Bxn
∪ Dxn

,

Rn(x) ∈ {0, 1} and Zn(x) = 0 are equivalent and imply that Rn(x) = R(x). (3.1)

In the whole step, the notions of child (of x ∈ Bxn \ xn) and brother (of x ∈ Bxn ∪ Dxn) refer to the tree T
or, equivalently, to the tree Bxn

∪ Dxn
.

First, (3.1) is obvious if x ∈ xn by point (a) (then Rn(x) = R(x) ∈ {0, 1} and Zn(x) = 0) and if x ∈ Dxn
by

point (b) and our assumption on m and s. We next work by backward induction: we consider x ∈ Bxn
\ xn, we

assume that all its children satisfy (3.1), and we prove that x also satisfies (3.1). We assume for example that
t(x) = 0, the case where t(x) = 1 being treated similarly.

If Rn(x) = 0, then by (c), x has (at least) one child y such that Rn(y) = 0 whence, by induction assumption,
R(y) = 0 and thus R(x) = 0 by (f). Furthermore, Rn(y) = 0 implies that Un(z) = 0, whence U2

n(z)Zn(z) = 0,
for all z brother of y by (e). And by induction assumption, we have Zn(y) = 0, whence U2

n(y)Zn(y) = 0. We
conclude, by (d), that Zn(x) = 0, and we have seen that Rn(x) = 0 = R(x).

If Rn(x) = 1, then by (c), all the children y of x satisfy Rn(y) = 1, whence, by induction assumption, R(y) = 1
and thus R(x) = 1 by (f). Still by induction assumption, Zn(y) = 0 for all the children y of x, whence Zn(x) = 0
by (d), and we have seen that Rn(x) = 1 = R(x).

Assume now that Zn(x) = 0, whence U2
n(y)Zn(y) = 0 for all the children y of x by (d). If there is (at least)

one child y of x for which Un(y) = 0, this means that there is another child z of x for which Rn(z) = 0 by
(e), whence Rn(x) = 0 by (c). Else, we have Zn(y) = 0 for all the children y of x, so that Rn(y) ∈ {0, 1} by
induction assumption, and thus Rn(x) ∈ {0, 1} by (c).

We have shown that Rn(x) ∈ {0, 1} implies Zn(x) = 0 and Rn(x) = R(x), and we have verified that Zn(x) = 0
implies Rn(x) ∈ {0, 1}. Hence x satisfies (3.1), which completes the step.

Step 3. We now prove that if xn+1 ∈ xn, then Rn(r) ∈ {0, 1} and this will prove point (i). Looking at
Algorithm 2.11, we see that xn+1 ∈ xn means that the procedure

put z = r and do z = argmax{U2
n(y)Zn(y) : y ∈ Cz} until z ∈ xn ∪ Dxn

returns some z ∈ xn. But then, Zn(z) = 0 by (a). From (d) and the way z has been built, one easily gets
convinced that this implies that Zn(r) = 0, whence Rn(r) ∈ {0, 1} by Step 1.

Step 4. By Step 3 and since T has a finite number of leaves, n0 = inf{n ≥ 1 : Rn(r) ∈ {0, 1}} is well-defined
and finite. Finally, we know from Step 2 that Rn0

(r) = R(r).

4. Preliminaries

We first establish some general formulas concerning the functions m and s. They are not really necessary to
understand the proof of our main result, but we need them to show Lemma 2.14. Also, we will use them to
derive more tractable expressions in some particular cases in Section 6.
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Lemma 4.1. Suppose Assumption 2.5 and recall Definition 2.7. For any S ∈ Sf such that Pr(AS) > 0 and any
x ∈ LS,

m(S, x) = Pr(x ∈ L, R(x) = 1|AS) +
∑

y⊂Cx,|y|≥1

Pr(Cx = y|AS)Θ(S, x,y),

s(S, x) =
∑

k∈{0,1}

Pr(x ∈ L, R(x) = k|AS)[k −m(S, x)]2 +
∑

y⊂Cx,|y|≥1

Pr(Cx = y|AS)
∑
y∈y

Γ (S, x,y, y)

|y|
,

where

Θ(S, x,y) = 1{t(x)=0}
∏
y∈y

m(S ∪ y, y) + 1{t(x)=1}

(
1−
∏
y∈y

(1−m(S ∪ y, y))
)
,

Γ (S, x,y, y) = 1{t(x)=0}

(
s(S ∪ y, y)

∏
u∈y\{y}

[m(S ∪ y, u)]2 +
[ ∏
u∈y

m(S ∪ y, u)−m(S, x)
]2)

+ 1{t(x)=1}

(
s(S ∪ y, y)

∏
u∈y\{y}

[1−m(S ∪ y, u)]2 +
[ ∏
u∈y

(1−m(S ∪ y, u))− (1−m(S, x))
]2)

.

Proof. We fix S ∈ Sf such that Pr(AS) > 0 and x ∈ LS . We first observe that for any y ⊂ Cx with |y| ≥ 1,
AS ∩ {Cx = y} = AS∪y (recall that AS is the event on which S ⊂ T and all the brothers (in T ) of all the
elements of S also belong to S).

We now study m(S, x) = Pr(R(x) = 1|AS), starting from

m(S, x) = Pr(x ∈ L, R(x) = 1|AS) +
∑

y⊂Cx,|y|≥1

Pr(Cx = y, R(x) = 1|AS).

Hence the only difficulty is to verify that Pr(Cx = y, R(x) = 1|AS) = Pr(Cx = y|AS)Θ(S, x,y) or, equivalently,
that

Pr(R(x) = 1|AS ∩ {Cx = y}) = Θ(S, x,y). (4.1)

Since AS ∩ {Cx = y} = AS∪y and since y ⊂ LS∪y, we know from Assumption 2.5 that the family
(Ty, (R(u))u∈L∩Ty )y∈y is independent conditionally on AS ∩ {Cx = y}. Consequently, the family (R(y))y∈y
is independent conditionally on AS ∩ {Cx = y} (because R(y) depends only on Ty and (R(u))u∈L∩Ty , recall
Rem. 2.1). We assume e.g. t(x) = 1. Since R(x) = max{R(y) : y ∈ Cx}, we may write

Pr(R(x) = 1|AS ∩ {Cx = y}) = 1−
∏
y∈y

Pr(R(y) = 0|AS ∩ {Cx = y}).

But for y ∈ y, Pr(R(y) = 0|AS ∩ {Cx = y}) = Pr(R(y) = 0|AS∪y) = 1 −m(S ∪ y, y), whence (4.1), because
t(x) = 1.

We next study s. Knowing AS , we handle a uniformly random match starting from x, with resulting leave v
and we set G = σ(v,R(v),Kxv), where Kxv = Kv ∩Tx. We recall that s(S, x) = E[(R1(x)−m(S, x))2|AS ], where
R1(x) = Pr(R(x) = 1|G ∨ σ(AS)). If x ∈ L, then v = x, whence R(x) is G-measurable and thus R1(x) = R(x).
Consequently,

s(S, x) = E[(R(x)−m(S, x))21{x∈L}|AS ] +
∑

y⊂Cx,|y|≥1

E[(R1(x)−m(S, x))21{Cx=y}|AS ].
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We have E[(R(x)−m(S, x))21{x∈L}|AS ] =
∑

k∈{0,1} Pr(x ∈ L, R(x) = k|AS)[k −m(S, x)]2. We thus only have

to check that E[(R1(x)−m(S, x))21{Cx=y}|AS ] = Pr(Cx = y|AS)
∑

y∈y |y|−1Γ (S, x,y, y) or, equivalently, that

E[(R1(x)−m(S, x))2|AS ∩ {Cx = y}] =
∑

y∈y |y|−1Γ (S, x,y, y).
On AS ∩ {Cx = y}, let w be the child of x belonging to Bxv. Since v is obtained by handling a uniformly

random match starting from x, Pr(w = y|AS ∩ {Cx = y}) = |y|−1 for all y ∈ y. We thus only have to verify
that

E[(R1(x)−m(S, x))2|AS ∩ {Cx = y} ∩ {w = y}] = Γ (S, x,y, y). (4.2)

But AS ∩ {Cx = y} = AS∪y, so that, by Assumption 2.5 (and since the random match is independent of
everything else), the family (Tu, (R(z))z∈L∩Tu)u∈y is independent conditionally on AS ∩ {Cx = y} ∩ {w = y}.
Hence the family (R(u))u∈y\{y} is independent and independent of (Ty, (R(z))z∈L∩Ty ) conditionally on AS ∩
{Cx = y}∩{w = y}. In particular, (R(u))u∈y\{y} is independent of G conditionally on AS ∩{Cx = y}∩{w = y}.

From now on, we assume e.g. that t(x) = 0.
We have R(x) = min{R(u) : u ∈ y} =

∏
u∈y R(u) on {Cx = y} and we conclude from the above independence

property that, conditionally on AS ∩ {Cx = y} ∩ {w = y} = AS∪y ∩ {w = y},

R1(x) = Pr
(∏

u∈y
R(u) = 1

∣∣∣G ∨ σ(AS∪y)
)

= Pr(R(y) = 1|G ∨ σ(AS∪y))
∏

u∈y\{y}

Pr(R(u) = 1|AS∪y).

But Pr(R(u) = 1|AS∪y) = m(S ∪ y, u). Adopting the notation R1(y) = Pr(R(y) = 1|G ∨ σ(AS∪y)), we deduce
that R1(x) = R1(y)

∏
u∈y\{y}m(S ∪ y, u) on AS ∩ {Cx = y} ∩ {w = y}, whence

R1(x)−m(S, x) = [R1(y)−m(S ∪ y, y)]
∏

u∈y\{y}

m(S ∪ y, u) +
[ ∏
u∈y

m(S ∪ y, u)−m(S, x)
]
.

Recall that t(x) = 0. To conclude that (4.2) holds true, it only remains to verify that:

(a) E[(R1(y)−m(S ∪ y, y))2|AS ∩ {Cx = y} ∩ {w = y}] = s(S ∪ y, y),
(b) E[R1(y)|AS ∩ {Cx = y} ∩ {w = y}] = m(S ∪ y, y).

By definition, we have s(S ∪ y, y) = E[(R1(y) − m(S ∪ y, y))2|AS∪y] conditionally on {w = y}, because on
{w = y}, R1(y) = Pr(R(y) = 1|G ∨ σ(AS∪y)) is indeed the conditional probability that R(y) = 1 knowing the
information provided by a uniformly random match starting from w (with resulting leave v). Point (a) follows.

For (b), we write

E[R1(y)|AS ∩ {Cx = y} ∩ {w = y}] = E[Pr(R(y) = 1|G ∨ σ(AS∪y))|AS∪y ∩ {w = y}]
= Pr(R(y) = 1|AS∪y ∩ {w = y})
= Pr(R(y) = 1|AS∪y)

= m(S ∪ y, y).

For the second equality, we used that {w = y} ∈ G ∨σ(AS∪y). For the third equality, we used that w is of course
independent of R(y) knowing AS∪y.

