F. Nudelman, A. J. Lausch, N. A. Sommerdijk, and E. D. Sone, In vitro models of collagen biomineralization, J. Struct. Biol, vol.183, pp.258-269, 2013.

Y. Liu, D. Luo, and T. Wang, Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering, Small, vol.12, pp.4611-4632, 2016.

S. Weiner and W. Traub, Organization of hydroxyapatite crystals within collagen fibrils, FEBS Lett, vol.206, pp.262-266, 1986.

B. Alexander, T. L. Daulton, G. M. Genin, J. Lipner, J. D. Pasteris et al., The nanometre-scale physiology of bone: Steric modelling and scanning transmission electron microscopy of collagen-mineral structure, J. R. Soc. Interface, vol.9, pp.1774-1786, 2012.

N. Reznikov, M. Bilton, L. Lari, M. M. Stevens, and R. Kröger, Fractal-like hierarchical organization of bone begins at the nanoscale, Science, vol.360, 2018.

S. J. Eppell, W. Tong, J. L. Katz, L. Kuhn, and M. J. Glimcher, Shape and size of isolated bone mineralites measured using atomic force microscopy, J. Orthop. Res, vol.19, pp.1027-1034, 2001.

H. Kim, C. Rey, and M. J. Glimcher, Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature, J. Bone Miner. Res, vol.10, pp.1589-1601, 1995.

D. S. Bocciarelli, Morphology of crystallites in bone, Calcif. Tissue Res, vol.5, pp.261-269, 1970.

G. Cho, Y. Wu, and J. L. Ackerman, Detection of Hydroxyl Ions in Bone Mineral by Solid-State NMR Spectroscopy, Science, vol.300, pp.1123-1127, 2003.

C. K. Loong, C. Rey, L. T. Kuhn, C. Combes, Y. Wu et al., Evidence of hydroxyl-ion deficiency in bone apatites: An inelastic neutron-scattering study, vol.26, pp.599-602, 2000.

R. Legros, N. Balmain, and G. Bonel, Age-related changes in mineral of rat and bovine cortical bone, Calcif. Tissue Int, vol.41, pp.137-144, 1987.

W. F. Neuman, M. W. Neuman, E. R. Main, J. O'leary, and F. A. Smith, The surface chemistry of bone. II. Fluoride deposition, J. Biol. Chem, vol.187, pp.655-661, 1950.

D. Jong and W. F. La, Substance Minérale Dans les Os, Recl. Trav. Chim. Pays-Bas, vol.45, pp.445-448, 1926.

J. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, 1994.

Y. Wang, S. Von-euw, F. M. Fernandes, S. Cassaignon, M. Selmane et al., Water-mediated structuring of bone apatite, Nat. Mater, vol.12, pp.1144-1153, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289769

E. E. Wilson, A. Awonusi, M. D. Morris, D. H. Kohn, M. M. Tecklenburg et al., Three Structural Roles for Water in Bone Observed by Solid-State NMR, Biophys. J, vol.90, pp.3722-3731, 2006.

V. Euw and S. , Bone Biomineralization: From the Structural Characterization of the Mineral to Its 3D Organization, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01127563

V. Euw, S. Ajili, W. Chan-chang, T. Delices, A. Laurent et al., Amorphous surface layer versus transient amorphous precursor phase in bone-A case study investigated by solid-state NMR spectroscopy, Acta Biomater, vol.59, pp.351-360, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559945

C. Jäger, T. Welzel, W. Meyer-zaika, and M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magn. Reson. Chem, vol.44, pp.573-580, 2006.

Y. Wang, S. Von-euw, G. Laurent, C. Crevant, L. Bonhomme-coury et al., Impact of collagen confinement vs. ionic substitutions on the local disorder in bone and biomimetic apatites, Mater. Horiz, vol.1, pp.224-231, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01275062

E. A. Mcnally, H. P. Schwarcz, G. A. Botton, and A. L. Arsenault, A Model for the Ultrastructure of Bone Based on Electron Microscopy of Ion-Milled Sections, PLoS ONE, vol.7, 2012.

E. Mcnally, F. Nan, G. A. Botton, and H. P. Schwarcz, Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging, Micron, vol.49, pp.46-53, 2013.

