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interpolation from available magnetization and
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fitted to measurement results from an electrical steel
sheet. The spline-based constitutive law overcomes
several drawbacks of analytical approaches used
earlier. The presented models and measurement
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1. Introduction
Modelling tools for coupled magneto-mechanical effects in magnetic materials are needed for
analysing losses and vibrations in electrical machines, as well as magnetostrictive devices and
actuators. The problem is rather complex due to its three-dimensional and multiaxial nature,
since many different combinations and orientations of magnetic fields and mechanical stresses
can occur in real applications. In electrical machines, mechanical stresses typically cause adverse
effects by increasing the losses [1–3]. On the other hand, the same effects allow converting
mechanical energy into electrical energy for energy-harvesting purposes [4–6]. The coupled
magneto-mechanical effects have been studied experimentally [7–10], while the modelling in the
field has evolved from purely uniaxial studies [11] to equivalent stress or strain approaches for
multiaxial loadings [12–15], and further towards genuinely multiaxial models [16–19].

Thermodynamic approaches provide one possible way of deriving coupled constitutive
laws. Couplings between magnetic, electric and thermal fields [20–22] as well as elastic and
plastic deformations [23–26] have been considered through thermodynamic frameworks. The
applications have included both isotropic [20,22] and anisotropic [26] solids as well as granular
materials [27–31]. In [32], an extensive review of earlier magneto-elastic constitutive models is
given, and implicit constitutive equations based on 21 scalar invariants are derived for bodies
under large deformations. These equations are then simplified for small fields and applied for
solving magneto-elastic boundary value problems for slabs and an annulus. However, systematic
procedures for identification of such models based on experimental data have not been reported
in details so far. It is particularly mentioned in [32] that the given equations are ‘too general to
be used to correlate with experimental data as there are so many material functions that depend
on numerous invariants.’ In this paper, we focus on identification of thermodynamic constitutive
models based on the theory of invariants.

In our earlier works, we have developed a thermodynamic approach for deriving coupled
magneto-mechanical constitutive equations for ferromagnetic materials [33]. The approach has
been based on expressing a Helmholtz free energy per unit volume ψ(B, ε) as a function of
the magnetic flux density vector B and total small strain tensor ε, i.e. the symmetric part
of the displacement gradient. The magnetization and stress have then been derived by the
Coleman–Noll procedure from the dissipation inequality, and are given by

M = −
(
∂ψ

∂B

)T
and σ = ∂ψ

∂ε
. (1.1)

The field strength then becomes

H = 1
μ0

B − M, (1.2)

where μ0 is the permeability of free space. By assuming an isotropic material, the dependency of
the Helmholtz free energy density on B and ε reduces to the following six invariants

I1 = tr ε, I2 = tr ε2, I3 = tr ε3,

I4 = B · B, I5 = B · eB, I6 = B · e2B, (1.3)

where e = ε − 1
3 (tr ε)I is the deviatoric strain, I being the second-order identity tensor and tr

denotes the trace of a tensor. Equation (1.1) thus becomes

M = −
( 6∑

i=1

∂ψ

∂Ii

∂Ii

∂B

)T

and σ =
6∑

i=1

∂ψ

∂Ii

∂Ii

∂ε
, (1.4)

which are uniquely defined when ψ(I1, I2, I3, I4, I5, I6) is known.
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So far, we have mainly used analytical expressions for ψ(I1, I2, I3, I4, I5, I6). The exact form of
the function has varied (see different variations in [33–38]), but has been more or less similar to

ψ = 1
2
λI2

1 + μI2 +
nα∑
i=1

αiI
i
4 +

nβ∑
i=1

βiI
i
5 +

nγ∑
i=1

γiI
i
6, (1.5)

in which λ and μ are the Lamé parameters yielding linear Hooke’s Law (appendix A), and
the nonlinear magneto-elastic part is described by the last three polynomials with αi, β i and
γ i as fitting parameters. Invariant I3 has usually been neglected in order to reproduce linear
behaviour under purely mechanical loading. Although these analytical expressions are relatively
easy to implement, they have sometimes failed to properly fit to measured magnetization and
magnetostriction curves. More complicated analytical expressions for the magneto-elastic part
might improve the fitting, but finding a suitable expression is rather time-consuming and does
not bring any added physical insight into the phenomena. In addition, if the state variables are
to be changed, a different analytical expression might need to be used. Analytical expressions for
the energy functions were also used in [21] and [22].

In this paper, we propose a new approach for overcoming the disadvantages of analytical
energy density expressions. The idea is to express the energy density as a spline of the invariants,
identifying the free energy density function as a direct least-squares spline fit to measured
magnetization and magnetostriction curves. The main advantage of the proposed approach
compared to [33–38] is that no a priori assumptions on how to analytically express the free
energy density need to be made. This provides more flexibility when fitting the model against
measurements, and also allows keeping the model fitting procedure unchanged, even if the
input variables need to be changed. Using B as the magnetic input variable is convenient if the
constitutive law is to be used in combination with a finite-element (FE) formulation based on the
magnetic vector potential, while H is more suitable for magnetic scalar potential formulations.
Using ε as the mechanical input variable is convenient in displacement-based FE formulations,
while using σ is often straightforward in simple statically determined structures.

In the following, we first describe our measurement set-up and demonstrate the problems
related to fitting the analytical energy density expression (1.5) against measurements from an
electrical steel sheet. The new spline-based approach overcoming the problems of the analytical
approach is then described. The splines are fitted to simulation results produced by the simplified
multiscale (SMS) model of [17], and the behaviour of the models under complex multiaxial
loadings is compared. Finally, it is demonstrated that the proposed approach provides a
significantly better fit against measurements than the analytical expression (1.5).