We next give the

Proof of Lemma 2.14. We fix S ∈ Sf such that Pr(AS) > 0 and z ∈ LS .
If first m(S, z) = Pr(R(z) = 1|AS) = 0, then of course R(z) = 0 a.s. on AS , whence also Pr(R(z) = 1|G ∨

σ(AS)) = 0 a.s. on AS (recall Def. 2.7) and thus s(S, z) = 0.
Similarly, m(S, z) = 1 implies that R(z) = 1 a.s. on AS and that s(S, z) = 0.
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It only remains to prove that s(S, z) = 0 implies that m(S, z) ∈ {0, 1}.
If Pr(z ∈ L|AS) > 0, then either Pr(z ∈ L, R(z) = 0|AS) > 0 or Pr(z ∈ L, R(z) = 1|AS) > 0. If s(S, z) = 0,

we deduce from Lemma 4.1 that either [m(S, z)]2 = 0 or [1−m(S, z)]2 = 0, whence m(S, z) ∈ {0, 1}.
If Pr(z ∈ L|AS) = 0, we consider a finite tree T with root z such that Pr(Tz = T |AS) > 0. We set Uz = S

and, for all x ∈ T \ {z}, Ux = S ∪
⋃

y∈Bzx\{x} C
T
y ∈ Sf . It holds that x ∈ LUx

for all x ∈ T and, if x ∈ T \ LT ,

Ux ∪ CT
x = Uy for all y ∈ CT

x .
We now prove by backward induction that for any x ∈ T , s(Ux, x) = 0 implies that m(Ux, x) ∈ {0, 1}. Applied

to x = z, this will complete the proof.
If first x ∈ LT , then Pr(x ∈ L|AUx

) > 0, becauseAS ∩{Tz = T} ⊂ AUx
∩{x ∈ L}, because Pr(Tz = T |AS) > 0

and because Pr(AS) > 0. We thus have already seen that s(Ux, x) = 0 implies that m(Ux, x) ∈ {0, 1}.
If next x ∈ T \ LT , we introduce y = CT

x and we see that Pr(Cx = y|AUx
) > 0, because AS ∩ {Tz = T} ⊂

AUx
∩ {Cx = y}, because Pr(Tz = T |AS) > 0 and because Pr(AS) > 0. We deduce from Lemma 4.1 that if

s(Ux, x) = 0, then Γ (Ux, x,y, y) = 0 for all y ∈ y. If e.g. t(x) = 0, this implies that for all y ∈ y (recall that
Ux ∪ y = Uy),

Γ (Ux, x,y, y) = s(Uy, y)
∏

u∈y\{y}

m(Uu, u) +
[∏
u∈y

m(Uu, u)−m(Ux, x)
]2

= 0.

Thus we always have m(Ux, x) =
∏

u∈ym(Uu, u) and either (i) s(Uu, u) = 0 for all u ∈ y or (ii) there is u ∈ y
such that m(Uu, u) = 0. In case (i), we deduce from the induction assumption that m(Uu, u) ∈ {0, 1} for all
u ∈ y, whence m(Ux, x) ∈ {0, 1}. In case (ii), we of course have m(Ux, x) = 0.

We next study the information provided by some admissible algorithm. Here, Assumption 2.5 is not necessary.
The following result is intuitively obvious, but we found no short proof.

Lemma 4.2. Recall Setting 2.9: an admissible algorithm provided some leaves xn = {x1, . . . , xn} together
with the objects Dxn

and (R(x))x∈xn
. For any (deterministic) yn = {y1, . . . , yn} ⊂ T, any Dn ⊂ Dyn

and any
(a(y))y∈yn

⊂ {0, 1}yn , the law of (T , (R(y))y∈L) knowing

An = {xn = yn,Dyn = Dn, (R(y))y∈yn = (a(y))y∈yn}

is the same as knowing

A′n = {yn ⊂ L,Dyn
= Dn, (R(y))y∈yn

= (a(y))y∈yn
}

as soon as Pr(A′n) > 0.

Proof. We work by induction on n.

Step 1. We fix y1 ∈ T, we set y1 = {y1}, we consider D1 ⊂ Dy1
and a(y1) ∈ {0, 1}. In this step we prove

that the law of (T , (R(y))y∈L) knowing A1 = {x1 = y1,Dy1 = D1, R(y1) = a(y1)} is the same as knowing
A′1 = {y1 ∈ L,Dy1 = D1, R(y1) = a(y1)}.

To this aim, we consider T ∈ Sf such that y1 ∈ LT , DT
y1

= D1 and (α(y))y∈LT
∈ {0, 1}LT such that α(y1) =

a(y1). We have to check that

Pr(T = T, (R(y))y∈LT
= (α(y))y∈LT

, x1 = y1)

Pr(Dy1
= D1, R(y1) = a(y1), x1 = y1)

=
Pr(T = T, (R(y))y∈LT

= (α(y))y∈LT
)

Pr(y1 ∈ L,Dy1
= D1, R(y1) = a(y1))

or, equivalently, that p = q, where

p = Pr(x1 = y1|T = T, (R(y))y∈LT
= (α(y))y∈LT

),
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q = Pr(x1 = y1|y1 ∈ L,Dy1 = D1, R(y1) = a(y1)).

Recalling that x1 is the leave resulting from a uniformly random match starting from r, one easily gets convinced
that p = Pr(x1 = y1|T = T ) =

∏
z∈Bry1

\{y1} |C
T
z |−1. By the same way, q = Pr(x1 = y1|y1 ∈ L,Dy1

= D1) =∏
z∈Bry1\{y1} |C

By1∪D1
z |−1. Since DT

y1
= D1, we have CT

z = C
By1∪D1
z for all z ∈ Bry1 \ {y1} and the conclusion

follows.

Step 2. Assume that the statement holds true with some n ≥ 1. Consider some deterministic yn+1 =
{y1, . . . , yn+1} ⊂ T, Dn+1 ⊂ Dyn+1

and (a(y))y∈yn+1
⊂ {0, 1}yn+1 , as well as the events

An+1 = {xn+1 = yn+1,Dyn+1 = Dn+1, (R(y))y∈yn+1 = (a(y))y∈yn+1}
A′n+1 = {yn+1 ⊂ L,Dyn+1 = Dn+1, (R(y))y∈yn+1 = (a(y))y∈yn+1}.

Recall that xn+1 is chosen as follows: for some deterministic function F as in Remark 2.4 and some Xn ∼
U([0, 1]) independent of everything else, we set zn = F (xn,Dxn

, (R(x))x∈xn
, Xn), which belongs to xn ∪ Dxn

.
If zn ∈ xn, we set xn+1 = zn, else, we handle a uniformly random match starting from zn and denote by xn+1

the resulting leave.
If yn+1 ∈ yn, then we have An+1 = An ∩ {F (yn, Dn, (a(x))x∈yn , Xn) = yn+1} and A′n+1 =

A′n, where Dn = Dn+1, where An = {xn = yn,Dyn
= Dn, (R(y))y∈yn

= (a(y))y∈yn
} and where

A′n = {yn ⊂ L,Dyn
= Dn, (R(y))y∈yn

= (a(y))y∈yn
}. By induction assumption, we know that the law of

(T , (R(y))y∈L) knowing An is the same as knowing A′n. Since Xn is independent of (T , (R(y))y∈L), An, the
law of (T , (R(y))y∈L) knowing An+1 is the same as knowing An and thus the same as knowing A′n+1 (which
equals A′n).

If yn+1 /∈ yn, let x be the element of Bryn+1
∩Byn

the closest to yn+1 and let zn be the child of x belonging
to Bryn+1

. We set Dn = (Dn+1 \ Tzn) ∪ {zn}. Then An+1 = An ∩B1 ∩B2 and A′n+1 = A′n ∩B′2, where An and
A′n are as in the statement and

B1 = {F (yn, Dn, (a(x))x∈yn , Xn) = zn},
B2 = {xn+1 = yn+1,D{yn+1} ∩ Tzn = Dn+1 ∩ Tzn , R(yn+1) = a(yn+1)},
B′2 = {yn+1 ∈ L,D{yn+1} ∩ Tzn = Dn+1 ∩ Tzn , R(yn+1) = a(yn+1)}.

First, since Xn is independent of everything else, the law of (T , (R(y))y∈L) knowing An+1 is the same as knowing
An ∩B2 (from now on, we take the convention that in B2, xn+1 is the leave resulting from a uniformly random
match starting from zn). We thus only have to prove that the law of (T , (R(y))y∈L) knowing An ∩ B2 is the
same as knowing A′n ∩ B′2. Consider T ∈ Sf and (α(y))y∈LT

∈ {0, 1}LT , such that yn+1 ⊂ LT , DT
yn+1

= Dn+1

and (α(y))y∈yn+1 = (a(y))y∈yn+1 . We have to prove that

Pr(T = T, (R(y))y∈LT
= (α(y))y∈LT

)|An ∩B2) = Pr(T = T, (R(y))y∈LT
= (α(y))y∈LT

)|A′n ∩B′2).

We start from

Pr(T =T, (R(y))y∈LT
=(α(y))y∈LT

)|An ∩B2) =
Pr({T =T, (R(y))y∈LT

=(α(y))y∈LT
)} ∩B2|An)

Pr(B2|An)

=
Pr({T =T, (R(y))y∈LT

=(α(y))y∈LT
)} ∩B2|A′n)

Pr(B2|A′n)

thanks to our induction assumption. On the one hand, exactly as in Step 1, we have

Pr({T =T, (R(y))y∈LT
=(α(y))y∈LT

} ∩B2|A′n)
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= Pr(T =T, (R(y))y∈LT
=(α(y))y∈LT

, xn+1 = yn+1|A′n)

= Pr(T =T, (R(y))y∈LT
=(α(y))y∈LT

|A′n)
∏

u∈Bznyn+1
\{yn+1}

|CT
u |−1.

On the other hand,

Pr(B2|A′n) = Pr(B′2 ∩ {xn+1 = yn+1}|A′n) = Pr(B′2|A′n)
∏

u∈Bznyn+1
\{yn+1}

∣∣CBznyn+1
∪(Dn+1∩Tzn )

u

∣∣−1.
Since CT

u = C
Bznyn+1

∪(Dn+1∩Tzn )
u for all u ∈ \{yn+1} (because DT

yn+1
= Dn+1), we conclude that

Pr(T =T, (R(y))y∈LT
=(α(y))y∈LT

)|An ∩B2) =
Pr(T =T, (R(y))y∈LT

=(α(y))y∈LT
|A′n)

Pr(B′2|A′n)
.

Since finally {T =T, (R(y))y∈LT
=(α(y))y∈LT

} ⊂ B′2, we conclude that

Pr(T =T, (R(y))y∈LT
=(α(y))y∈LT

)|An ∩B2) = Pr(T =T, (R(y))y∈LT
=(α(y))y∈LT

|A′n ∩B′2),

which was our goal.

We deduce the following observation, that is crucial to our study.

Lemma 4.3. Suppose Assumption 2.5 and recall Setting 2.9: an admissible algorithm provided some leaves
xn = {x1, . . . , xn} together with the objects Dxn and (R(x))x∈xn and we define Fn = σ(xn,Dxn , (R(x))x∈xn).
Recall also Remark 2.6.

(i) Knowing Fn, for all x ∈ Dxn
, the conditional law of (Tx, (R(y))y∈L∩Tx) is GKx,x.

(ii) Knowing Fn, for all x ∈ Bxn
\ xn, the family ((Tu, (R(y))y∈L∩Tu , u ∈ Cx) is independent.

Recall that for all x ∈ Dxn , Kx is Fn-measurable and that for all x ∈ Bxn \ xn, Cx is Fn-measurable. Hence
this statement is meaningful.

Proof. We observe that Fn is generated by the events of the form

An = {xn = yn,Dyn = Dn, (R(y))y∈yn = (a(y))y∈yn}

as in Lemma 4.2. Let A′n = {yn ⊂ L,Dyn = Dn, (R(y))y∈yn = (a(y))y∈yn}. We see that on A′n (which contains
An), Kx = KT

x for all x ∈ Dn and Cx = CT
x for all x ∈ Bxn

\ xn, where T = Byn
∪Dn.

To check (i), it thus suffices to prove that knowing An, for all x ∈ Dn, the law of (Tx, (R(y))y∈L∩Tx is GKT
x ,x.

We fix x ∈ Dn. By Lemma 4.2, it suffices to verify that the law of (Tx, (R(y))y∈L∩Tx knowing A′n is GKT
x ,x.

Recalling that AKT
x

= {KT
x ⊂ T ,DKT

x
= ∅}, we write A′n = AKT

x
∩
⋂

u∈LKT
x
\{x}Eu, where

Eu = {yn ∩ Tu ⊂ L,Dyn ∩ Tu = Dn ∩ Tu, (R(y))y∈yn∩Tu = (a(y))y∈yn∩Tu}.

By Assumption 2.5, (Tx, (R(y))y∈L∩Tx is independent of
⋂

u∈LKT
x
\{x}Eu knowing AKT

x
. Thus the law of

(Tx, (R(y))y∈L∩Tx knowing A′n equals the law of (Tx, (R(y))y∈L∩Tx knowing AKT
x

, which is GKT
x ,x by definition.