S. Weiner, T. Arad, and W. Traub, Crystal organization in rat bone lamellae, FEBS Lett, vol.285, pp.49-54, 1991.

H. P. Schwarcz, E. A. Mcnally, and G. A. Botton, Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals, J. Struct. Biol, vol.188, pp.240-248, 2014.

M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Y. Kim et al., Bone structure and formation: A new perspective, Mater. Sci. Eng. R Rep, vol.58, pp.77-116, 2007.

E. Beniash, Biominerals-hierarchical nanocomposites: The example of bone: Biominerals-hierarchical nanocomposites, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.3, pp.47-69, 2011.

C. Burger, H. Zhou, H. Wang, I. Sics, B. S. Hsiao et al., Lateral Packing of Mineral Crystals in Bone Collagen Fibrils, Biophys. J, vol.95, 1985.

A. George and A. Veis, Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition, Chem. Rev, vol.108, pp.4670-4693, 2008.

G. He, T. Dahl, A. Veis, and A. George, Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1, Nat. Mater, vol.2, pp.552-558, 2003.

E. Beniash, A. S. Deshpande, P. A. Fang, N. S. Lieb, X. Zhang et al., Possible role of DMP1 in dentin mineralization, J. Struct. Biol, vol.174, pp.100-106, 2011.

A. S. Deshpande, P. Fang, X. Zhang, T. Jayaraman, C. Sfeir et al., Primary Structure and Phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosphophoryn (DPP) Uniquely Determine Their Role in Biomineralization, Biomacromolecules, vol.12, pp.2933-2945, 2011.

F. Nudelman, K. Pieterse, A. George, P. H. Bomans, H. Friedrich et al., The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors, Nat. Mater, vol.9, pp.1004-1009, 2010.

Y. Liu, Y. Kim, L. Dai, N. Li, S. O. Khan et al., Hierarchical and non-hierarchical mineralisation of collagen, Biomaterials, vol.32, 2011.

A. S. Deshpande and E. Beniash, Bioinspired Synthesis of Mineralized Collagen Fibrils. Cryst. Growth Des, vol.8, pp.3084-3090, 2008.

L. Dai, Y. Qi, L. Niu, Y. Liu, C. R. Pucci et al., Inorganic-Organic Nanocomposite Assembly Using Collagen as a Template and Sodium Tripolyphosphate as a Biomimetic Analog of Matrix Phosphoprotein, Cryst. Growth Des, vol.11, pp.3504-3511, 2011.

L. Niu, S. E. Jee, K. Jiao, L. Tonggu, M. Li et al., Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality, Nat. Mater, vol.16, pp.370-378, 2017.

S. Rhee, Y. Suetsugu, and J. Tanaka, Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics, Biomaterials, vol.22, pp.2843-2847, 2001.

Y. Wang, T. Azaïs, M. Robin, A. Vallée, C. Catania et al., The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite, Nat. Mater, vol.11, pp.724-733, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01461430

W. J. Landis and F. H. Silver, Mineral Deposition in the Extracellular Matrices of Vertebrate Tissues: Identification of Possible Apatite Nucleation Sites on Type I Collagen, Cells Tissues Organs, vol.189, pp.20-24, 2009.

F. H. Silver and W. J. Landis, Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen, Connect. Tissue Res, vol.52, pp.242-254, 2011.

M. J. Glimcher, A. J. Hodge, and F. O. Schmitt, Macromolecular Aggregation States In Relation To Mineralization: The Collage-Hydroxyapatite System As Studied In Vitro, Proc. Natl. Acad. Sci, vol.43, pp.860-867, 1957.

Y. Hu, A. Rawal, and K. Schmidt-rohr, Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proc. Natl. Acad. Sci, vol.107, pp.22425-22429, 2010.

E. Davies, K. H. Muller, W. C. Wong, C. J. Pickard, D. G. Reid et al., Citrate bridges between mineral platelets in bone, Proc. Natl. Acad. Sci, vol.111, pp.1354-1363, 2014.

M. Iafisco, G. B. Ramírez-rodríguez, Y. Sakhno, A. Tampieri, G. Martra et al., The growth mechanism of apatite nanocrystals assisted by citrate: Relevance to bone biomineralization, CrystEngComm, vol.17, pp.507-511, 2015.

