A. Y. Grosberg and A. Khokhlov, Giant molecules: here and there and everywhere, 2011.

A. N. Boettiger, B. Bintu, J. R. Moffitt, S. Wang, B. J. Beliveau et al., Super-resolution imaging reveals distinct chromatin folding for different epigenetic states, Nature, vol.529, issue.7586, pp.418-440, 2016.

D. I. Cattoni, C. Gizzi, A. M. Georgieva, M. , D. Stefano et al., Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions, Nature Communications, vol.8, issue.1, p.1753, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01652403

T. Sexton, E. Yaffe, E. Kenigsberg, F. Bantignies, B. Leblanc et al., Three-dimensional folding and functional organization principles of the drosophila genome, Cell, vol.148, issue.3, pp.458-72, 2012.

G. J. Filion, J. G. Van-bemmel, U. Braunschweig, W. Talhout, J. Kind et al., Systematic protein location mapping reveals five principal chromatin types in drosophila cells, Cell, vol.143, issue.2, pp.212-236, 2010.

N. Haddad, D. Jost, and C. Vaillant, Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res, vol.25, pp.35-50, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01976574

D. Jost, P. Carrivain, G. Cavalli, and C. Vaillant, Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains, Nucleic Acids Res, vol.42, issue.15, pp.9553-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064092

S. Mangenot, E. Raspaud, C. Tribet, L. Belloni, and F. Livolant, Interactions between isolated nucleosome core particles: a tail-bridging effect?, Eur Phys J E, vol.03, issue.7, pp.221-252, 2002.

S. Mangenot, A. Leforestier, P. Vachette, D. Durand, and F. Livolant, Salt-induced conformation and interaction changes of nucleosome core particles, Biophys J, vol.02, issue.82, pp.345-56, 2002.

I. Nishio, S. T. Sun, G. Swislow, and T. Tanaka, First observation of the coil-globule transition in a single polymer chain, Nature, vol.281, issue.5728, pp.208-217, 1979.

A. I. Grosberg and A. R. Khokhlov, Statistical physics of macromolecules, 1994.

M. Wachsmuth, T. A. Knoch, and K. Rippe, Dynamic properties of independent chromatin domains measured by correlation spectroscopy in living cells, Epigenet Chromatin, vol.9, issue.1, p.57, 2016.

P. Grassberger and R. Hegger, Simulations of three-dimensional ? polymers, J Chem Phys, vol.102, issue.17, pp.6881-99, 1995.

B. R. Caré, P. Carrivain, T. Forné, J. M. Victor, and A. Lesne, Finite-size conformational transitions: a unifying concept underlying chromosome dynamics, Commun Theor Phys, vol.62, issue.4, p.607, 2014.

J. M. Victor and D. Lhuillier, The gyration radius distribution of two-dimensional polymer chains in a good solvent, J Chem Phys, vol.92, issue.2, pp.1362-1366, 1990.

J. Victor, J. Imbert, and D. Lhuillier, The number of contacts in a self-avoiding walk of variable radius of gyration in two and three dimensions, J Chem Phys, vol.100, issue.7, pp.5372-5379, 1994.

A. Lesage, V. Dahirel, M. Barbi, and J. M. Victor, Finite-size polymer simulations and theory

J. B. Imbert, A. Lesne, and J. M. Victor, Distribution of the order parameter of the coil-globule transition, Phys Rev E, vol.56, issue.5, pp.5630-5677, 1997.

F. T. Wall and F. Mandel, Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition, J Chem Phys, vol.63, issue.11, pp.4592-4597, 1975.

B. R. Caré, P. E. Emeriau, R. Cortini, and J. M. Victor, Chromatin epigenomic domain folding: size matters, AIMS Biophys, vol.2, p.517, 2015.

D. Foreman-mackey, D. W. Hogg, L. D. Goodman, and J. Emcee, The MCMC hammer. PASP, vol.125, pp.306-318, 2013.

B. R. Williams, J. R. Bateman, N. D. Novikov, and C. T. Wu, Disruption of topoisomerase II perturbs pairing in drosophila cell culture, Genetics, vol.177, issue.1, pp.31-46, 2007.

T. N. Senaratne, E. F. Joyce, S. C. Nguyen, C. -ting, and W. , Investigating the interplay between sister chromatid cohesion and homolog pairing in drosophila nuclei, PLoS Genet, vol.12, issue.8, p.1006169, 2016.

Q. Szabo, D. Jost, J. M. Chang, D. I. Cattoni, G. L. Papadopoulos et al., TADs are 3D structural units of higher-order chromosome organization in Drosophila, Sci Adv, vol.4, issue.2, p.8082, 2018.

A. Scacchetti, L. Brueckner, D. Jain, T. Schauer, X. Zhang et al., CHRAC/ACF contribute to the repressive ground state of chromatin, Life Sci. Alliance, vol.1, issue.1, p.201800024, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02109020

E. Ben-haïm, A. Lesne, and J. M. Victor, Chromatin: a tunable spring at work inside chromosomes, Phys Rev E, vol.64, p.51921, 2001.