For (ii), we show that for any x ∈ Byn
\ yn, the family ((Tu, (R(y))y∈L∩Tu , u ∈ CT

x ) is independent con-
ditionally on An, or equivalently, conditionally on A′n. To this aim, we introduce S = T \ ∪y∈CT

x
(Ty \ {y})

(i.e. S is the tree T from which we have removed all the subtrees strictly below the children of x). We
write A′n = AS ∩

⋂
u∈LS

Eu with Eu as in the proof of (i). We know from Assumption 2.5 that the family
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((Tu, (R(y))y∈L∩Tu
, u ∈ LS) is independent conditionally on AS . Observing that Eu ∈ σ(Tu, (R(y))y∈L∩Tu) for

all u ∈ LS , we conclude that the family ((Tu, (R(y))y∈L∩Tu , u ∈ LS) is independent conditionally on A′n. (Here
we used that if a family of random variables (Xi)i∈I is independent conditionally on some event A and if we
have some events Ei ∈ σ(Xi), for i ∈ I, then the family (Xi)i∈I is independent conditionally on A ∩

⋂
i∈I Ei).

Since CT
x ⊂ LS , the conclusion follows.

5. Proof of the main result

In the whole section, we take Assumption 2.5 for granted. We first compute the conditional minimax values.

Proof of Proposition 2.8. We work under Setting 2.9. If first x ∈ xn, then R(x) is Fn-measurable, so that
Rn(x) = Pr(R(x) = 1|Fn) = R(x).

Next, for x ∈ Dxn , we know from Lemma 4.3 that the law of (Tx, (R(y))y∈L∩Tx knowing Fn is GKx,x. Recalling
Definition 2.7 and Remark 2.6, we see that Rn(x) = Pr(R(x) = 1|Fn) = m(Kx, x).

Finally, for x ∈ Bxn
\ xn, Lemma 4.3 tells us that the family ((Ty, (R(u))u∈L∩Ty , y ∈ Cx) is independent

conditionally on Fn. But for y ∈ Cx, R(y) is of course σ(Ty, (R(u))u∈L∩Ty )-measurable (recall Rem. 2.1). Thus
the family (R(y), y ∈ Cx) is independent conditionally on Fn. If t(x) = 0, we may write, by (2.1),

Rn(x) = Pr(R(x) = 1|Fn) = Pr(min{R(y) : y ∈ Cx} = 1|Fn) =
∏
y∈Cx

Pr(R(y) = 1|Fn),

which equals
∏

y∈Cx Rn(y) as desired. If now t(x) = 1, we find similarly

Rn(x) = Pr(R(x) = 1|Fn) = Pr(max{R(y) : y ∈ Cx} = 1|Fn) = 1−
∏
y∈Cx

Pr(R(y) = 0|Fn),

which is nothing but 1−
∏

y∈Cx(1−Rn(y)).

We now study the different possibilities for the (n+ 1)th step.

Proposition 5.1. Adopt Setting 2.9 and Notation 2.1. For z ∈ Dxn
and x ∈ Bxn

∪ Dxn
, we set

∆z
n(x) = E[(Rz

n+1(x)−Rn(x))2|Fn].

(i) We have argmin{E[(Rz
n+1(r)−R(r))2|Fn] : z ∈ Dxn} = argmax{∆z

n(r) : z ∈ Dxn}.
(ii) For all z ∈ Dxn

, we have ∆z
n(z) = s(Kz, z).

(iii) For all z ∈ Dxn
, all x ∈ Brz \ {r}, we have ∆z

n(f(x)) = (Un(x))2∆z
n(x).

(iv) For all z ∈ Dxn
, ∆z

n(r) = s(Kz, z)
∏

y∈Brz\{r}(Un(y))2.

Proof. Point (i) is not difficult: for all z ∈ Dxn ,

E[(Rn(r)−R(r))2|Fn] = E[(Rz
n+1(r)−R(r))2|Fn] + E[(Rz

n+1(r)−Rn(r))2|Fn]

+ 2E[(Rz
n+1(r)−R(r))(Rn(r)−Rz

n+1(r))|Fn].

Using that Fn ⊂ Fz
n+1 and that Rz

n+1(r) = E[R(r)|Fz
n+1], we conclude that

E[(Rn(r)−R(r))2|Fn] = E[(Rz
n+1(r)−R(r))2|Fn] + E[(Rz

n+1(r)−Rn(r))2|Fn].

Since the left hand side does not depend on z, minimizing E[(Rz
n+1(r)−R(r))2|Fn] is equivalent to maximizing

E[(Rz
n+1(r)−Rn(r))2|Fn].

Also, point (iv) immediately follows from points (ii) and (iii).



198 S. DELATTRE AND N. FOURNIER

To check points (ii) and (iii), we fix z ∈ Dxn
. We recall that Fz

n+1 = Fn ∨ G, where G = σ(y,Kzy, R(y)),
where y is the leave resulting from a uniformly random match starting from z and where Kzy = Ky ∩ Tz. We
also recall that Rz

n+1(x) = Pr(R(x) = 1|Fz
n+1) for all x ∈ Bxn ∪ Dxn .

We know from Lemma 4.3 that the law of (Tz, (R(y))y∈L∩Tz ) knowing Fn is GKz,z. Recalling Definition 2.7
and Remark 2.6, we immediately deduce that Rn(z) = m(Kz, z) and that

∆z
n(z) = E[(Rz

n+1(z)−Rn(z))2|Fn] = s(Kz, z).

This proves (ii). To prove (iii), we fix x ∈ Brz \ {r} and we set v = f(x). By Lemma 4.3, the fam-
ily ((Ty, (R(u))u∈L∩Ty ), y ∈ Cv) is independent conditionally on Fn. Furthermore, G, which only concerns
(Tx, (R(u))u∈L∩Tx) is independent of the family ((Ty, (R(u))u∈L∩Ty ), y ∈ Hx). Finally, we recall that for all
y ∈ Cv, R(y) is σ(Ty, (R(u))u∈L∩Ty )-measurable.

If t(v) = 0,

Rz
n+1(v) = Pr(R(v) = 1|Fn ∨ G) = Pr(min{R(y) : y ∈ Cv} = 1|Fn ∨ G)

whence, by conditional independence, Rz
n+1(v) =

∏
y∈Cv Pr(R(y) = 1|Fn ∨ G) and thus

Rz
n+1(v) =

( ∏
y∈Hx

Pr(R(y) = 1|Fn)
)

Pr(R(x) = 1|Fn ∨ G) =
( ∏

y∈Hx

Rn(y)
)
Rz

n+1(x),

whence Rz
n+1(v) = Un(x)Rz

n+1(x). Since now Rn(v) =
∏

y∈Cv Rn(y) = Un(x)Rn(x) by Proposition 2.8, we con-

clude that (Rn+1(v)−Rn(v))2 = U2
n(x)(Rz

n+1(x)−Rn(x))2, whence, taking expectations conditionally on Fn,
∆z

n(v) = U2
n(x)∆z

n(x).
If next t(v) = 1,

Rz
n+1(v) = Pr(R(v) = 1|Fn ∨ G) = Pr(max{R(y) : y ∈ Cv} = 1

∣∣∣Fn ∨ G),

so that Rz
n+1(v) = 1−

∏
y∈Cv Pr(R(y) = 0|Fn ∨ G). We conclude that

Rz
n+1(v) =1−

( ∏
y∈Hx

Pr(R(y) = 0|Fn)
)

Pr(R(x) = 0|Fn ∨ G)

=1−
( ∏

y∈Hx

(1−Rn(y))
)

(1−Rz
n+1(x)),

so that Rz
n+1(v) = 1−Un(x)(1−Rz

n+1(x)). Since finally Rn(v) = 1−
∏

y∈Cv (1−Rn(y)) = 1−Un(x)(1−Rn(x))

by Proposition 2.8, (Rz
n+1(v)−Rn(v))2 = U2

n(x)(Rz
n+1(x)−Rn(x))2, whence, taking expectations conditionally

on Fn, ∆z
n(v) = U2

n(x)∆z
n(x).

We now have all the weapons to give the

Proof of Theorem 2.9. Recall that we work under Setting 2.9 and that we adopt Notation 2.1 in which Un, Zn

and Fn+1
z are defined. For x ∈ Bxn

∪Dxn
, we set Ūn(x) =

∏
Brx\{r} Un(y), with the convention that Ūn(r) = 1.

Step 1. In view of the explicit formula for ∆z
n(r) checked in Proposition 5.1-(iv), the natural way to find

z∗ maximizing ∆z
n(r) is to start from r and to go down in Bxn

∪ Dxn
following the maximum values of

(Nn(x))x∈Bxn∪Dxn
defined as follows. Set Nn(x) = 0 for x ∈ xn, set Nn(x) = (Ūn(x))2s(Kx, x) for x ∈ Dxn

and put Nn(x) = max{Nn(y) : y ∈ Cx} for x ∈ Bxn
\ xn.

We claim that Nn(x) = (Ūn(x))2Zn(x) for all x ∈ Bxn ∪ Dxn .
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Indeed, set Ñn(x) = (Ūn(x))2Zn(x) and recall Notation 2.1-(ii). We obviously have Ñn(x) = Nn(x) for
x ∈ xn (because then Zn(x) = 0) and for x ∈ Dxn

(because then Zn(x) = s(Kx, x)). And for x ∈ Bxn
\ xn,

we have Ñn(x) = (Ūn(x))2 max{(Un(y))2Zn(y) : y ∈ Cx} = max{Ñn(y) : y ∈ Cx}, because for y ∈ Cx, we have
Ūn(x)Un(y) = Ūn(y). The claim follows by (backward) induction.

Step 2. We define z∗ ∈ Dxn
∪ xn as follows. Put y0 = r. Find y1 = argmax{Nn(y) : y ∈ Cy0

}. If y1 ∈
Dxn

∪ xn, set z∗ = y1. Else, put y2 = argmax{Nn(y) : y ∈ Cy1
}. If y2 ∈ Dxn

∪ xn, set z∗ = y2. Else, put
y3 = argmax{Nn(y) : y ∈ Cy2

}, etc.
By construction, z∗ = argmax{Nn(z) : z ∈ Dxn ∪ xn}. Also, Nn(x) = Nn(r) for all x ∈ Brz∗ .

Step 3. We recall that z∗ ∈ Dxn ∪ xn was defined, similarly, as follows: put y0 = r and find y1 =
argmax{U2

n(y)Zn(y) : y ∈ Cy0
}. If y1 ∈ Dxn

∪ xn, set z∗ = y1. Else, put y2 = argmax{U2
n(y)Zn(y) : y ∈ Cy1

}. If
y2 ∈ Dxn

∪ xn, set z∗ = y2. Else, put y3 = argmax{U2
n(y)Zn(y) : y ∈ Cy2

}, etc.

Step 4. We now prove that if Nn(r) > 0, then z∗ = z∗.
First observe that for any x ∈ Bxn \ xn such that Ūn(x) > 0,

argmax{(Un(y))2Zn(y) : y ∈ Cx} = argmax{(Ūn(x))2(Un(y))2Zn(y) : y ∈ Cx} (5.1)

= argmax{(Ūn(y))2Zn(y) : y ∈ Cx}
= argmax{Nn(y) : y ∈ Cx}.

Furthermore, we have Nn(x) = Nn(r) for all x ∈ Brz∗ . Hence if Nn(r) > 0, then Ūn(x) > 0 for all x ∈ Brz∗

(recall that Nn(x) = (Ūn(x))2Zn(x)). Consequently, (5.1) holds true during the whole computation of z∗, so
that z∗ = z∗.

