

Genetic and morphological differentiation of Porphyra and Pyropia species (Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile

Andrés Meynard, Javier Zapata, Nicolás Salas, Claudia Betancourtt, Gabriel Pérez-lara, Francisco Castañeda, María Eliana Ramírez, Cristian Bulboa Contador, Marie-laure Guillemin, Loretto Contreras-porcia

► To cite this version:

Andrés Meynard, Javier Zapata, Nicolás Salas, Claudia Betancourtt, Gabriel Pérez-lara, et al.. Genetic and morphological differentiation of Porphyra and Pyropia species (Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile. Journal of Phycology, 2019, 55 (2), pp.297-313. 10.1111/jpy.12829. hal-02147670

HAL Id: hal-02147670 https://hal.sorbonne-universite.fr/hal-02147670

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Genetic and morphological differentiation of Porphyra and Pyropia species (Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile

Journal:	Journal of Phycology
Manuscript ID	JPY-18-094-ART.R2
Manuscript Type:	Regular Article
Date Submitted by the Author:	30-Jul-2018
Complete List of Authors:	Meynard, Andres; Universidad Andres Bello Zapata, Javier; Universidad Andres Bello Salas, Nicolas; Universidad Andres Bello Betancourtt, Claudia; Universidad Andres Bello Pérez-Lara, Gabriel; Universidad Andres Bello Castañeda, Francisco; Universidad Andres Bello Ramírez, Maria; Universidad Andres Bello Bulboa Contador, Cristian; Universidad Andres Bello Guillemin, Marie-Laure; Universidad Andres Bello Guillemin, Marie-Laure; Universidad Austral de Chile, Instituto de Ecología y Evolución, Facultad de Ciencias Contreras-Porcia, Loretto; Universidad Andrés Bello, Ecología y Biodiversidad
Keywords:	taxonomy, Macroalgae, Rhodophyta
Alternate Keywords:	Intertidal distribution, Bangiales, COI, rbcL, Chile
Note: The following files were su PDF. You must view these files	ibmitted by the author for peer review, but cannot be converted to (e.g. movies) online.
Figure 2.tif Figure 6.tif Figure 7.tif Figure 8.tif Figure 9.tif	

SCHOLARONE[™] Manuscripts

1	Genetic and morphological differentiation of <i>Porphyra</i> and <i>Pyropia</i> species
2	(Bangiales, Rhodophyta) coexisting in a rocky intertidal in Central Chile
3	Andrés Meynard, Javier Zapata, Nicolás Salas, Claudia Betancourtt,
4	Gabriel Pérez-Lara, Francisco Castañeda
5	Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad
6	Andrés Bello, República 440, Santiago, Chile
7	Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida,
8	Universidad Andrés Bello, Quintay, Chile
9	María Eliana Ramírez
10	Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad
11	Andrés Bello, República 440, Santiago, Chile
12	Museo Nacional de Historia Natural, Área Botánica, Casilla 787, Santiago, Chile
13	Cristian Bulboa Contador
14	Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad
15	Andrés Bello, República 440, Santiago, Chile
16	Marie-Laure Guillemin
17	Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567
18	Valdivia, Chile
19	CNRS, Sorbonne Universités, UPMC University Paris VI, PUC, UACH, UMI 3614,
20	Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074,
21	Place G. Teissier, 29680 Roscoff, France
22	Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes
23	(IDEAL)

24	Loretto Contreras-Porcia ²
25	Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad
26	Andrés Bello, República 440, Santiago, Chile
27	Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida,
28	Universidad Andrés Bello, Quintay, Chile
29	Center of Applied Ecology & Sustainability (CAPES-UC), Pontificia Universidad Católica
30	de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
31	
32	Running title: New Porphyra and Pyropia species from central Chile
33	
34	¹ Date of submission and acceptance
35	² Author for correspondence: e-mail: lorettocontreras@unab.cl
36	
37	Abstract
38	A recent molecular taxonomic study along the Chilean coast (18°S-53° S) described 18
39	candidate species of bladed Bangiales of which only two were formally described. Few
40	studies focused on local genetic and morphological diversity of bladed Bangiales and
41	attempted to determine their intertidal distribution in contrasting habitats; and none were
42	performed in Chile. To delimit intertidal distributions of genetic species, 66 samples of
43	bladed Bangiales were collected at Maitencillo (32°S) in four zones: a rocky platform, a
44	rocky wall, and two boulders zones surrounded by sandy and rocky bottoms, respectively.
45	These samples were identified based on sequences of the mitochondrial COI and
46	chloroplast <i>rbc</i> L markers. We also collected 87 specimens for morphological