2. Methods

(a) Measurement set-up and problems with the analytical models
A custom-designed stressing mechanism was built offering the possibility of in-plane uniaxial
stressing of a modified single sheet tester (SST) sample. The mechanism was designed to exert
both compressive and tensile stress up to 100 MPa for a 25 × 0.5 mm cross-sectioned SST sample.
A manual two-way locking screw system in series with a helical compression spring was used
to exert the required force. Use of spring was especially considered to better control the stress
levels, thus a force resolution of 1 N was achieved with this device. In addition to the stressing
mechanism, designing the SST sample is essential as well. In order to achieve a uniform stress
at the measurement zone, i.e. centre of the SST sample, proper propagation of force from the
clamped zone to the centre of the sample is required. Thus the shape of the SST sample is chosen
according to tensile testing standards.

For the magnetic measurements, tunnelling magneto-resistance (TMR) sensors of dimension
6 × 5 × 1.5 mm arranged in a 2 × 2 grid on a printed circuit board of 20 × 20 mm were used to
measure the surface magnetic field strength. When placed on the SST sample, the sensing element
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Figure 1. Schematic of the uniaxial measurement set-up. The stressing mechanism applies a static force F into the sample.
The SST is excited by a voltage waveform U(t) and the voltage waveforms from the field strength sensor (UH(t)), strain gauge
(Uλ(t)) and search coil (UB(t)) aremeasured. An input voltagewaveform Uref (t) is iteratively searched such that sinusoidal UB(t)
is obtained. (Online version in colour.)

of the TMR sensor chips was effectively at 0.4–0.5 mm above the sample surface. Similarly, a
search coil wound around the SST sample was used to measure the average magnetic flux density.
At the low measurement frequency of 6 Hz, the demagnetization field by the eddy currents is
small and the surface field strength and average flux density give a sufficient approximation of
the static constitutive behaviour. Furthermore, a non-inductive three element strain gauge rosette
of 60° delta arrangement (H-series rosette from Micro-Measurements), glued on the surface of
the sample (with the insulation coating removed) was used to measure the magnetostriction.
The individual element of the rosette has the gauge length and resistance of 3.18 mm and 700 Ω,
respectively. Figure 1 shows a schematic diagram of the measurement set-up.

A programmable power source (AMETEK CSW 5550VA) and a data acquisition system (DAQ-
NI USB-6251 BNC) with analogue output were used in conjunction with a PC to control the
magnitude and the waveform of the supply voltage so as to produce a sinusoidal induction in the
SST sample. The feedback control of the supply voltage was programmed using the Matlab/DAQ
toolbox. Low-noise/high-gain signal amplifiers were also used to amplify the signal obtained
from the search coils. In addition to that, a high sampling rate DAQ system (DEWETRON)
controlled by PC/DEWEsoft was used to retrieve the measured signals for the field strength and
the flux density. The sample was magnetized using two vertical cores and the excitation coils with
a total of 1000 turns. Within the limitation of the power amplifier’s operation, the total turns of
the excitation coils were sufficient for a wide range of induction amplitudes and frequencies.

Figure 2 shows measurement results for magnetization curves and magnetostriction curves
under different compressive (−) and tensile (+) stresses in M400–50A electrical steel. The
single-valued curves have been obtained by averaging the hysteresis loops in order to identify
anhysteretic material models. Although ferromagnetic hysteresis is a major source of losses in
electromagnetic devices, anhysteretic material properties are usually sufficient to estimate the
magnetic field distribution in devices with air gaps, and hysteresis losses can be calculated
a posteriori with a reasonable accuracy [39,40]. Thus, only anhysteretic constitutive laws are
considered in this paper.
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Figure2. Measurement results of (a)magnetic fluxdensity and (b)magnetostriction as functions of themagnetic field strength
and uniaxial stress parallel to the field in M400-50A electrical steel. (Online version in colour.)
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Figure 3. Fitting of the analytical energy-density expression ψ (B, ε) given in (1.5) to the measurement results shown in
figure 2: (a) field strength Hx and (b) magnetostrictionλxx. (Online version in colour.)

The problem related to the analytical energy density expressions is demonstrated by setting
nα = 5, nβ = 1 and nγ = 1 in (1.5) and fitting αi, β i and γ i against the measurement results. In
the fitting, the magnetization and magnetostriction curves derived from (1.5) at four different
stress values were compared against the measured curves. The curves were normalized by their
maximum values to give equal weights to the magnetization and magnetostriction curves. Since
the stress is uniaxial in the measurements, the components of ε were first iterated separately for
each value of Bx such that the desired stress was obtained. This makes the problem nonlinear
with respect to the parameters and requires using a nonlinear minimization algorithm. The
fitting was attempted using both nonlinear least-squares minimization and a genetic algorithm
(Matlab functions lsqcurvefit and ga). Figure 3 shows the best results obtained from the
fitting. Although the magnetization curves correspond relatively well to the measurements, the
magnetostriction curves do not. This is caused by the limitations in the analytical expression
(1.5), which fails to correctly describe the physical behaviour of the material. Derivation of a
better expression would require a time-consuming trial and error process and would probably
lead to complex analytical formulae. In addition, finding suitable initial values for the nonlinear
fitting problem may be difficult. In the following, we propose a new identification approach based
on linear least-squares spline fitting which does not require analytically expressing the energy
density.
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(b) Fitting of the thermodynamic model in terms of H andσ
From now on, we focus mainly on the magneto-elastic part of the free energy density ψ discussed
in §1, and denote this by φ. In addition,ψ and φ are referred to simply as energy densities (instead of
Helmholtz energy density), since their physical meaning varies depending on the choice of state
variables. We start by deriving the thermodynamic model by choosing the magnetic field strength
vector H and the stress tensor σ as the state variables. This choice is preferred, since it will allow
straightforward comparison to the SMS model of [17], which uses the same state variables. In this
case, the relevant invariants become I4 = H · H, I5 = H · sH and I6 = H · s2H, where s = σ − 1