Step 5. By Steps 2 and 4, z∗ = z∗ = argmax{Nn(z) : z ∈ Dxn ∪ xn} on {Nn(r) > 0}. And we know from
Proposition 2.13 and Lemma 2.14 that on {Rn(r) /∈ {0, 1}}, z∗ ∈ Dxn . We also know that Rn(r) /∈ {0, 1}
implies that Zn(r) > 0 (see Step 2 of the proof of Prop. 2.13), whence Nn(r) = Zn(r) > 0 (recall Step 1
and that Ūn(r) = 1). Thus on {Rn(r) /∈ {0, 1}}, we have z∗ ∈ Dxn

and z∗ = argmax{Nn(z) : z ∈ Dxn
} =

argmax{(Ūn(z))2s(Kz, z) : z ∈ Dxn
} by definition of Nn, see Step 1. By Proposition 5.1-(iv), we conclude that

on {Rn(r) /∈ {0, 1}}

z∗ = argmax{E[(Rz
n+1(r)−Rn(r))2|Fn] : z ∈ Dxn},

which equals argmin{E[(Rz
n+1(r) − R(r))2|Fn] : z ∈ Dxn} by Proposition 5.1-(i). We have verified that on

{Rn(r) /∈ {0, 1}}, z∗ ∈ Dxn and z∗ = argmin{E[(Rz
n+1(r)−R(r))2|Fn] : z ∈ Dxn}, which was our goal.

Remark 5.2. As seen in the proof, the natural way to find z∗ would be to start from r and to go down
in the tree following the highest values of Nn. Recalling the discussion of Section 2.12, this would lead to
an algorithm with cost of order Kdn2: since (generally) Rn+1(x) 6= Rn(x) for x ∈ Brxn+1

, this (generally)
modifies the value of Ūn(x) for all x ∈ Bxn \ Brxn+1 (actually, except for x ∈ Bxn ∩ Brxn+1) and thus the
values of Nn(x) for all x on the whole explored tree Bxn ∪ Dxn . The observation (5.1), which asserts that
argmax{Nn(y) : y ∈ Cx} = argmax{(Un(y))2Zn(y) : y ∈ Cx} is thus crucial, as well as the fact that Un and Zn

enjoy a quick update property.

6. Computation of the parameters for a few specific models

Here we present a few models for the tree T and the outcomes (R(x))x∈L where our assumptions are met
and where we can compute, at least numerically, the functions m and s introduced in Definition 2.7. Recall that
these functions are necessary to implement Algorithm 2.11.
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6.1. Inhomogeneous Galton–Watson trees

We assume that T is the realization of an inhomogeneous Galton–Watson tree with reproduction laws
µ0, . . . , µK : the number of children of the root r follows the law µ0 ∈ P(N), the number of children of these
children are independent and µ1-distributed, etc. We assume that µK = δ0, so that any individual of generation
K is a leave and thus K is the maximal depth of T .

We also consider a family q0, . . . , qK of numbers in [0, 1]. Conditionally on T , we assume that the family
(R(x))x∈L is independent and that R(x) ∼ Bernoulli(q|x|) for all x ∈ L.

Example 6.1. With such a model, Assumption 2.5 is fulfilled, and for any S ∈ Sf and x ∈ LS such that
Pr(AS) > 0, we have m(S, x) = m(|x|) and s(S, x) = s(|x|), where

(i) m is defined by backward induction by m(K) = qK and, for k = 0, . . . ,K − 1,

m(k) = µk(0)qk +
∑
`≥1

µk(`)
(
1{k is odd}(m(k + 1))` + 1{k is even}(1− [1−m(k + 1)]`)

)
,

(ii) s is defined by backward induction by s(K) = qK(1− qK) and, for k = 0, . . . ,K − 1,

s(k) =µk(0)[qk(1−m(k))2 + (1− qk)(m(k))2]

+ 1{k is odd}
∑
`≥1

µk(`)
[
(m(k + 1))2`−2s(k + 1) +

(
(m(k + 1))` −m(k)

)2]
+ 1{k is even}

∑
`≥1

µk(`)
[
(1−m(k + 1))2`−2s(k + 1) +

(
(1−m(k + 1))` − (1−m(k))

)2]
.

These quantities can be computed once for all if one knows the parameters µ0, . . . , µK and q0, . . . , qK of
the model. If unknown, as is generally the case, these parameters can be evaluated numerically quite precisely,
handling an important number of uniformly random matches. From these evaluations, we can derive some
approximations of m and s. However, the main problem is of course that in general, assuming that the true
game is the realization of such a model is not very realistic.

Proof. First, Assumption 2.5 is satisfied, thanks to the classical branching property of Galton–Watson trees.
Indeed, consider S ∈ Sf and x ∈ LS such that Pr(AS) > 0. Conditionally on AS , we can write T = S∪

⋃
x∈LS

Tx
and the family ((Tx, (R(y))y∈L∩Tx , x ∈ LS) is independent by construction. Furthermore, for any x ∈ LS , the
law GS,x of (Tx, (R(y))y∈L∩Tx knowing AS depends only on the depth |x|.

Consequently, there are (m(k))k=0,...,K and (s(k))k=0,...,K such that for S ∈ Sf and x ∈ LS with Pr(AS) > 0,
m(S, x) = m(|x|) and s(S, x) = s(|x|).

If |x| = K, then x is necessarily a leave, so that Pr(x ∈ L|AS) = 1, whence, by Lemma 4.1, m(K) = m(S, x) =
Pr(x ∈ L, R(x) = 1|AS) = qK and

s(K) = s(S, x) = Pr(x ∈ L, R(x) = 1|AS)(1−m(S, x))2 + Pr(x ∈ L, R(x) = 0|AS)(m(S, x))2,

which equals qK(1− qK)2 + (1− qK)q2K = qK(1− qK) as desired.
Finally, the proof can be completed by using Lemma 4.1 and that if |x| = k ∈ {0, . . . ,K − 1} and if for

example t(x) = 0 (i.e. k is odd), for any ` ≥ 1,

• Pr(x ∈ L, R(x) = 1|AS) = µk(0)qk and Pr(x ∈ L, R(x) = 0|AS) = µk(0)(1− qk),
•
∑

y⊂Cx,|y|=` Pr(Cx = y|AS) = µk(`),

• Θ(S, x,y) and Γ (S, x,y, y) depend only on k and on ` = |y| and (since t(x) = 0), Θ(S, x,y) = [m(k+ 1)]`

and Γ (S, x,y, y) = s(k + 1)[m(k + 1)]2`−2 + [(m(k + 1))` −m(k)]2.
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Remark 6.2. In Pearl’s model [18], T is the deterministic regular tree with degree d ≥ 2 and depth K ≥ 1 and
the family (R(x))x∈L is i.i.d. Bernoulli(p)-distributed. This is a particular case of Example 6.1 with µ0 = · · · =
µK−1 = δd and µK = δ0 and qK = p (the values of (qk)k=0,...,K−1 being irrelevant). One thus finds m(K) = p,
s(K) = p(1− p) and, for k = 0, . . . ,K − 1,

m(k) =1{k is odd}(m(k + 1))d + 1{k is even}(1− [1−m(k + 1)]d),

s(k) =1{k is odd}(m(k + 1))2d−2s(k + 1) + 1{k is even}(1−m(k + 1))2d−2s(k + 1).

6.2. Inhomogeneous Galton–Watson trees of order two

Here we mention that we can also deal with random trees that enjoy some independence properties without
being Galton–Watson trees. For example, the following model of order 2 allows one to build a broad class
of random trees with non-increasing degree (along each branch), which might be useful for real games. It is
possible to treat some models of higher order, but the functions m and s then become really tedious to compute
theoretically and to approximate in practice.

We consider a family of probability measures on N: µ0 and µk,d for k = 1, . . . ,K and d ≥ 1. We assume that
µK,d = δ0 for all d ≥ 1 and K will represent the maximum depth of the tree.

We build the random tree T as follows: the root has Dr ∼ µ0 children. Conditionally on Dr, all the children x
of the root produce, independently, a number Dx ∼ µ1,Dr of children. Once everything is built up to generation
k ∈ {0, . . . ,K − 1}, all the individuals x with |x| = k produce, independently (conditionally on what is already
built), a number Dx ∼ µk,Df(x)

of children.
We also consider a family q0, . . . , qK of numbers in [0, 1]. Conditionally on T , we assume that the family

(R(x))x∈L is independent and that R(x) ∼ Bernoulli(q|x|) for all x ∈ L.

Example 6.3. With such a model, Assumption 2.5 is fulfilled, and for any S ∈ Sf (with {r} ( S) such that
Pr(AS) > 0 and any x ∈ LS , we have we have m(S, x) = m(|x|, |CS

f(x)|) and s(S, x) = s(|x|, |CS
f(x)|), where m

and s can be computed by backward induction as follows:

(i) m(K, d) = qK for all d ≥ 1 and, for k = 1, . . . ,K − 1 and d ≥ 1,

m(k, d) = µk,d(0)qk +
∑
`≥1

µk,d(`)
[
1{k is odd}(m(k + 1, `))` + 1{k is even}(1− [1−m(k + 1, `)]`)

]
.

(ii) s(K, d) = qK(1− qK) for all d ≥ 1 and, for k = 1, . . . ,K − 1 and d ≥ 1,

s(k, d) = µk,d(0)[qk(1−m(k, d))2 + (1− qk)(m(k, d))2]

+ 1{k is odd}
∑
`≥1

µk,d(`)
[
(m(k + 1, `))2`−2s(k + 1, `) +

(
(m(k + 1, `))` −m(k, d)

)2]
+ 1{k is even}

∑
`≥1

µk,d(`)
[
(1−m(k + 1, `))2`−2s(k + 1, `) +

(
(1−m(k + 1, `))` − (1−m(k, d))

)2]
.

We could easily express m({r}, r) and s({r}, r), but these values are useless as far as Algorithm 2.11 is
concerned.

Proof. First, Assumption 2.5 is satisfied. Indeed, consider S ∈ Sf and x ∈ LS such that Pr(AS) > 0. Condi-
tionally on AS , we can write T = S ∪

⋃
x∈LS

Tx and the family ((Tx, (R(y))y∈L∩Tx , x ∈ LS) is independent by
construction. Furthermore, for any x ∈ LS , the law GS,x of (Tx, (R(y))y∈L∩Tx knowing AS depends only on the
depth |x| and of |CS

f(x)| (except if S = {r} and x = r).
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Consequently, there are (m(k, d))k=1,...,K, d≥1 and (s(k, d))k=1,...,K, d≥1 such that for S ∈ Sf and x ∈ LS with
|CS

f(x)| = d, Pr(AS) > 0, m(S, x) = m(|x|, d) and s(S, x) = s(|x|, d).

If |x| = K, then x is necessarily a leave, so that Pr(x ∈ L|AS) = 1, whence, by Lemma 4.1, m(K, d) =
m(S, x) = Pr(x ∈ L, R(x) = 1|AS) = qK and

s(K, d) = s(S, x) = Pr(x ∈ L, R(x) = 1|AS)(1−m(S, x))2 + Pr(x ∈ L, R(x) = 0|AS)(m(S, x))2,

which equals qK(1− qK)2 + (1− qK)q2K = qK(1− qK) as desired.
Finally, the proof can be completed by using Lemma 4.1 and that if |x| = k ∈ {0, . . . ,K−1} (and |CS

f(x)| = d)

and if for example t(x) = 0 (i.e. k is odd), for any ` ≥ 1,

• Pr(x ∈ L, R(x) = 1|AS) = µk,d(0)qk and Pr(x ∈ L, R(x) = 0|AS) = µk,d(0)(1− qk),
•
∑

y⊂Cx,|y|=` Pr(Cx = y|AS) = µk,d(`),

• Θ(S, x,y) and Γ (S, x,y, y) depend only on k, d and ` = |y| and, if e.g. t(x) = 0 (i.e. k is odd), Θ(S, x,y) =
[m(k + 1, `)]` and Γ (S, x,y, y) = s(k + 1, `)[m(k + 1, `)]2`−2 + [(m(k + 1, `))` −m(k, d)]2.

The last point uses that if Cx = y with |y| = `, then |Cf(y)| = |Cx| = ` for all y ∈ y.