47	characterization of the most common species, rapidly assessing their putative species
48	identity using newly developed species-diagnostic (PCR-RFLP) markers. Eight
49	microscopic and two macroscopic morphological traits were measured. We described and
50	named three out of four species that predominate in Maitencillo (including Pyropia
51	orbicularis): Pyropia variabilis Zapata, Meynard, Ramírez, Contreras-Porcia, sp. nov.,
52	Porphyra luchensis Meynard, Ramírez, Contreras-Porcia sp. nov. and Porphyra longissima
53	Meynard, Ramírez, Contreras-Porcia, sp. nov. With the exception of Po. longissima
54	restricted to boulders surrounded by sandy bottom, and a morphotype of Py. variabilis
55	restricted to rocky walls, the other species/morphotypes have overlapping intertidal
56	distributions. Except for Po. longissima which is clearly differentiated morphologically
57	(longest and thinnest blades), we conclude that morphology is not sufficient to differentiate
58	bladed Bangiales. Our findings underscore the importance of refining our knowledge of
59	intrinsic and environmental determinants on the distribution of bladed Bangiales.
60	
61	Key index words: Bangiales; taxonomy; COI; rbcL; Chile; Intertidal distribution
62	Abbreviations: COI, cytochrome oxidase I; ML, Maximum Likelihood; PCA, Principal
63	Component Analysis; PCR-RFLP, polymerase chain reaction restriction fragment length
64	polymorphism analyses; <i>rbc</i> L, large subunit ribulose bis-phosphate carboxylase/oxygenase.
65	
66	
67	
68	
69	

7	0
1	υ

INTRODUCTION

71	Prior to the last decade, all foliose Bangiales have been classified under the genus
72	Porphyra sensu lato (Blouin et al. 2011, Sutherland et al. 2011). Nevertheless, classical
73	taxonomic methods, based mainly on morphological and life history traits, were shown to
74	be highly misleading in this order (Sutherland et al. 2011). Indeed, with the advent of
75	molecular phylogenies, several cryptic genera of foliose Bangiales were discovered and
76	various classical genera were redefined (Sutherland et al. 2011, Sánchez et al. 2014, 2015,
77	Yang et al. 2018). The existence of nine genera of bladed Bangiales was then proposed
78	based on these molecular studies: Boreophyllum S.C Lindstrom N. Kikuchi, M. Miyata et
79	Neefus, Clymene WA Nelson, Fuscifolium S.C Lindstrom, Miuraea N. Kikuchi, S. Arai, G.
80	Yoshida, J.A. Shin et M. Miyata, Lysithea WA Nelson, Porphyra C. Agardh, Pyropia J.
81	Agardh, Wildemania De Toni and Neothemis A.Sánchez, A.Vergés, C.Peteiro, J.Sutherland
82	& J.Brodie. Of particular note, most of the "nori" species cultivated in Asia nowadays
83	belong to the genus <i>Pyropia</i> (Sutherland et al. 2011, Zuccarello 2011). At the genus level,
84	the delimitation of species was undertaken recently using molecular tools, an advent that
85	has redefined the frontiers of former taxa over the last ten years (e.g. Broom et al. 2002,
86	Brodie et al. 2007, Neefus et al. 2008, Nelson et al. 2013, Guillemin et al. 2016, Dumilag et
87	al. 2016, Reddy et al. 2018, Yang et al. 2018). A high level of cryptic genetic diversity was
88	found within the two genera Porphyra and Pyropia (Brodie et al. 2007, Niwa et al. 2009,
89	Broom et al. 2010, Lindstrom et al. 2015, Guillemin et al. 2016, Koh et al. 2018, Reddy et
90	al. 2018, Yang et al. 2018). According to Zuccarello (2011), the discovery of these new
91	taxa, that cannot be identified based on morphology, could drive field ecology studies to
92	misleaded conclusions and impair our understanding of the evolutionary processes that
93	generated this diversity. Hence, to aid in the rapid, cheap and reliable identification of some