3 (tr σ )I
is the deviatoric stress. The magnetic flux density B and magnetostriction tensor λ can then be
obtained as

B =
(
∂φ

∂H

)T
and λ = ∂φ

∂σ
. (2.1)

It is noted that if the magnetic polarization μ0M is preferred as the output variable instead of B,
the energy can be changed to φ→ φ − 1

2μ0I4 without affecting the magnetostriction. However, we
prefer to write the constitutive models directly in terms of B and H since these are the variables
of interest when numerically solving Maxwell equations.

The measurement set-up described in §2a allows characterizing the magneto-mechanical
constitutive behaviour in the form of B(H, σ ) and λ(H, σ ), where σ is uniaxial and parallel to
B and H (figure 2). Devices for biaxial stressing [13] and shear stressing [10] have also been
presented. In the following derivations, it will become apparent that consideration of uniaxial
and shear stresses is sufficient to identify the complete energy density. Let us thus assume for
now that H = [Hx 0 0]T, B = [Bx By 0]T, σ = [σxx 0 0 0 0 σxy]T and λ = [λxx λyy λzz 0 0 λxy]T (in Voigt
notation σ = [σxx σyy σzz σyz σzx σxy]), so that the invariants become

I4 = H2
x, I5 = 2

3
σxxH2

x and I6 =
(

4
9
σ 2

xx + σ 2
xy

)
H2

x. (2.2)

Since the material is assumed to be isotropic, only stress-induced magnetic anisotropy is present,
and By can be non-zero only if σxy �= 0. Under uniaxial stress, σxy = 0, and only two of the
invariants are independent. This means that we can identify the energy density only as a bivariate
function, which is denoted φ(2)(I4, I5). However, if measurement data were available also for
σxy �= 0, we could identify trivariate φ(3)(I4, I5, I6). It is emphasized, that with the given magnetic
field in the x-direction, I6 is independent of I4 and I5 only if at least one of the shear stress
components σxy or σzx is non-zero.

In this paper, we aim for a general identification approach, which does not require making
assumptions on the form of functions φ(2)(I4, I5) or φ(3)(I4, I5, I6). Thus, instead of analytical
expressions for the functions, we express them as bi- and trivariate B-splines of the input
variables. The splines are then fitted directly on the measured B and λ. However, the difficulty is
that the values of Hx, σxx and σxy, on which B and λ are measured, are often chosen so that they
lie on a regular (but not necessarily uniform) grid. This means that the invariants I4, I5 and I6 will
be irregularly distributed, which makes it difficult to construct the splines. To avoid this problem,
we define auxiliary variables

u =
√

I4, v = 3
2

I5

I4
and w = 1

I4

√
I6I4 − I2

5, (2.3)

which under the aforementioned H and σ become u = Hx, v = σxx and w = σxy, which are regularly
distributed. In addition, with these variables, we obtain

∂φ

∂u
= Bx,

∂φ

∂v
= λxx and

∂φ

∂w
= 2λxy. (2.4)

We can thus identify the splines φ(2)(u, v) and φ(3)(u, v, w) directly from the measured flux density
and magnetostriction. Note the factor 2 in the last term of (2.4), which results from the fact that
the symmetry assumption λyx = λxy is done before differentiating the energy. It is emphasized,



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180280

..........................................................

that after the splines are identified, the auxiliary variables (2.3) and the splines are well defined
for arbitrary three-dimensional field and stress configurations.

To formulate the spline fitting problem, let us assume that the regular grid formed by Hx, σxx

and σxy consists of Nu, Nv and Nw values of each variable, respectively. The energy densities
are expressed as bi- and trivariate B-splines of u, v and w. The spline coefficients are denoted
clm and clmn for the bi- and trivariate cases, respectively, where l = 1, . . . ,Mu, m = 1, . . . ,Mv and
n = 1, . . . ,Mw. To avoid overfitting, we typically want to have at most as many coefficients as
measurement points: Mu ≤ Nu, Mv ≤ Nv and Mw ≤ Nw. The bi- and trivariant energy densities in
the grid points thus become

φ
(2)
ij = Au

ilA
v
jmclm and φ

(3)
ijk = Au

ilA
v
jmAw

knclmn, (2.5)

where i = 1, . . . ,Nu, j = 1, . . . ,Nv and k = 1, . . . ,Nw denote the indices of the measurement points,
and the A-terms denote elements of collocation matrices Au, Av and Aw which map the B-
spline coefficients into the energy densities in the measurement points, and which depend only
on the chosen grid and the order of the B-spline. In the notation, the repeated subindices are
summed over. If the energy densities in the measurement grid were measured directly, the spline
coefficients could be directly solved from (2.5). However, since only the partial derivatives (2.4)
are measured, we end up with {

Bx,ij = Du
ioAv

jmcom

λxx, ij = Au
ilD

v
joclo

and

⎧⎪⎨
⎪⎩

Bx,ijk = Du
ioAv

jmAw
kncomn

λxx,ijk = Au
ilD

v
joAw

knclon

λxy,ijk = 1
2 Au

ilA
v
jmDw

koclmo

, (2.6)

where the D-terms are elements of collocation matrices Du, Dv and Dw, which map the spline
coefficients into the measured partial derivatives. The problem is overdetermined. In the bivariate
case, we have 2NuNv equations for MuMv variables, and in the trivariate case 3NuNvNw

equations for MuMvMw variables. Details of the solution will be discussed in §2d. The order
of the B-splines can be chosen freely, but it should be greater or equal to 3 to make the
second derivatives continuous, which is beneficial when solving nonlinear field problems using
Newton–Raphson iteration. Outside of the range of measured data, the splines are extrapolated as
quadratic functions, meaning linear extrapolation for the partial derivatives. This is a reasonable
assumption if identification data is available close up to saturation, since both the B(H) and ε(σ )
relationships tend to become linear above saturation.