6.3. Symmetric minimax values

Here we discuss the formulas introduced in Section 2.14.
We fix some value a ∈ (0, 1). For S ∈ Sf , we build the family (ma(S, x))x∈S by induction, starting from the

root, setting ma(S, r) = a and, for all x ∈ S \ {r},

ma(S, x) = 1{t(f(x))=0}[ma(S, f(x))]1/|C
S
f(x)| + 1{t(f(x))=1}(1− [1−ma(S, f(x))]1/|C

S
f(x)|). (6.1)

Observe that ma(S, x) actually depends only on KS
x , i.e. ma(S, x) = ma(KS

x , x)

Example 6.4. Consider a possibly random tree T ∈ Sf enjoying the property that for any S ∈ Sf with leaves
LS , the family (Tx)x∈LS

is independent conditionally on AS = {S ⊂ T ,DLS
= ∅} as soon as Pr(AS) > 0. Fix a ∈

(0, 1) and assume that conditionally on T , the family (R(y))y∈L is independent and R(y) ∼ Bernoulli(ma(T , y))
for all y ∈ L. Then Assumption 2.5 is fulfilled, and for any S ∈ Sf such that Pr(AS) > 0 and any x ∈ LS , we
have m(S, x) = ma(S, x). We are generally not able to compute s(S, x).

Observe that this is a qualitative symmetry assumption, saying that knowing T , for any v ∈ T \L, the family
of the minimax values (R(x), x ∈ Cv) is i.i.d. Once this is assumed, the only remaining parameter is the mean
minimax rating of the root (which we set to a).

Once the value a = ma(T , r) is chosen (even if not knowing T ), it is easy to make the algorithm compute the
necessary values of ma, as explained in Section 2.14: each time a new node x of T is created by the algorithm,
we can compute ma(Kx, x) from ma(Kf(x), f(x)) and |Cf(x)|.

Proof. Assumption 2.5 is satisfied because (a) the random tree T is supposed to satisfy the required independence
property and (b) conditionally on T , for any x ∈ L, ma(T , x) depends only on Kx.

It remains to verify that m(S, x) = ma(S, x) for all S ∈ Sf of which x is a leave.
We first show by backward induction that Pr(R(x) = 1|T ) = ma(T , x) for all x ∈ T . First, this is obvious if

x ∈ L by construction. Next, if this is true for all the children (in T ) of x ∈ T \ L with e.g. t(x) = 1, then we
have Pr(R(x) = 1|T ) = 1 −

∏
y∈Cx Pr(R(y) = 0|T ) = 1 −

∏
y∈Cx(1 −ma(T , y)). We first used that the family

(R(y))y∈Cx is independent conditionally on T and then the induction assumption. Using finally (6.1) (recall that
t(x) = 1 and that f(y) = x for all y ∈ Cx), we find Pr(R(x) = 1|T ) = 1−

∏
y∈Cx(1− [1− (1−ma(T , x))1/|Cx|]) =

ma(T , x).
Fix now S ∈ Sf such that Pr(AS) > 0, where AS = {S ⊂ T ,DLS

= ∅} and x ∈ LS . Since AS ∈ σ(T ),
we deduce that m(S, x) = Pr(R(x) = 1|AS) = E[Pr(R(x) = 1|T )|AS ] = E[ma(T , x)|AS ]. But we know that
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ma(T , x) = ma(Kx, x). Since Kx = KS
x on AS , we conclude that m(S, x) = ma(KS

x , x) = ma(S, x) as desired.

Let us mention that Pearl’s model, which we already interpreted as a particular case of Example 6.1, can
also be seen as a particular case of Example 6.4, where we can furthermore compute s.

Remark 6.5. Consider again Pearl’s model [18]: T is the deterministic regular tree with degree d ≥ 2 and
depth K ≥ 1 and the family (R(x))x∈L is i.i.d. Bernoulli(p)-distributed. Then we already know that for all
S ∈ Sf and x ∈ LS such that Pr(AS) > 0, we have m(S, x) = m(|x|) and s(S, x) = s(|x|), with m and s as in
Remark 6.2. One then also has, for all S ∈ Sf and x ∈ LS such that Pr(AS) > 0, if x 6= r, denoting by v = f(x)
and Sv = S \ CS

v ,

m(S, x) =1{t(v)=0}[m(Sv, v)]1/|C
S
v | + 1{t(v)=1}(1− [1−m(Sv, v)]1/|C

S
v |),

s(S, x) =
(
1{t(v)=0}m(Sv, v) + 1{t(v)=1}[1−m(Sv, v)])

)2(|CS
v |−1)

s(Sv, v).

Setting a = m(0), which can be computed from p,K, d, we thus have m(S, x) = ma(S, x) as defined in (6.1), and
we can compute s(S, x). Note that it is not necessary to determine precisely s({r}, r): we can set s({r}, r) = 1
(or any other positive constant) by Remark 2.12.

Indeed, the above formulas are nothing but a complicated version of the ones in Remark 6.2, since we have
m(S, x) = m(|x|), s(S, x) = s(|x|), |CS

v | = d, m(Sv, v) = m(|v|) and s(Sv, v) = s(|v|).
There are other cases where we can characterize s, which should thus be numerically computable.

Example 6.6. Assume that T is a homogeneous Galton–Watson tree with reproduction law µ such that∑
`≥1 `µ(`) ≤ 1 and µ(0) > 0, so that T is a.s. finite. Fix a ∈ (0, 1) and assume that conditionally on T ,

the family (R(y))y∈L is independent and that R(y) ∼ Bernoulli(ma(T , y)) for all y ∈ L. Then for all S ∈ Sf

such that Pr(AS) > 0 and all x ∈ LS , we have m(S, x) = ma(S, x) and s(S, x) = s(1 −ma(S, x))1{t(x)=0} +
s(ma(S, x))1{t(x)=1}, where s is the unique function from [0, 1] into [0, 1] such that for all α ∈ [0, 1],

s(α) = µ(0)α(1− α) +
∑
`≥1

µ(`)(1− α)2(`−1)/`s((1− α)1/`). (6.2)

Proof. We already know from Example 6.4 that Assumption 2.5 is satisfied and that m(S, x) = ma(S, x). Next,
(6.2) has a unique solution because the map F : E 7→ E, where E is the set of all functions from [0, 1] into [0, 1],
defined by

F (s)(α) = µ(0)α(1− α) +
∑
`≥1

µ(`)(1− α)2(`−1)/`s((1− α)1/`),

is a contraction. Indeed, ||F (s1)− F (s2)||∞ ≤ κ||s1 − s2||∞ with κ =
∑

`≥1 µ(`) < 1.
Let us denote by s(a) = s({r}, r), which clearly depends only on a (and µ).
For any S ∈ Sf such that Pr(AS) > 0 and x ∈ LS , we have s(S, x) = s(ma(S, x)) if t(x) = 1 and s(S, x) =

s(1 −ma(S, x)) if t(x) = 0. Indeed, the law of (Tx, (R(u))u∈L∩Tx) conditionally on AS is the same as that of
(T , (R(u))u∈L) (re-rooted at x), replacing a by ma(S, x): Tx is a Galton–Watson tree with reproduction law µ
and, knowing AS and Tx, one easily checks that ma(T , y) = mma(S,x)(Tx, y) for all y ∈ L ∩ Tx. Hence we have
s(S, x) = s(ma(S, x)) if t(x) = 1. If now t(x) = 0, we see that s(S, x) = s(1−ma(S, x)) by exchanging the roles
of the two players.

It remains to verify that s satisfies (6.2). To this end, it suffices to apply the formula of Lemma 4.1 concerning
s with S = {r} (whence AS = Ω) and x = r (with t(r) = 1) and to observe that

• s({r}, r) = s(a) and m({r}, r) = a,
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• Pr(r ∈ L, R(r) = 1) = µ(0)a and Pr(r ∈ L, R(r) = 0) = µ(0)(1− a),
•
∑

y⊂Cr,|y|=` Pr(Cr = y) = µ(`),

• for any y ⊂ Cr with |y| = ` ≥ 1, conditionally on Cr = y, for all y ∈ y, we have ma({r} ∪ y, y) =
1 − (1 − a)1/` and thus, since t(y) = 1, s({r} ∪ y, y) = s((1 − a)1/`), whence Γ ({r}, r,y, y) = s((1 −
a)1/`)(1− a)2(`−1)/` + [(1− a)`/` − (1− a)]2 = (1− a)2(`−1)/`s((1− a)1/`).

It does not seem easy to solve (6.2). However, here is one possibility.

Remark 6.7. Assume that T is a homogeneous Galton–Watson tree with reproduction law µ = (1 − p)δ0 +
pδd, with d ≥ 2 and p ∈ (0, 1/d]. Consider the unique solution a0 ∈ (0, 1) to a0 = (1 − a0)1/d. Assume that
conditionally on T , the family (R(y))y∈L is independent and that R(y) ∼ Bernoulli(ma0

(T , y)) for all y ∈ L.
Then for all S ∈ Sf such that Pr(AS) > 0 and all x ∈ LS , we have m(S, x) = ma0(S, x) and s(S, x) = s(a0) =
(1− p)ad+1

0 /[1− pa2d−20 ] is constant.

Indeed, in such a case (6.2) rewrites as

s(α) = (1− p)α(1− α) + p(1− α)2(d−1)/ds((1− α)1/d),

whence s(a0) = (1− p)ad+1
0 /[1− pa2d−20 ]. Also, one easily checks that for any S ∈ Sf such that Pr(AS) > 0 (so

that S is d-regular) and any x ∈ LS , we have ma0
(S, x) = a0 if t(x) = 1 and ma0

(S, x) = 1 − a0 if t(x) = 0.
This of course uses (6.1) and that 1− (1− a0)1/d = 1− a0 and (1− a0)1/d = a0. Consequently, s(S, x) always
equals s(a0): s(S, x) = s(ma0(S, x)) = s(a0) if t(x) = 1 and s(S, x) = s(1−ma0(S, x)) = s(a0) if t(x) = 0.

7. Global optimality fails

Proof of Remark 2.15. We assume here that T is the binary tree with depth 3. We thus have the eight leaves
111, 112, 121, 122, 211, 212, 221, 222 (recall Sect. 2.1). We also assume that the family (R(x))x∈L is i.i.d. with
common law Bernoulli(1/2).

Observe that T can be seen as an inhomogeneous Galton–Watson tree with reproduction laws µ0 = µ1 =
µ2 = δ2 and µ3 = δ0. Applying Example 6.1 (with q3 = 1/2, the values of q0, q1, q2 being irrelevant), we can
compute the functions m and s: for any S ∈ Sf such that Pr(AS) > 0 and x ∈ LS , we have m(S, x) = m(|x|)
and s(S, x) = s(|x|), where

m(1) =
9

16
, m(2) =

3

4
, m(3) =

1

2
, s(1) =

9

256
, s(2) =

1

16
, s(3) =

1

4
.

The value of m(0) and s(0) are not useful to the algorithm. Let us however notice that E[R(r)] = m(0) = 207/256.
By symmetry, we can replace the uniformly random matches (starting from some z) used in any admissible

algorithm, see Definition 2.3, by the visit of any deterministic leave (under z), without changing (at all) the per-
formance of the algorithm. With this slight modification, some tedious computations show that Algorithm 2.11,
using the above function m and s, leads to the following strategy (and results) for the three first steps.

Visit the leave x1 = 111.
If R(x1) = 1 (whence R1(r) = 228/256), then

{ visit the leave x2 = 121.
If R(x2) = 1 (whence R2(r) = 1), then

{ stop here (or visit any other leave). We have R3(r) = 1. }
If R(x2) = 0 (whence R2(r) = 200/256), then

{ visit the leave x3 = 122. We have R3(r) = 1 if R(x3) = 1 and R3(r) = 144/256
if R(x3) = 0. } }

If R(x1) = 0 (whence R1(r) = 186/256), then

{ visit the leave x2 = 112.