H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman et al., ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells, Science, vol.357, issue.6349, p.25, 2017.

M. Ohno, T. Ando, D. G. Priest, V. Kumar, Y. Yoshida et al., Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs, Cell, vol.176, issue.3, pp.520-554, 2019.

M. Socol, R. Wang, D. Jost, P. Carrivain, V. Dahirel et al., In vivo, chromatin is a fluctuating polymer chain at equilibrium constrained by internal friction, 2017.

R. Barth, K. Bystricky, and H. A. Shaban, Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription, Nucleic Acids Res, vol.46, issue.13, p.77, 2018.

T. Nozaki, R. Imai, M. Tanbo, R. Nagashima, S. Tamura et al., Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging, Mol Cell, vol.67, issue.2, pp.282-93, 2017.

K. Bystricky, P. Heun, L. Gehlen, J. Langowski, and S. M. Gasser, Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques, Proc Natl Acad Sci, vol.101, issue.47, pp.16495-500, 2004.

J. Dekker, Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction, J Biol Chem, vol.283, issue.50, pp.34532-34572, 2008.

A. L. Sanborn, S. Rao, S. C. Huang, N. C. Durand, M. H. Huntley et al., Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc Natl Acad Sci, vol.112, issue.47, pp.6456-65, 2015.

J. Nuebler, G. Fudenberg, M. Imakaev, N. Abdennur, and L. A. Mirny, Chromatin organization by an interplay of loop extrusion and compartmental segregation, Proc Natl Acad Sci, vol.115, issue.29, pp.6697-706, 2018.

?. Fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research

, Ready to submit your research ? Choose BMC and benefit from: 36. van Steensel B. Chromatin: constructing the big picture, EMBO J, vol.30, issue.10, pp.1885-95, 2011.

H. Schiessel, How short-ranged electrostatics controls the chromatin structure on much larger scales, Europhysics Letters), vol.58, issue.1, p.140, 2002.

N. Haddad, C. Vaillant, and D. Jost, IC-Finder: inferring robustly the hierarchical organization of chromatin folding, Nucleic Acids Res, vol.45, issue.10, p.81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01976542

S. K. Ghosh and D. Jost, How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes, PLOS Comput Biol, vol.14, issue.5, pp.1-26, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976607

M. Falk, Y. Feodorova, N. Naumova, M. Imakaev, B. R. Lajoie et al., Heterochromatin drives organization of conventional and inverted nuclei. bioRxiv, 2018.

Y. Markaki, D. Smeets, S. Fiedler, V. J. Schmid, L. Schermelleh et al., The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture, BioEssays, vol.34, issue.5, pp.412-438, 2012.

C. Lavelle, Transcription elongation through a chromatin template, DNA Topology, vol.89, issue.4, pp.516-543, 2007.
DOI : 10.1016/j.biochi.2006.09.019

R. Collepardo-guevara, G. Portella, M. Vendruscolo, D. Frenkel, T. Schlick et al., Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: a multiscale computational study, J Am Chem Soc, vol.137, issue.32, p.26192632, 2015.

A. Allahverdi, R. Yang, N. Korolev, Y. Fan, C. A. Davey et al., The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association, Nucleic Acids Res, vol.39, issue.5, pp.1680-91, 2011.

M. A. Ricci, C. Manzo, M. F. García-parajo, M. Lakadamyali, and M. P. Cosma, Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell, vol.160, issue.6, pp.1145-58, 2015.

P. G. De-gennes, Scaling concepts in polymer physics, 1979.

L. A. Mirny, The fractal globule as a model of chromatin architecture in the cell, Chromosome Res, vol.19, issue.1, pp.37-51, 2011.

K. P. Eagen, E. L. Aiden, and R. D. Kornberg, Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map, Proc Natl Acad Sci, vol.114, issue.33, pp.8764-8773, 2017.
DOI : 10.1073/pnas.1701291114

URL : http://europepmc.org/articles/pmc5565414?pdf=render

S. Bilokapic, M. Strauss, and M. Halic, Cryo-EM of nucleosome core particle interactions in trans, Sci Rep, vol.8, issue.1, p.7046, 2018.

P. Brangwynne, P. Tompa, and R. V. Pappu, Polymer physics of intracellular phase transitions, Nat Phys, 2015.

B. A. Gibson, L. K. Doolittle, L. E. Jensen, N. Gamarra, S. Redding et al., Organization and regulation of chromatin by liquid-liquid phase separation. bioRxiv, 2019.
DOI : 10.1101/523662

URL : https://www.biorxiv.org/content/biorxiv/early/2019/01/18/523662.full.pdf

J. Xu, H. Ma, J. J. Uttam, S. Fu, R. Huang et al., Super-resolution imaging of higher-order chromatin structures at different epigenomic states in single mammalian cells, Cell Rep, vol.24, issue.4, pp.873-82, 2018.