(c) Fitting of the thermodynamic model in terms of B and ε
As mentioned in the previous section, measurements are typically available under known
stress. Formulation of the model using the strain as the state variable thus needs some more
considerations. Let us assume now that instead of H and σ , the state variables are B and ε,
where ε = C–1σ + λ is the total strain (C being the mechanical material stiffness matrix related
to Hooke’s Law and defined by Young’s modulus E and Poisson’s ratio ν). This choice of state
variables is convenient, if the constitutive law is to be implemented in an FE formulation using
the magnetic vector potential and mechanical displacement. The relevant invariants now become
I1 = tr ε, I2 = tr ε2, I4 = B·B, I5 = B · eB and I6 = B · e2B, where e = ε − 1

3 (tr ε)I. The total energy
density function becomes

ψ(I1, I2, I4, I5, I6) = 1
2
λI2

1 + μI2 + φ(I4, I5, I6), (2.7)

where the first two terms again give the linear isotropic elasticity equations and φ(I4, I5, I6) is
to be expressed as a spline similarly to the previous section. The field strength and stress are
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obtained as

H =
(
∂ψ

∂B

)T
and σ = ∂ψ

∂ε
, (2.8)

which is consistent to (1.1) and (1.2) if a substitution ψ →ψ − 1
2μ

−1
0 I4 is made to the energy

density in (1.1).
Let us assume that measurements are still available under known stress in the form of H(B, σ )

and λ(B, σ ), now with B = [Bx 0 0]T, H = [Hx Hy 0]T, σ = [σxx 0 0 0 0 σxy]T and λ = [λxx λyy λzz 0 0
λxy]T for regularly distributed Bx, σxx and σxy. The invariants now become

I4 = B2
x, I5 = exxB2

x and I6 = (e2
xx + ε2

xy)B2
x, (2.9)

where exx is the xx-component of the deviatoric strain. Magnetostriction is assumed to be isochoric
so that

tr λ = λxx + λyy + λzz = 0. (2.10)

The diagonal strain components are

εxx = σxx

E
+ λxx, εyy = − ν

E
σxx + λyy and εzz = − ν

E
σxx + λzz, (2.11)

and the xx-component of the deviatoric strain is thus

exx = 2
3
εxx − 1

3
(εyy + εzz) = 2

3
ν + 1

E
σxx + 2

3
λxx − 1

3
(λyy + λzz) = 2

3
ν + 1

E
σxx + λxx. (2.12)

In addition, the shear component of the strain can be written as

εxy = 1 + ν

E
σxy + λxy, (2.13)

and the invariants I5 and I6 thus become

I5 =
(

2
3

1 + ν

E
σxx + λxx

)
B2

x and I6 =
((

2
3

1 + ν

E
σxx + λxx

)2
+
(

1 + ν

E
σxy + λxy

)2
)

B2
x. (2.14)

Using the same definitions as in (2.3) for the auxiliary variables, they become

u = B2
x, v′ = 1 + ν

E
σxx + 3

2
λxx and w′ = 1 + ν

E
σxy + λxy. (2.15)

The notation v
′

and w
′

is used to denote that these variables are not yet regularly distributed
due to the small magnetostriction terms λxx and λxy, which depend on Bx, making v

′
and w

′

dependent on u. However, for each given value of u, we can easily interpolate new values H′
x,

σ ′
xx, σ ′

xy, λ′
xx and λ′

xy for the field, stress and magnetostriction components using simply one-
dimensional interpolation so that v and w become regularly distributed:

u = Bx, v = 1 + ν

E
σ ′

xx + 3
2
λ′

xx and w = 1 + ν

E
σ ′

xy + λ′
xy. (2.16)

With these variables, we finally obtain

∂φ

∂u
= H′

x,
∂φ

∂v
= − E

1 + ν
λ′

xx = −τxx and
∂φ

∂w
= − 2E

1 + ν
λ′

xy = −2τxy, (2.17)

where the last two terms are magnetostrictive parts of the stress (see appendix B). For brevity,
these are denoted by τxx and τxy. Again, the factor 2 in the last term results from making
the symmetry assumption before differentiation. The splines can then be fitted similarly to the
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previous section by solving the overdetermined problems{
H′

x,ij = Du
ioAv

jmcom

τxx = −Au
ilD

v
joclo

and

⎧⎪⎨
⎪⎩

H′
x,ijk = Du

ioAv
jmAw

kncomn

τxx,ijk = −Au
ilD

v
joAw

knclon

τxy,ijk = − 1
2 Au

ilA
v
jmDw

koclmo.
(2.18)

(d) Implementation considerations
The fitting of the splines was implemented in Matlab1 (v.R2017b). For the given measurement
grid u, v and w and the desired spline order, the B-spline knots were calculated with the Matlab
function optknt. Given the grid, the order and the knots, the collocation matrices Au, Av and Aw

in (2.5) were obtained with the function spcol. In order to construct the collocation matrices Du,
Dv and Dw in (2.6), spcol was first used to obtain collocation matrices for mapping the partial
derivative B-spline coefficients into the measured partial derivative values. These were multiplied
with matrices obtained by function DerivBKnotDeriv (found in [41]), which map the B-spline
coefficients into partial derivative B-spline coefficients.