ON MONTE-CARLO TREE SEARCH FOR DETERMINISTIC GAMES 205

If R(x2) = 1 (whence R2(r) = 228/256), then

{ visit the leave 121. We have R3(r) = 1 if R(x3) = 1 and R3(r) = 200/256
if R(x3) = 0. }

If R(x2) = 0 (whence R2(r) = 144/256), then

{ visit the leave x3 = 211. We have R3(r) = 192/256 if R(x3) = 1
and R3(r) = 96/256 if R(x3) = 0. } }

Noting that E[(Rn(r)−R(r))2] = E[(R(r))2]−E[(Rn(r))2] = 207/256−E[(Rn(r))2] because E[R(r)Rn(r)] =
E[(Rn(r))2] (since Rn(r) = E[R(r)|Fn]) and since E[(R(r))2] = E[R(r)] = m(0) = 207/256, we conclude that

E[(R1(r)−R(r))2] =
207

256
− 1

2

[(
228

256

)2

+

(
186

256

)2
]

=
4851

32768
,

E[(R2(r)−R(r))2] =
207

256
− 1

4

[
1 +

(
200

256

)2

+

(
228

256

)2

+

(
144

256

)2
]

=
2107

16384
,

E[(R3(r)−R(r))2] =
207

256
− 1

8

[
1 + 1 + 1 +

(
144

256

)2

+ 1 +

(
200

256

)2

+

(
192

256

)2

+

(
96

256

)2
]

=
859

8192
.

The following strategy, that we found with the help of a computer, is less efficient in two steps but more
efficient in three steps. We use the notation R̃n(r) as in the statement.

Visit the leave x̃1 = 111.
If R(x̃1) = 1 (whence R̃1(r) = 228/256), then

{ visit the leave x̃2 = 121.
If R(x̃2) = 1 (whence R̃2(r) = 1), then

{ stop here (or visit any other leave). We have R̃3(r) = 1. }
If R(x̃2) = 0 (whence R̃2(r) = 200/256), then

{ visit the leave x̃3 = 122. We have R̃3(r) = 1 if R(x̃3) = 1 and R̃3(r) = 144/256
if R(x̃3) = 0. } }

If R(x̃1) = 0 (whence R̃1(r) = 186/256), then

{ visit the leave x̃2 = 211.
If R(x̃2) = 1 (whence R̃2(r) = 216/256), then

{ visit the leave 221. We have R̃3(r) = 1 if R(x̃3) = 1 and R̃3(r) = 176/256
if R(x̃3) = 0. }

If R̃(x̃2) = 0 (whence R̃2(r) = 156/256), then

{ visit the leave x̃3 = 112. We have R̃3(r) = 216/256 if R(x̃3) = 1
and R̃3(r) = 96/256 if R(x̃3) = 0. } }

We conclude, using the same argument as previously, that

E[(R̃1(r)−R(r))2] =
207

256
− 1

2

[(
228

256

)2

+

(
186

256

)2
]

=
4851

32768
,

E[(R̃2(r)−R(r))2] =
207

256
− 1

4

[
1 +

(
200

256

)2

+

(
216

256

)2

+

(
156

256

)2
]

=
2215

16384
,

E[(R̃3(r)−R(r))2] =
207

256
− 1

8

[
1 + 1 + 1 +

(
144

256

)2

+ 1 +

(
176

256

)2

+

(
216

256

)2

+

(
96

256

)2
]

=
847

8192
.

The proof is complete.
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8. Numerical results

8.1. Numerical problems

Algorithm 2.11 is subjected to numerical problems due to the fact that it proceeds to a high number of
multiplications of reals in [0, 1]. For example, the algorithm continuously computes products of the form

∏d
k=1 rk

and 1−
∏d

k=1(1− rk), with r1, . . . , rd ∈ [0, 1]. If coded naively, it immediately finds 0 or 1 and does not work at
all. We overcame such problems with the change of variables φ(r) = log[r/(1− r)]. Everywhere, we used φ(R),
φ(U) and φ(Z) instead of R, U and Z (we mean, concerning the values Rn(x), Un(x) and the Zn(x)). Actually, for
large games, some numerical problems persist: at some steps, we have numerically (Rn+1(r), Un+1(r), Zn+1(r)) =
(Rn(r), Un(r), Zn(r)) (even after the change of variables), which should never be the case. However, the above
trick eliminates most of them. Instead of using φ, one could manipulate simultaneously log r and log(1 − r).
This would be more or less equivalent, the use of φ is just slightly more concise.

We used the following expressions. We carefully separated different cases, because e.g. for u very large (say,
u ≥ 750), the computer answers log(1 + exp(u)) = +∞ but u+ log(1 + exp(−u)) = u, these two quantities being
theoretically equal. Consider r, s ∈ [0, 1] and u = φ(r), v = φ(s). We e.g. assume that 0 ≤ s ≤ r ≤ 1 (whence
−∞ ≤ v ≤ u ≤ +∞) and we naturally allow φ(0) = −∞, φ(1) = +∞, exp(−∞) = 0, etc. Observe that r+ s ≤ 1
if and only if u+ v ≤ 0.

(a) φ(1− r) = −φ(r),

(b) φ(rs) =


u+ v − log(1 + eu + ev) if u < 0,

+∞ if v = +∞,

v − log(1 + e−u + ev−u) if v < +∞ and u ≥ 0.

(c) φ(r + s) =


−∞ if u = −∞,
+∞ if v = −∞ and u = +∞,
u+ log(1 + ev−u + 2ev)− log(1− eu+v) if u > −∞ and u+ v ≤ 0.

(d) φ(s/r) =


+∞ if u = v,

v if v < u = +∞,
log(1 + eu)− u+ v − log(1− ev−u) if v < u < 0,

log(1 + e−u) + v − log(1− ev−u) if 0 ≤ u < +∞ and v < u.

(e) log r =

{
u− log(1 + eu) if u < 0,

− log(1 + e−u) if u ≥ 0.

We can compute φ(r− s) = φ(r(1− s/r)) from u, v using (a), (b) and (d). For r1, . . . , rd ∈ [0, 1], we can compute

φ(
∏d

1 rk) from the values of uk = φ(rk) recursively using (b), and we can get φ(1−
∏d

1(1−rk)) = −φ(
∏d

1(1−rk))
using furthermore (a). Etc.

8.2. The algorithms

We will make play some versions of our algorithm against the two versions of MCTS recalled in Appendix A
on a few real games (variations of Connect Four) and on Pearl’s model.

We call MCTS(a, b) Algorithm A.2 and MCTS′(a, b) Algorithm A.1 with the parameters a, b > 0.
We call GW (resp. GW2) Algorithm 2.11 with the functions m and s of Example 6.1 (resp. Example 6.3),

assuming that the game is the realization of an inhomogeneous Galton–Watson tree (resp. inhomogeneous
Galton–Watson tree of order 2). The functions m and s are computed as follows, for example in the case of
GW. We handle a large number (108) of uniformly random matches starting from the initial configuration of
the game, this allows us to estimate µ0, . . . , µK . The values q0, . . . , qK are trivial for Connect Four, since we
simply have qk = 1{k is odd}. We then use the formulas stated in Example 6.1. We obtain rather stable results.
Of course, this is done once for all for each game.
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We call Sym Algorithm 2.11 with the function m = ma defined by (6.1), with the choice a = 1/2, and with
s ≡ 1. Recall that a ∈ (0, 1) is the expected minimax rating of the root. This is the most simple and universal
algorithm, although not fully theoretically justified (see however Rem. (6.7) in Sect. 6.3).

We finally call SymP Algorithm 2.11 with the functions m and s defined in Remark 6.5, here again with
a = 1/2. This is the theoretical algorithm furnished by our study in the case of Pearl’s game (if a = 1/2) and
it is precisely the same as GW in this case, see Remarks 6.2 and 6.5.

Let us now give a few precisions.

(i) In all the experiments below, each algorithm keeps the information provided by its own simulations handled
to decide its previous moves. In practice, this at most doubles the quantity of information (when compared
to the case where we would delete everything at each new move), because most of the previous simulations
led to other positions.

(ii) Concerning Sym and SymP, we actually use a = 1/2 as expected minimax value of the true root of the
game, that is the true initial position. When in another configuration x, we use ma(T , x) (with a = 1/2,
here T is the tree representing the whole game) as expected minimax value of the current root x (i.e. the
current position of the game). Such a value is automatically computed when playing the game.

8.3. The numerical experiments

First, let us mention that we handled many trials using GW and GW2. They almost always worked less
well than Sym concerning Connect Four, so we decided not to present those results. Also, concerning Sym and
SymP, we tried other values for the expected minimax value a ∈ (0, 1) of the root without observing significantly
better results, so we always use a = 1/2. Similarly, we experimented other values for b ∈ R (see Sect. 2.14, Sym
corresponds to the case b = 0 and SymP to the case where b = 2), here again without clear success.

In each subsection below (except Sect. 8.11), which concerns one given game, we proceed as follows.
For each given amount of time per move, we first fit the parameters of MCTS. To this aim, we perform a

championship involving MCTS(a, b), for all a = k/2, b = `/2 with 1 ≤ k ≤ ` ≤ 10 (we thus have 55 players).
Each player competes 40 times against all the other ones (20 times as first player, 20 times as second one),
and we select the player with the highest number of victories. Observe that each player participates to 2160
matches. The resulting best player is rather unstable, but we believe this is due to the fact that the competition
is very tight among a few players. Hence even if we do not select the true best player, we clearly select a very
good one. Note that we impose a ≤ b because, after many trials allowing a > b, the best player was always of
this shape.

Of course, we do exactly the same thing to fit the parameters of MCTS′.
Then, we make our algorithm (Sym or SymP) compete against the best MCTS and the best MCTS′, 10000

times as first player and 10000 times as second one.
Also, we indicate the (rounded) mean number of iterations made by each algorithm at the first move. This

sometimes looks ridiculous: when e.g. playing a version of Connect Four with large degree with 1 millisecond
per move, this mean number of iterations is 8 for Sym and 11 for MCTS. However, after sufficiently many
moves, this mean number of iterations becomes much higher. In other words, the algorithms more or less play
at random at the beginning, but become more and more clever as the game progresses. So in some sense, the
algorithm that wins is the one becoming clever before the other.

Finally, let us explain how to read the tables below, which are all of the same shape. For example, the first
table, when playing a large Pearl game, is as follows.

t = 1 ms. MCTS(3.5,5): 498, MCTS′(2,3): 442, SymP: 163
SymP vs. MCTS(3.5,5) SymP vs. MCTS′(2,3)

5882/4118(0), 4340/5660(0) 4992/5008(0), 5221/4779(0)

Each player had 1 millisecond to decide each of its moves. The championships were won by MCTS(3.5,5) and
MCTS′(2,3). When playing its first move, MCTS(3.5,5) (resp. MCTS′(2,3), resp. SymP) proceeded in mean to
498 (resp. 442, resp. 163) iterations.
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When playing first, SymP won 5882 times and lose 4118 times against MCTS(3.5,5), and there has been 0
draw. When playing first, MCTS(3.5,5) won 4340 times and lose 5660 times against SymP, and there has been
0 draw.

When playing first, SymP won 4992 times and lose 5008 times against MCTS′(2,3), and there has been 0
draw. When playing first, MCTS′(2,3) won 5221 times and lose 4779 times against SymP, and there has been
0 draw.

Finally, the results in bold mean that our algorithm (Sym or SymP) is beaten.

8.4. Large Pearl game

We first consider Pearl’s game, that is the game of Example 6.2 with the regular tree with degree d = 2 and
depth K = 32, with i.i.d. Bernoulli(p) random variables on the leaves and with p such that E[R(r)] = 1/2 (p is
easily computed numerically using the formula of Remark 6.2 and that p = m(K) and 1/2 = m(0)).