B. Cantaert, E. Beniash, and F. C. Meldrum, The role of poly(aspartic acid) in the precipitation of calcium phosphate in confinement, J. Mater. Chem. B, 2013.

B. Cantaert, E. Beniash, and F. C. Meldrum, Nanoscale Confinement Controls the Crystallization of Calcium Phosphate: Relevance to Bone Formation, Chem.-Eur. J, vol.19, pp.14918-14924, 2013.

N. Nassif, F. Martineau, O. Syzgantseva, F. Gobeaux, M. Willinger et al., Vivo Inspired Conditions to Synthesize Biomimetic Hydroxyapatite, vol.22, pp.3653-3663, 2010.

J. P. Yesinowski and H. Eckert, Hydrogen environments in calcium phosphates: Proton MAS NMR at high spinning speeds, J. Am. Chem. Soc, vol.109, pp.6274-6282, 1987.

E. E. Wilson, A. Awonusi, M. D. Morris, D. H. Kohn, M. M. Tecklenburg et al., Highly Ordered Interstitial Water Observed in Bone by Nuclear Magnetic Resonance, J. Bone Miner. Res, vol.20, pp.625-634, 2004.

S. C. Cowin and . Bone-poroelasticity, J. Biomech, vol.32, pp.217-238, 1999.

W. F. Neuman, T. Y. Toribara, and B. J. Mulryan, The Surface Chemistry of Bone. VII. The Hydration Shell 1, J. Am. Chem. Soc, vol.75, pp.4239-4242, 1953.

C. Drouet, M. Aufray, S. Rollin-martinet, N. Vandecandelaère, D. Grossin et al., Nanocrystalline apatites: The fundamental role of water, Am. Mineral, vol.103, pp.550-564, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02090303

C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug, Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials, Mater. Sci. Eng. C, vol.27, pp.198-205, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00160944

S. Cazalbou, C. Combes, D. Eichert, C. Rey, and M. J. Glimcher, Poorly crystalline apatites: Evolution and maturation in vitro and in vivo, J. Bone Miner. MeTable, vol.22, 2004.

W. F. Neuman and M. W. Neuman, The Nature of the Mineral Phase of Bone, Chem. Rev, vol.53, pp.1-45, 1953.

X. Su, K. Sun, F. Z. Cui, and W. J. Landis, Organization of apatite crystals in human woven bone, vol.32, pp.150-162, 2003.

N. Vandecandelaere, C. Rey, and C. Drouet, Biomimetic apatite-based biomaterials: On the critical impact of synthesis and post-synthesis parameters, J. Mater. Sci. Mater. Med, vol.23, pp.2593-2606, 2012.

J. Tao, H. Pan, Y. Zeng, X. Xu, and R. Tang, Roles of Amorphous Calcium Phosphate and Biological Additives in the Assembly of Hydroxyapatite Nanoparticles, J. Phys. Chem. B, vol.111, pp.13410-13418, 2007.

J. J. De-yoreo, P. U. Gilbert, N. A. Sommerdijk, R. L. Penn, S. Whitelam et al., Crystallization by particle attachment in synthetic, biogenic, and geologic environments, Science, vol.349, 2015.

R. L. Penn and J. F. Banfield, Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals, Science, vol.281, pp.969-971, 1998.

I. Jäger and P. Fratzl, Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles, Biophys. J, vol.79, pp.1737-1746, 2000.

M. Duer and A. Veis, Water brings order: Bone mineralization, Nat. Mater, vol.12, pp.1081-1082, 2013.

S. Huang, Y. Tsai, Y. Lee, C. Lin, and J. C. Chan, Structural Model of Rat Dentin Revisited, Chem. Mater, vol.21, pp.2583-2585, 2009.

V. Euw, S. Zhang, Q. Manichev, V. Murali, N. Gross et al., Biological control of aragonite formation in stony corals, Science, vol.356, pp.933-938, 2017.

N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager et al., Amorphous layer around aragonite platelets in nacre, Proc. Natl. Acad. Sci, vol.102, pp.12653-12655, 2005.

K. Benzerara, N. Menguy, P. Lopez-garcia, T. Yoon, J. Kazmierczak et al., Nanoscale detection of organic signatures in carbonate microbialites, Proc. Natl. Acad. Sci, vol.103, pp.9440-9445, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105486