Different scaling factors should be chosen for different equations in the systems (2.6) and
(2.18) in order to equalize their weighting and significance during the least-squares solution.
For example, if in the bivariate case in (2.6), Bx,ij are expressed in teslas and λxx,ij in m m−1, the
magnetostriction has negligible effect on the least-squares solution, since its numerical values are
in the range of 10−6. In our implementation, instead of solving (11), we divided the equations by
the maximum corresponding measurement values:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bx,ij

max
ij

(|Bx, ij|)
=

Du
ioAv

jm

max
ij

(|Bx, ij|)
com

λxx, ij

max
ij

(|λxx, ij|)
=

Au
ilD

v
jo

max
ij

(|λxx, ij|)
clo

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bx,ijk

max
ijk

(|Bx,ijk|)
=

Du
ioAv

jmAw
kn

max
ijk

(|Bx,ijk|)
comn

λxx,ijk

max
ijk

(|λxx,ijk|)
=

Au
ilD

v
joAw

kn

max
ijk

(|λxx,ijk|)
clon

2λxy,ijk

max
ijk

(|λxy,ijk|)
=

Au
ilA

v
jmDw

ko

max
ijk

(|λxy,ijk|)
clmo

, (2.19)

and thus equalized the weighting for the flux density and magnetostriction.
The full equation system can be written as Ac = b, where the vector c includes the spline

coefficients, A is the system matrix and vector b includes the scaled measurements. The sizes of A,
c and b are 2NuNv × MuMv, MuMv and 2NuNv in the bivariate case and 3NuNvNw × MuMvMw,
MuMvMw and 3NuNvNw in the trivariate case. However, since only the partial derivatives of the
energy are measured, this system does not have a unique solution. A constant could be added
to the energy without changing the partial derivatives. Thus, one of the spline coefficients has to
be fixed to a constant to obtain a unique solution. In our implementation, this is done by writing
the least-squares systems only for clm with l + m> 2 and clmn with l + m + n> 3 in the bi- and
trivariate cases, respectively, fixing manually c11 = 0 and c111 = 0. Thus the system matrix A and
the unknown vector c are changed to A′ and c′ by removing the first column and the first row,

1The codes can be found at https://github.com/prasilo/magnetostriction-spline/tree/v2.0.

https://github.com/prasilo/magnetostriction-spline/tree/v2.0
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respectively. The least-squares solution can then be obtained as

c′ = (A′TA′)−1A′Tb and c =
[

0
c′

]
. (2.20)

The ranks and condition numbers of the system matrices before (r(A) and κ(A)) and after (r(A′)
and κ(A′)) removing the columns corresponding to c11 and c111 will be compared in the results
section to give insight on the uniqueness of the solution.

(e) Simplified multiscale model
It is important to verify if the thermodynamic constitutive law can be identified from
measurements under H, σxx and (possibly) σxy in such a way that it can reasonably reproduce the
magneto-elastic behaviour under arbitrary multiaxial loadings. Such a verification would require
an extensive amount of measurements in complex loading conditions in three dimensions, which
are not currently possible. Thus, the simplified three-dimensional multiscale material model
developed in [17] is used as a reference. The SMS model is applied to produce simulation data for
both identification and validation of the thermodynamic constitutive law.

The SMS model is based on expressing a local potential energy for a domain α oriented along
a given direction uα as a function of the field strength H and stress σ as

Wα = −μ0H · Mα − σ : λα , (2.21)

where

Mα = Msuα and λα = 3
2
λs

(
uα ⊗ uα − 1

3
I
)

, (2.22)

are the magnetization and magnetostriction of the given domain, determined by the saturation
values Ms and λs, respectively. The volume fraction of domains is expressed as

fα = exp(−AsWα)∫
α

exp(−AsWα)
with As = 3χ0

μ0M2
s

, (2.23)

where χ0 is the initial magnetic susceptibility of the material. The magnetization vector
and magnetostriction tensor are then obtained by weighting the domain magnetizations and
magnetostrictions by the volume fraction and integrating over all possible orientations as

M =
∫
α

fαMα and λ =
∫
α

fαλα . (2.24)

In our implementation, the integrations over two direction angles defining a unit spherical shell
are carried out numerically using adaptive two-dimensional quadratures. The magnetic flux
density is obtained as B =μ0(H + M).

3. Application and results

(a) Fitting of the splines
Reference identification data for Nu = 40 and Nv = Nw = 11 values of Bx(Hx, σxx) and λxx(Hx,
σxx) as well as Bx(Hx, σxx, σxy), λxx(Hx, σxx, σxy) and λxy(Hx, σxx, σxy) was produced with
the SMS model described in §2e. The parameters of the SMS model were Ms = 1.45 MA m−1,
λs = 6.67 µm m−1 and χ0 = 1585, representing a typical FeSi electrical steel. The bi- and trivariate
splines φ(2) and φ(3) in terms of H and σ were fitted against the data as described in §2b, using
an order of 3 for the B-spline and as many spline coefficients as measurement points: Mu = Nu,
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Figure 4. Fitting of the energy density φ(2)(H, σ ) as a bivariate spline to the results of the multiscale model: (a) flux density
Bx and (b) magnetostrictionλxx. (Online version in colour.)