Here and in the next subsection, to be as fair as possible, in each cell of the tables below, each match is
played in both senses on a given realization of the model, so that if the two opponents were playing perfectly,
one would find twice the same results in each cell.

t = 1 ms. MCTS(3.5,5): 498, MCTS′(2,3): 442, SymP: 163
SymP vs. MCTS(3.5,5) SymP vs. MCTS′(2,3)

5882/4118(0), 4340/5660(0) 4992/5008(0), 5221/4779(0)

t = 2 ms. MCTS(3.5,5): 717, MCTS′(3,4.5): 579, SymP: 238
SymP vs. MCTS(3.5,5) SymP vs. MCTS′(3,4.5)

5751/4249(0), 4267/5733(0) 4727/5273(0), 5372/4628(0)

t = 4 ms. MCTS(4,4.5): 1137, MCTS′(3.5,5): 848, SymP: 395
SymP vs. MCTS(4,4.5) SymP vs. MCTS′(3.5,5)

5921/4079(0), 4044/5956(0) 4676/5324(0), 5306/4694(0)

t = 8 ms. MCTS(3,3.5): 2210, MCTS′(3.5,5): 1561, SymP: 693
SymP vs. MCTS(3,3.5) SymP vs. MCTS′(3.5,5)

5926/4074(0), 4080/5920(0) 4641/6359(0), 5438/4562(0)

t = 16 ms. MCTS(4,5): 4229, MCTS′(4,4.5): 2893, SymP: 1307
SymP vs. MCTS(4,5) SymP vs. MCTS′(4,4.5)

5998/4002(0), 4012/5988(0) 5000/5000(0), 5112/4888(0)

t = 32 ms. MCTS(4,4.5): 8277, MCTS′(4.5,5): 5922, SymP: 2473
SymP vs. MCTS(4,4.5) SymP vs. MCTS′(4.5,5)

6154/3846(0), 3781/6219(0) 5059/4941(0), 4923/5077(0)

t = 64 ms. MCTS(4.5,4.5): 15983, MCTS′(3.5,4.5): 14399, SymP: 4766
SymP vs. MCTS(4.5,4.5) SymP vs. MCTS′(3.5,4.5)

6380/3620(0), 3628/6372(0) 5244/4756(0), 4800/5200(0)

We observe that SymP is better than MCTS but beats MCTS′ only when the amount of time per play is
high enough.

For this game, SymP performs around 4 times fewer iterations per unit of time than MCTS.

8.5. Small Pearl game

We next consider a much smaller Pearl game: as previously, d = 2 and p is chosen is such that E[R(r)] = 1/2,
but the depth of the tree is K = 16 (instead of K = 32).
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Here, and only here, due to the smallness of the game, we needed to modify the way we fit the parameters
of MCTS and MCTS′. Namely, we perform a championship involving MCTS(a, b), for all a = k/2, b = `/2 with
1 ≤ k ≤ ` ≤ 20 (we thus have 210 players). Each player competes 20 times against all the other ones (10 times
as first player, 10 times as second one), and we select the player with the highest number of victories. Each
player participates to 4180 matches.

Proceeding as in the previous subsection, we found the following results.

t = 1 ms. MCTS(5,8.5): 1100, MCTS′(5,7.5): 954, SymP: 301
SymP vs. MCTS(5,8.5) SymP vs. MCTS′(5,7.5)

5242/4758(0), 3966/6034(0) 4334/5666(0), 4868/5132(0)

t = 2 ms. MCTS(6,10): 1637, MCTS′(5.5,9.5): 1584, SymP: 444
SymP vs. MCTS(6,10) SymP vs. MCTS′(5.5,9.5)

5104/4896(0), 4027/5973(0) 4346/5654(0), 4899/5101(0)

t = 4 ms. MCTS(5.5,9): 2829, MCTS′(5.5,9): 2776, SymP: 725
SymP vs. MCTS(5.5,9) SymP vs. MCTS′(5.5,9)

5307/4693(0), 3953/6047(0) 4296/5704(0), 4797/5203(0)

t = 8 ms. MCTS(7,9.5): 4876, MCTS′(5.5,9): 5745, SymP: 1128
SymP vs. MCTS(7,9.5) SymP vs. MCTS′(5.5,9)

4968/5032(0), 3817/6183(0) 4434/5566(0), 4826/5174(0)

t = 16 ms. MCTS(6.5,7.5): 10303, MCTS′(4.5,6): 12729, SymP: 1692
SymP vs. MCTS(6.5,7.5) SymP vs. MCTS′(4.5,6)

5132/4868(0), 4519/5481(0) 4950/5050(0), 4943/5057(0)

t = 32 ms. MCTS(6.5,8.5): 25929, MCTS′(7.5,9): 27585, SymP: 1840
SymP vs. MCTS(6.8,8.5) SymP vs. MCTS′(7.5,9)

5034/4966(0), 5010/4990(0) 5083/4917(0), 5083/4917(0)

Here it seems that SymP almost always finds the winning strategy at the first move with 16 ms, this explains
why the number of iterations is so small (at 16 and 32 ms): SymP stops before 16 ms are elapsed. We thus
believe it always finds it with 32 ms.

At 32 ms, it seems that MCTS′ also always found the winning strategy among 5083 times it started the game
with a possible winning strategy. MCTS missed 24 times the winning strategy among 5034 times it started the
game with a possible winning strategy.

Observe that SymP is better than MCTS but, here again, beats MCTS′ only when the amount of time per
play is high enough.

Also, even if the game is theoretically fair (because E[R(r)] = 1/2), it seems easier, for all the algorithms,
to find the winning strategy when being the second player (this can be observed until 8 ms). This might be
explained by the fact that the second player is the one playing the last move.

Here also, SymP performs around 4 times fewer iterations per unit of time than MCTS.

8.6. Standard Connect Four

We now play Connect Four in its usual version: we have 7 columns, 6 lines, and the goal is to connect
(horizontally, vertically, or diagonally) 4 discs.
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t = 1 ms. MCTS(1.5,1.5): 53, MCTS′(1,1): 50, Sym: 33
Sym vs. MCTS(1.5,1.5) Sym vs. MCTS′(1,1)

4174/5809(17), 6806/3146(48) 4066/5904(30), 6983/2966(51)

t = 2 ms. MCTS(1,1): 82, MCTS′(2,2.5): 76, Sym: 48
Sym vs. MCTS(1,1) Sym vs. MCTS′(2,2.5)

3099/6873(28), 7558/2392(50) 3184/6799(17), 7632/2317(51)

t = 4 ms. MCTS(2,2): 137, MCTS′(1.5,1.5): 124, Sym: 81
Sym vs. MCTS(2,2) Sym vs. MCTS′(1.5,1.5)

2460/7527(13), 7989/1966(45) 2485/7500(15), 7908/2043(49)

t = 8 ms. MCTS(3,3.5): 254, MCTS′(3.5,4): 225, Sym: 146
Sym vs. MCTS(3,3.5) Sym vs. MCTS′(3.5,4)

1923/8074(3), 8163/1791(46) 2004/7991(5), 8211/1751(38)

t = 16 ms. MCTS(4,4.5): 491, MCTS′(3.5,4): 441, Sym: 280
Sym vs. MCTS(4,4.5) Sym vs. MCTS′(3.5,4)

1353/8644(3), 8341/1599(60) 1520/8477(3), 8312/1647(41)

We are largely beaten, and this is worse and worse as the given amount of time increases. Observe however
the high number of draws, which indicates that even if MCTS almost always wins at the end, the competition
is tight.

Let us mention that with 1024 ms per move, we found, for Sym vs. MCTS(10,10): 14/986(0), 925/74(1) and,
for Sym vs. MCTS′(10,10): 14/986(0), 924/74(2): we are destroyed.

Sym performs here around twice fewer iterations per unit of time than MCTS.

8.7. A version of Connect Four with small degree

We next consider the variation of Connect Four with 4 columns, 10 lines, and where the goal is to connect
(horizontally, vertically, or diagonally) 3 discs.

t = 1 ms. MCTS(4,5): 223, MCTS′(2,2.5): 257, Sym: 107
Sym vs. MCTS(4,5) Sym vs. MCTS′(2,2.5)

7591/2409(0), 8685/1315(0) 7082/2918(0), 8944/1056(0)

t = 2 ms. MCTS(1.5,2): 441, MCTS′(2.5,3): 432, Sym: 167
Sym vs. MCTS(1.5,2) Sym vs. MCTS′(2.5,3)

7941/2059(0), 8805/1195(0) 7585/2415(0), 9286/714(0)

t = 4 ms. MCTS(2,2): 722, MCTS′(3.5,4): 921, Sym: 294
Sym vs. MCTS(2,2) Sym vs. MCTS′(3.5,4)

8647/1353(0), 9181/819(0) 8445/1555(0), 9553/447(0)

t = 8 ms. MCTS(4.5,5): 2215, MCTS′(4.5,5): 2966, Sym: 530
Sym vs. MCTS(4.5,5) Sym vs. MCTS′(4.5,5)

9920/80(0), 9694/306(0) 9908/92(0), 9879/121(0)

t = 16 ms. MCTS(3.5,4): 7409, MCTS′(4,4): 6705, Sym: 982
Sym vs. MCTS(3.5,4) Sym vs. MCTS′(4,4)

10000/0(0), 9952/48(0) 10000/0(0), 9983/17(0)
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Here we observe that MCTS and MCTS′ win when having a lot time (for such a small game, 1 millisecond
is much), but when the amount of time is so high that we are close to finding the winning strategy at the first
move, Sym is better. This might be due to the fact that Sym automatically does some pruning.

Here Sym performs around 3 or 4 times fewer iterations per unit of time than MCTS. This is not the case
with 16 ms because it finds the right move, and thus stops, before the 16 ms are elapsed.

8.8. A first version of connect 4 with large degree

Here we consider a very simple version of Connect Four, with 15 columns, 15 lines, and where the goal is to
connect (horizontally, vertically, or diagonally) 3 discs. A human player immediately finds the winning strategy
when playing first. However, for a computer, the situation is not so easy, because there are many possibilities
(if not taking advantage of the symmetries of the game).

t = 1 ms. MCTS(2.5,4): 21, MCTS′(1.5,2.5): 20, Sym: 16
Sym vs. MCTS(2.5,4) Sym vs. MCTS′(1.5,2.5)

8396/1604(0), 5236/4764(0) 8453/1547(0), 5292/4708(0)

t = 2 ms. MCTS(2,3.5): 32, MCTS′(2,3.5): 31, Sym: 24
Sym vs. MCTS(2,3.5) Sym vs. MCTS′(2,3.5)

8368/1632(0), 5652/4348(0) 8355/1645(0), 5812/4188(0)

t = 4 ms. MCTS(1.5,2.5): 54, MCTS′(3,5): 52, Sym: 40
Sym vs. MCTS(1.5,2.5) Sym vs. MCTS′(3,5)

8792/1208(0), 5898/4102(0) 8749/1251(0), 5893/4107(0)

t = 8 ms. MCTS(2.5,4): 100, MCTS′(3,5): 96, Sym: 72
Sym vs. MCTS(2.5,4) Sym vs. MCTS′(3,5)

9207/793(0), 5894/4106(0) 9219/781(0), 6032/3968(0)

t = 16 ms. MCTS(1.5,2): 194, MCTS′(3.5,5): 182, Sym: 134
Sym vs. MCTS(1.5,2) Sym vs. MCTS′(3.5,5)

9388/612(0), 7048/2952(0) 9417/583(0), 7153/2847(0)

t = 32 ms. MCTS(3,3.5): 379, MCTS′(3,4): 368, Sym: 260
Sym vs. MCTS(3,3.5) Sym vs. MCTS′(3,4)

9656/344(0), 8430/1570(0) 9626/374(0), 8512/1488(0)

t = 64 ms. MCTS(4,5): 781, MCTS′(2,2.5): 785, Sym: 523
Sym vs. MCTS(4,5) Sym vs. MCTS′(2,2.5)

9851/149(0), 8953/1047(0) 9830/170(0), 8784/1216(0)

t = 128 ms. MCTS(2.5,3): 1735, MCTS′(2,2.5): 1704, Sym: 1032
Sym vs. MCTS(2.5,3) Sym vs. MCTS′(2,2.5)

9919/81(0), 9221/779(0) 9928/72(0), 9117/883(0)

Here we are really better than MCTS. We believe this is due to the fact that the degree of the game is very
large.

For this game, Sym performs around 2 times fewer iterations per unit of time than MCTS.