Mv = Nv and Mw = Nw. The fitting errors were calculated separately for Bx, λxx and λxy as

rfit = ||x − xfit||
||x|| , (3.1)

where vector x contains the multiscale model results in the Nu × Nv = 440 or Nu × Nv × Nw = 4840
measurement points, and vector xfit contains the corresponding results obtained by differentiating
the fitted spline.

Figure 4 shows the fitting results for the bivariate spline φ(2)(H, σ ). In this case, the fitting
errors rfit for Bx and λxx were 0.0037% and 0.0059%, respectively, which means that a single
energy function can represent both the flux density and magnetostriction consistently to the
SMS model under uniaxial loading. The ranks and condition numbers of the system matrix are
r(A) = 339 and κ(A) = 8.3 × 1017 before and r(A′) = 339 and κ(A′) = 3.1×104 after removing the
column corresponding to coefficient c11 which is fixed manually to zero. The unchanged rank
and the large drop in the condition number show that the system becomes well-conditioned
after removing one column, making the solution unique. Figure 5 shows the fitting results in
the trivariate case φ(3)(H, σ ) for three different values of the field strength Hx. In this case,
the errors for Bx, λxx and λxy were 0.0041%, 0.0059% and 0.0017%, respectively. The ranks and
condition numbers are r(A) = 4839 and κ(A) = 6.1×1017 and r(A′) = 4839 and κ(A′) = 2.7 × 105,
again showing the uniqueness of the solution after fixing c111. Noteworthy is that the error does
not increase from the bivariate case, which means that also the behaviour under shear stress is
similarly predicted by the thermodynamic and SMS models. The agreement between the two
models is surprisingly good.

From figure 4b, it can be seen that the SMS model produces magnetostriction under stress
even when the magnetic field is zero. This behaviour is explained as the so-called �E effect
[42], which can be observed in ferromagnetic materials, and is often described as a change in
the Young modulus E under stress. The spline-based thermodynamic model is able to reproduce
this behaviour contrary to the analytical energy density functions (1.5) we have used earlier.

The same SMS results were next interpolated into the form Hx(Bx, σxx, σxy), λxx(Bx, σxx, σxy)
and λxy(Bx, σxx, σxy), and the bi- and trivariate splines were fitted in terms of B and ε, as described
in §2c, again with an order of 3. The values used for the Young modulus and the Poisson ratio
were E = 183 GPa and ν= 0.34. Figure 6 shows the fitting results for the bivariate spline φ(2)(B, ε).
In this case, the fitting errors for Hx and τxx were 0.019% and 0.016%, respectively. Figure 7 shows
the fitting results in the trivariate case φ(3)(B, ε) for three different values of the flux density Bx. In
this case, the errors for Hx, τxx and τxy were 0.020%, 0.017% and 0.009%, respectively. The ranks
and condition numbers behave similarly to the previous case, ensuring the uniqueness of the
solutions. The errors grow slightly from the H- and σ -based model, mainly due to the required
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numerical interpolations. Nevertheless, the spline-based approach is clearly able to cope with
different combinations of input variables.

(b) Sensitivity analysis
It is important to study the robustness of the fitting procedure against measurement errors
and noise, which are inevitable in real experiments. When measurements of magnetization
and magnetostriction curves are obtained, the data are usually smoothed and denoised in a
preprocessing stage before fitting constitutive models. Such preprocessing is likely to alter the
relationship between the magnetization and magnetostriction curves in such a way that they
cannot be exactly described by a single thermodynamic potential. To study the sensitivity of the
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fitting procedure against such errors, artificial error is introduced to the SMS model results by
changing the output flux density and magnetostriction as

Bx →
(

1 + r
2

)
Bx and λxx →

(
1 − r

2

)
λxx, (3.2)

where the error r varies between 0.001% and 100%. λxy is kept unchanged in the trivariate case.
The fitting of the bivariate and trivariate splines φ(2) and φ(3) in terms of H and σ is repeated
similarly to the previous section, and the fitting errors rfit from (3.1) are studied as a function of r.
The results are shown in figure 8. It is seen that the fitting errors rfit increase slowly with respect
to r and remain below 10% for each case when r< 100%. The fitting procedure is thus robust and
able to find a reasonable thermodynamic potential even for the case where the input data do not
exactly fulfil the thermodynamic principles.

(c) Comparison of models: field in principal stress direction
After fitting the splines, the behaviour of the proposed spline-based thermodynamic model
under multiaxial stresses is compared to that of the SMS model. Both the SMS model and the
thermodynamic model in terms of H and σ are simulated under a magnetic field of H = [Hx 0 0]T

with Hx = 1077 A m−1 and the following multiaxial stresses, expressed in the Voigt notation:

uniaxial : σ = [σ0 0 0 0 0],
equibiaxial: σ = [σσ0 0 0 0],
hydrostatic: σ = [σσσ0 0 0],
pureshear: σ = [σ −σ0 0 0 0].



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180280

..........................................................

0.001 0.01 0.1 10
input data error r (%)

fi
tti

ng
 e

rr
or

 r
fi

t (
%

)

fi
tti

ng
 e

rr
or

 r
fi

t (
%

)

1001 0.001 0.01 0.1 10
input data error r (%)

1001
0.001

0.01

0.1

Bx
lxx

Bx
lxx
lxy

10

1

0.001

0.01

0.1

10

1

(b)(a)

Figure 8. Comparison of the fitting errorswhen the input data aremodified by an error of r according to (3.2) in (a) the bivariate
φ(2)(H,σ ) and (b) the trivariate caseφ(3)(H,σ ). (Online version in colour.)

These stresses have principal axes parallel to the x-, y- and z-axes, and thus the magnetic flux
densities simulated with the two models become parallel to the field strength, which allows
comparing the models in terms of the relative permeability.

Figure 9a,b compares the relative permeability and magnetostriction λxx (component parallel
to the field) simulated with the SMS model and the bivariate spline. The results with the trivariate
spline are almost equal to the bivariate ones and thus not separately shown. Both models behave
very similarly, and the extrapolation of the spline appears to work sufficiently. However, when the
magnetostrictions λyy and λzz (components perpendicular to the field) are compared in figure 9c,d
in the cases of equibiaxial and pure shear loadings, rather significant differences are observed. The
spline-based thermodynamic model produces exactly the same magnetostrictions in the yy- and
zz-directions, despite the fact that the stress affects only in the xy-plane. This is a property of the
invariant model and directly results from the fact that under a uniaxial field H = [Hx 0 0]T and an
arbitrary stress tensor σ , the invariants I5 and I6 become

I5 = 1
3

(2σxx − σyy − σzz)H2
x and I6 =

[
1
9

(2σxx − σyy − σzz)2 + σxyσyx + σxzσzx

]
H2

x, (3.3)

leading to
∂I5

∂σyy
= ∂I5

∂σzz
and

∂I6

∂σyy
= ∂I6

∂σzz
, (3.4)

and thus λyy = λzz. The effect of the stress is thus transversely isotropic in the plane perpendicular
to the field. This is not the case with the SMS model, in which the effect of the stress
on the magnetostriction is anisotropic even in the plane perpendicular to the field. Three-
dimensional measurements under multiaxial loadings would be needed in order to validate
the model predictions. Both models produce volume-preserving magnetostriction, such that
λxx + λyy + λzz = 0.

(d) Comparison of models: shear stress with respect to field
In the previous section, the field strength was oriented along the principal axes of the stress tensor.
This means that the flux density and field strength vectors remain parallel. To compare the models
under conditions in which the stress-induced anisotropy rotates the flux density with respect to
the field strength, the SMS model and the thermodynamic models were simulated under a field
strength of H = [Hx 0 0]T with Hx = 1077 A m−1 and a shear stress tensor

σ (θ ) = T(θ )

⎡
⎢⎣ 0 σxy 0
σxy 0 0
0 0 0

⎤
⎥⎦T(θ )T with T(θ ) =

⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎥⎦ , (3.5)



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180280

..........................................................

700

750

800

850

900

950

1000

1050

1100

1150

650
–100 –80 –60 –40 –20 20 40

uniaxial
equibiaxial
hydrostatic
pure shear
spline
spline extrap.

equibiaxial
pure shear
spline
spline extrap.

60 80 1000 –100 –60–80 –40 –20 20 40 60 80 1000

–100

–1.5

–1.0

–0.5

0.5

1.0

0

–2.0

–1.5

–1.0

–0.5

0.5

1.0

4.0

3.5

2.5

1.5

0.5

1.0

3.0

2.0

0

–2.0

–80 –60 –40 –20 20 40 60 80 1000 –100 –60–80 –40 –20 20 40 60 80 1000

stress s (MPa) stress s (MPa)

stress s (MPa) stress s (MPa)

m
ag

ne
to

st
ri

ct
io

n 
l yy

 (
pp

m
)

m
ag

ne
to

st
ri

ct
io

n 
l zz

 (
pp

m
)

m
ag

ne
to

st
ri

ct
io

n 
l xx

 (
pp

m
)

re
la

tiv
e 

pe
rm

ea
bi

lit
y

(b)(a)

(c) (d )
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which can be rotated in the xy-plane by varying angle θ . The magnitude of the stress is
σxy = 50 MPa, and θ is varied from 0 to 180°.

Figure 10a compares the magnetic flux density components Bx and By produced by the SMS
and thermodynamic models at different angles θ . As expected, the bivariate spline model fails to
accurately present the behaviour under shear stress, since the shear is not accounted for during
the identification process. On the contrary, the flux density produced by the trivariate model
agrees well with the SMS model. The magnetostrictions λxx and λyy are compared in figure 10b.
Similarly to the results of figure 9c, λyy differs clearly between the two models, and the bi- and
trivariate models agree well. Finally, the magnetostrictions λxy and λzz are compared in figure 10c.
The bivariate model produces zero λxy, while the trivariate model agrees well with the SMS
model. λzz differs again similarly to figure 9d.

(e) Fitting to measurement results
The proposed thermodynamic approach was also tested against the uniaxial measurements
discussed in §2a and figure 2. Following the idea described in §2c, the model was fitted in terms
of B and ε as a bivariate spline φ(3)(B, ε). Nu = Mu = 100 and Nv = Mv = 17 values were used
for B and variable v, and the spline coefficients, respectively. The results are shown in figure 11.
Both the magnetization curves and the magnetostriction are satisfactorily fitted, the fitting errors
for Bx and τxx being 2.5% and 1.9%, respectively. However, when comparing to the analytical
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Figure 11. Fitting of the energy densityφ(2)(B, ε) as a bivariate spline to the measurement results shown in figure 2: (a) field
strength Hx and (b) magnetostrictionλxx. (Online version in colour.)