8.9. A second version of Connect Four with large degree

We consider here the version of Connect Four with 15 columns, 6 lines, and where the goal is to connect
(horizontally, vertically, or diagonally) 5 discs. Here the situation is intractable for a normal human player.
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t = 1 ms. MCTS(2.5,4): 11, MCTS′(3,5): 10, Sym: 8
Sym vs. MCTS(2.5,4) Sym vs. MCTS′(3,5)

6368/3631(1), 4892/5106(2) 6521/3477(2), 4892/5104(4)

t = 2 ms. MCTS(0.5,0.5): 16, MCTS′(1,1.5): 15, Sym: 12
Sym vs. MCTS(0.5,0.5) Sym vs. MCTS′(1,1.5)

6730/3270(0), 4412/5586(2) 6793/3205(2), 4537/5458(5)

t = 4 ms. MCTS(0.5,0.5): 27, MCTS′(0.5,0.5): 25, Sym: 19
Sym vs MCTS(0.5,0.5) Sym vs. MCTS′(0.5,0.5)

6305/3692(3), 5056/4936(8) 6479/3515(6), 5038/4959(3)

t = 8 ms. MCTS(0.5,0.5): 50, MCTS′(0.5,0.5): 45, Sym: 33
Sym vs. MCTS(0.5,0.5) Sym vs. MCTS′(0.5,0.5)

6160/3821(19), 4925/5044(31) 5966/4022(12), 5159/4808(33)

t = 16 ms. MCTS(1.5,2): 95, MCTS′(1.5,2): 88, Sym: 61
Sym vs. MCTS(1.5,2) Sym vs. MCTS′(1.5,2)

4377/5598(25), 6499/3427(74) 4286/5692(22), 6526/3388(86)

The number of iterations seems very small here, but let us recall that this concerns only the beginning of the
game. As already mentioned, this number of iterations actually increases considerably when approaching the
end of the game.

We observe that Sym is really better than MCTS and MCTS′ when the amount of time per move is small.
When this amount of time increases, we are beaten. We have two main explanations for this, see Section 8.12.

Here Sym performs around twice fewer iterations per unit of time than MCTS.

8.10. Inverse and large Connect Four

We next consider the inverse version of Connect Four with 15 columns, 6 lines, and where the first player
that connects (horizontally, vertically, or diagonally) 5 discs looses. Although this modification is coded very
easily (only one line has to be modified so that win and loss are exchanged), this considerably modifies the
game. The algorithms (MCTS, MCTS′ and Sym) all take this into account immediately: at the beginning of a
match, one usually sees the algorithms play in the middle of the board, while they play near the extremities in
the inverse case.

t = 1 ms. MCTS(1.5,3): 10, MCTS′(2,4): 9, Sym: 8
Sym vs. MCTS(1.5,3) Sym vs. MCTS′(2,4)

5094/4889(17), 3793/6182(25) 4954/5037(9), 3792/6185(23)

t = 2 ms. MCTS(1.5,3): 15, MCTS′(1,2): 14, Sym: 12
Sym vs. MCTS(1.5,3) Sym vs. MCTS′(1,2)

4478/5507(15), 4338/5628(34) 4305/5681(14), 4444/5526(30)

t = 4 ms. MCTS(0.5,0.5): 25, MCTS′(2,4): 23, Sym: 19
Sym vs. MCTS(0.5,0.5) Sym vs. MCTS′(2,4)

4058/5931(11), 5084/4887(29) 4236/5757(7), 4607/5356(37)

Here again, we observe that Sym wins when the amount of time per move is very small.

8.11. Back to Pearl’s game: rate of convergence

Here we consider Pearl’s game with d = 2, K even and with the value p = (
√

5 − 1)/2 ' 0.618. With this
particular value of p, Pearl [18] showed that E[R(r)] = p and that the expected required number of visited
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Figure 4. E[(Rn(r)−R(r))2] as a function of the number n of iterations.

Figure 5. One trajectory of n 7→ Rn(r).

leaves for AlphaBeta to determine R(r) equals (2/(
√

5− 1))K . Here r is the true root of the game. In the whole
subsection, we use SymP with the correct value of a, i.e. a = p.

First, we call τK the number of leaves that SymP needs to determine R(r). Denoting by τ̄K the average value
over 10000 trials, we found

K 4 8 12 16

τ̄K 6.84 47.14 323.51 2207.89

(2/(
√

5− 1))K 6.8541 46.9787 321.9969 2206.9995

I thus seems highly plausible that our algorithm visits the leaves in the same order as AlphaBeta (for a Pearl
game), up to some random permutation. This is rather satisfying, since Tarsi [21] showed that for a Pearl game,
AlphaBeta is optimal in the sense of the expected number of leaves necessary to determine R(r).

Finally, we plot a Monte-Carlo approximation (with 10000 trials) of E[(Rn(r) − R(r))2] as a function of
the number n of iterations, when K = 8 and K = 16, as well as one trajectory of n 7→ Rn(r) when K = 16
(Figs. 4 and 5).

8.12. Conclusion

When playing Pearl’s game, SymP beats MCTS and seems competitive against MCTS′. This is reassuring,
since our algorithms are typically designed for such games.

On true games, MCTS and MCTS′ seem globally much better than Sym. However, we found two situations
where Sym may win.
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The first and most interesting situation is the one where the game is so large (or the amount of time so small)
that very few iterations can be performed by the challengers. This is quite natural, and there are two possible
reasons for that.

• Our algorithm is only optimal step by step. So, it is absolutely not clear that it works well when we have
enough time to handle many iterations.

• Assumption 2.5 imposes some independence properties. While this is reasonable, on any game, in some
sense to be precised, after a small number of iterations (when playing a small number of uniformly random
matches, it is rather clear that the issues will be almost independent), this is clearly not the case when
performing a large number of well-chosen matches.

The second situation is that where the game is so small that we can hope to find the winning strategy at the
first move, and where Sym may find it before MCTS and MCTS′. As already mentioned, we believe this is due
to the fact that Sym does some pruning.

From a theoretical point of view, it would be very interesting to study more relevant models such as the one
proposed by Devroye-Kamoun [10]. Clearly, this falls completely out of our scope. On the contrary, it does not
seem completely desesperate to find empirically variants of our algorithm that work much better in practise.
For example, it may be relevant to use other choices of functions m and s, to try a clever default policy, etc.

Appendix A. Monte Carlo Tree Search algorithms

In this subsection, we write down precisely the versions of the MCTS algorithm we used to test our algorithm.
We start with a modified version, more close to our study, where we do not throw down any information.

Algorithm A.1 (Modified MCTS). Consider φ : N× N 7→ R, e.g. φ(w, c) = w+a
c+b for some a, b > 0.

Step 1. Simulate a uniformly random match from r, call x1 the resulting leave and put x1 = {x1}.
During this random match, keep track of R(x1), of Bx1

= Brx1
and of Dx1

= ∪y∈Brx1
Hy and set C1(x) =

W1(x) = 0 for all x ∈ Dx1
.

For all x ∈ Bx1
, set C1(x) = 1, W1(x) = R(x1).

Step n+1. Put z = r and do z = argmax{φ(Vn(y), Cn(y)) : y ∈ Cz} until z ∈ xn ∪ Dxn , where

Vn(y) = 1{t(f(y))=1}Wn(y) + 1{t(f(y))=0}(Cn(y)−Wn(y)).

Set zn = z.

(i) If zn ∈ xn (this will almost never occur if n is reasonable for a large game), set xn+1 = xn, Bxn+1
= Bxn

and Dxn+1
= Dxn

For all x ∈ Brzn , set Cn+1(x) = Cn(x) + 1, Wn+1(x) = Wn(x) +R(zn).
For all x ∈ (Bxn+1 ∪ Dxn+1) \Brzn , set Cn+1(x) = Cn(x), Wn+1(x) = Wn(x).

(ii) Else (then zn ∈ Dxn
), simulate a uniformly random match from zn, call xn+1 the resulting leave, set

xn+1 = xn ∪ {xn+1}.

During this random match, keep track of R(xn+1), of Bxn+1 = Bxn ∪ Brxn+1 and of Dxn+1 = (Dxn \ {zn}) ∪⋃
y∈Bznxn+1

\{zn}Hy and set Rn+1(x) = Wn+1(x) = 0 for all x ∈
⋃

y∈Bznxn+1
\{zn}Hy.

For all x ∈ Brxn+1 , set Cn+1(x) = Cn(x) + 1, Wn+1(y) = Wn(x) +R(xn+1).
Finally, set Cn+1(x) = Cn(x), Wn+1(x) = Wn(x) for all x ∈ (Bxn ∪ Dxn) \Brxn+1 .

Conclusion. Stop after a given number of iterations n0 (or after a given amount of time). As best child of r,
choose x∗ = argmax{φ(Vn0

(x), Cn0
(x)) : x child of r}.

Algorithm A.1 updates the information on the whole visited branch at each new rollout. Here is a more
standard version: it only creates, after each new simulation, one new node (together with its brothers) and
updates the information only on the branch from the root to this new node. It seems clear that Algorithm A.1
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should be better, but it may lead to memory problems if the game is very large. We do not discuss such memory
problems in the present paper.

Algorithm A.2 (MCTS). Consider φ : N× N 7→ R, e.g. φ(w, c) = w+a
c+b for some a, b > 0.

Step 1. Simulate a uniformly random match from r, call u the resulting leave.
During this random match, keep track of R(u) and of T1 = {r} ∪ Cr.
Set C1(x) = W1(x) = 0 for all x ∈ T1 \Bru.
Set C1(x) = 1 and W1(x) = R(u) for all x ∈ T1 ∩Bru.

Step n+1. Put z = r and do z = argmax{φ(Vn(y), Cn(y)) : y ∈ Cz} until z ∈ LTn
, where

Vn(y) = 1{t(f(y))=1}Wn(y) + 1{t(f(y))=0}(Cn(y)−Wn(y)).

Set zn = z.

(i) If zn ∈ L (this will never occur if n is reasonable for a large game), set Tn+1 = Tn.
For all x ∈ Brzn , set Cn+1(x) = Cn(x) + 1, Wn+1(x) = Wn(x) +R(zn).
For all x ∈ Tn+1 \Brzn , set Cn+1(x) = Cn(x), Wn+1(x) = Wn(x).

(ii) If zn /∈ L, simulate a uniformly random match from zn, call u the resulting leave, define y as the child of
zn belonging to Bznu and set Tn+1 = Tn ∪ Czn .

For all x ∈ Brzn , set Cn+1(x) = Cn(x) + 1, Wn+1(y) = Wn(x) +R(u).
Set Cn+1(y) = 1, Wn+1(y) = 1{R(u)=1} and, for all x ∈ Hy, set Cn+1(x) = Wn+1(x) = 0.
For all x ∈ Tn \Brzn , set Cn+1(x) = Cn(x) and Wn+1(x) = Wn(x).

Conclusion. Stop after a given number of iterations n0 (or after a given amount of time). As best child of r,
choose x∗ = argmax{φ(Vn0

(x), Cn0
(x)) : x child of r}.

Of course, in both algorithms, the choice of the function φ is debatable. The choice φ(w, c) = (w+ a)/(c+ b),
with a > 0 and b > 0 chosen empirically, seems to be a very good choice and was proposed by Lee et al. [16]
Section II-B-1.

Algorithm A.1 is not admissible in the sense of Definition 2.3 because it may take different decisions with the
same information. Indeed, it might visit twice the same leave consecutively: this does not modify the information
but changes the values of Wn and Cn. However, it is almost admissible: it would suffice to forbid two visits at
the same leave (or alternatively to set Cn+1(x) = Cn(x) and Wn+1(x) = Wn(x) for all x ∈ Bxn

∪ Dxn
in the

case where xn+1 ∈ xn) to make it admissible. Since such a double visit almost never happens in practice, we
decided not to complicate the definition of admissible algorithms nor to modify Algorithm A.1.

Algorithm A.2 is not admissible, because it has not the good structure (it does not keep track of the whole
observed information), but we see it as an truncated version of Algorithm A.1, which is itself almost admissible.

Observe that in Algorithm A.1, Cn(x) is the number of times (iterations) where the node x has been crossed
and Wn(x) is the number of times where x has been crossed and where this has led to a victory of J1, all this
after n matches. The (n+ 1)th match is as follows: we start from the root and make J1 play the most promising
move (for itself, i.e. the child with the highest φ(Wn, Cn)) and J0 play the most promising move (for itself, i.e.
the child with the highest φ(Cn −Wn, Cn)) until we reach an uncrossed position zn ∈ Dxn . From there, we end
the match at uniform random, until we arrive at some leave u. We finally update the explored tree as well as
its boundary and the values of the numbers of crosses and of victories of each node of the branch from r to u.
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