model in figure 3, the fitting is significantly better. Since the spline-based model does not make
any assumptions on the shape of the energy density, the only factor affecting the quality of the fit
is the correctness of the assumption, that a single thermodynamic potential is able to describe the
magnetization and magnetostriction simultaneously.
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4. Discussion and conclusion
An isotropic spline-based thermodynamic approach was presented for modelling coupled
magneto-mechanical behaviour in ferromagnetic materials. The model is based on defining an
energy-density functional, which depends on the invariant basis defined by the input vector
and tensor, but assumptions on the exact form of the energy density are not made. The model
is thus flexible and allows choosing freely the state variables, as a function of which the
energy density is expressed. Flux density and strain are convenient choices, when the model
is applied in finite-element analysis using formulations with magnetic vector potential and
mechanical displacement. Magnetic field can be used in magnetic scalar potential formulations
or if the model is to be coupled to a Jiles-Atherton hysteresis model, as in [36]. If the
stress is known during the measurements, using it as a state variable simplifies the model
derivations and the identification. The proposed identification procedure is not limited to
magneto-elastic behaviour but can most likely be used also for other coupled problems, in which
the constitutive laws are based on defining a free energy density and suitable measurements
are available.

Comparison to the SMS model in the bi- and trivariate cases showed that both the multiscale
model and the thermodynamic approach produce very similar magnetization curves. This
has not been observed earlier when using analytical energy-density expressions, since these
have prevented accurately fitting the thermodynamic model. The excellent agreement in the
magnetization curves and magnetostrictions parallel to the magnetic field is rather surprising,
considering that the two models are based on different modelling considerations. The observed
differences in the magnetostrictions perpendicular to the field should be further studied and
validated by measurements.

The main advantage of the multiscale models is that they rely on few intrinsic parameters,
which have clear physical meaning and which are rather easy to obtain from measurements.
However, deriving the models with input variables other than the magnetic field and stress
is difficult, and it is thus complicated to implement the models in numerical tools. Since the
proposed thermodynamic approach can be rather easily fitted against the multiscale model
results, it could be used as a tool for simplifying the numerical implementation while accurately
preserving the constitutive behaviour obtained from the multiscale model.

When fitting the spline-based model against measurement results, measurement error and
noise obviously affect the quality of the fit. Experiments have shown that downsampling the
measurement results and increasing the order of the B-spline make the fitted splines less prone to
oscillations. In addition, the fitting can be improved by increasing the weight of, for example, the
magnetization curve with respect to the magnetostriction curve before the least-squares solution.

If an isotropic material can be assumed, the three invariants I4, I5 and I6 are enough to
describe the behaviour under arbitrary three-dimensional loadings based on the measurements
in the regular grid described by the auxiliary variables u, v, w. Orthotropic anisotropy may
be accounted for by considering two additional direction vectors describing two perpendicular
symmetry planes and extending the scalar integrity basis of the free energy density to account
for these vectors. This will result in 19 scalar invariants. In theory, a similar spline-based
identification approach would be possible also in the anisotropic case, but a huge amount of
measurement data would be required to identify the splines. The model could be further extended
to plastic deformation by considering the equivalent plastic strain as an additional invariant,
but identification of such a model would also require new measurements. To simplify the
identification process, these measurements could also be replaced by multiscale models, which
can account for anisotropy [43] and plastic deformation [44].

In this work, the Maxwell stress was neglected from both the thermodynamic approach and
the SMS approach. The Maxwell stress could be considered in the momentum balance equations
when solving coupled magneto-mechanical field problems. The Maxwell stress is obviously
included in the measurements against which the thermodynamic model was fitted. However,
considering the maximum values of Bx and Hx in figure 2a, we can estimate that the magnitude
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of the Maxwell stress is around 1.67 T×680 A m−1 ≈ 4490 Pa. This value is about 4 magnitudes
lower than the applied loadings and can thus be neglected.
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Appendix A
The Lamé parameters are obtained from Young’s modulus E and Poisson’s ratio ν as

λ= Eν
(1 + ν)(1 − 2ν)

and μ= E
2(1 + ν)

. (A 1)

λ is not to be mixed with the magnetostriction tensor and its components, which are denoted λ,
λxx, λyy, λzz and λxy.

Appendix B
The magnetostricive parts of the stress appearing in (2.17) are derived here. Comparing (2.12) and
(2.13) to (2.16), we can see that

v = 3
2

exx and w = εxy. (B 1)

Let us divide the total energy density into mechanical and magneto-mechanical parts:

ψ(B, ε) = φmech(ε) + φ(B, e) with φmech = 1
2
λI2

1 + μI2. (B 2)

Differentiating this total energy density with respect to the xx component of the total strain gives
the xx component of the stress

σxx = ∂ψ

∂εxx
= ∂φmech

∂εxx
+ ∂φ

∂exx

∂exx

∂εxx
= λI1 + 2μεxx + 2

3
∂φ

∂exx
= λI1 + 2μεxx + ∂φ

∂v
, (B 3)

where (B 1) was used. By rearranging, we get

∂φ

∂v
= σxx − λI1 − 2μεxx. (B 4)

Substituting here λ and μ from (A 1), the strain components from (2.11), I1 from (1.3) as well as
the isochoric magnetostriction from (2.10) yields

∂φ

∂v
= − E

(1 + ν)
λxx, (B 5)

which is the contribution of the magnetostriction to the stress. With positive magnetostriction,
compressive stress is created.

https://github.com/prasilo/magnetostriction-spline/tree/v2.0
https://github.com/prasilo/magnetostriction-spline/tree/v2.0
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With a similar reasoning but taking into account that each shear component contributes twice
to the energy due to symmetry of the stress and strain tensors, we get

1
2
∂φ

∂w
= σxy − 2μεxy. (B 6)

Substituting here μ from (A 1) and the shear strain from (2.13) yields

∂φ

∂w
= − 2E

(1 + ν)
λxy. (B 7)
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