94	Asiatic bladed Bangiales, a number of studies carried by Niwa and collaborators (Teasdale
95	et al. 2002, 2005, 2009, 2010a, b, and 2014, Niwa & Aruga 2006) developed molecular
96	markers based on polymerase chain reaction restriction fragment length polymorphism
97	(PCR-RFLP) analyses of nuclear and cytoplasmic genes.
98	Considering the economical, biotechnological, ecophysiological and evolutionary
99	research potentials of species of bladed Bangiales, there is clearly a need to better define
100	their taxonomic frontiers (Hurd et al. 2014). Moreover, this new appraisal of the taxonomic
101	and biochemical diversity within the Bangiales could also unveil ecological patterns unseen
102	under the old paradigm of identification based exclusively on morphology. Contradictory
103	results have been published concerning intertidal zonation or habitat partitioning of
104	Porphyra and Pyropia species living in sympatry (see, for example, West et al. 2005, for a
105	positive answer, and Schweikert et al. 2012, for a negative one). Nevertheless, studies in
106	other groups of red and brown algae showed that non-random small-scale distribution
107	patterns occur locally between related algal species (e.g. Billard et al. 2010, Couceiro et al.
108	2015, Muangmai et al. 2016, Montecinos et al. 2017).
109	In Chile, a recent study using molecular methods and samples spanning most of the
110	coast (18°S-53°S), identified 18 species of bladed Bangiales belonging to the genus
111	Porphyra, Pyropia, Fuscifolium and Wildemania (Guillemin et al. 2016). Of the 18 species
112	encountered in Chile only two are named and were characterized morphologically (Ramírez
113	et al. 2014, Guillemin et al. 2016). A group of closely related species (namely Pyropia sp.
114	CHJ, Pyropia sp. CHK and Pyropia orbicularis Ramírez, Contreras-Porcia & Guillemin
115	(Ramírez et al. 2014, Guillemin et al. 2016) co-occur in central Chile. Pyropia orbicularis
116	and Pyropia sp CHK were even observed in sympatry in the locality of Maitencillo. It is
117	well known that adaptation to different ecological micro-niches could facilitate the

118	coexistence of closely by related species in the same locality (Billard et al. 2010,
119	Muangmai et al. 2016), but differences in intertidal zonation or habitat between Pyropia sp.
120	CHJ, Pyropia sp. CHK and Pyropia orbicularis have not yet been studied.
121	The main aims of the present study was to (i) determine how many species of
122	bladed Bangiales are present in the locality of Maitencillo when using a sampling method
123	that takes into account the diversity of habitats present in the site, (ii) determine their
124	distribution along the tidal gradient and in the different habitats sampled, (iii) develop
125	simple and rapid species-diagnostic markers using polymerase chain reaction restriction
126	fragment length polymorphism (PCR-RFLP) on <i>rbcL</i> gene amplicons for the
127	discrimination of these bladed Bangiales species, and (iv) describe the unnamed species
128	living at the study site using a combination of molecular tools and statistical analyses of
129	morphological characters.
130	
131	MATERIALS AND METHODS
132	
133	Sampling of foliose Bangiales in Maitencillo beach
134	Sampling was performed in the rocky intertidal shore of Maitencillo, Valparaíso (32° 39'S,
135	71° 26' W, Fig. S1). This site is characterized by a rocky platform that gently slopes into
136	the sea with small areas characterized by boulders and small, but steep rocky walls. Foliose
137	Bangiales are prevalent in the upper intertidal zone while Mazzaella laminaroides
138	(Rhodophyta) dominate the middle intertidal (Betancourtt et al. 2018). The lower intertidal
139	zone is characterized by a sandy bottom. Two sampling schemes were used during the
140	study. First, to characterize species diversity and small-scale distribution in Maitencillo we
141	sampled 66 specimens of bladed Bangiales from July to December 2013 and 2014 (i.e.

winter-spring) in different intertidal zones and habitats. Sampling took place along three 142 143 transects extending 20 m from the upper to lower intertidal zone of the rocky platform. Twenty-two specimens of Bangiales were sampled within three areas of 5-6 meters long 144 per 0.5 meters wide along each transect. These three areas were defined as upper, middle 145 146 and lower intertidal, respectively, according to animal and seaweed limits previously described in central Chile (Hoffmann & Santelices 1987). This sampling was completed by 147 seventeen samples taken from two quadrants of 0.5 m^2 placed on a steep wall adjacent to 148 the upper intertidal zone; and by 24 samples taken from four quadrants of 0.5 m^2 placed in 149 two boulder zones (two quadrats in each zone, 12 samples per boulder zone). The boulder 150 zones were located 150 m from the main transect. One was surrounded by rocky pools 151 152 while the other was surrounded by pools of sandy bottoms. Some representative samples were chosen as voucher specimens that are housed in the herbarium of the National 153 154 Museum of Natural History, Chile, under the SGO herbarium numbering system (see voucher numbers in Table S1; Museo Nacional de Historia Natural, herbarium code: SGO, 155 http://www.mnhn.cl). To study the morphology of the four-dominant species encountered 156 in Maitencillo (see below for more information about species determination), a second 157 sampling was performed from August to December 2014 (i.e. winter-spring) where 87 158 specimens of bladed *Bangiales* were sampled in different intertidal habitats. 159

160

DNA extraction, amplification, sequencing and species delimitation by molecular tools
DNA extraction. Total genomic DNA was extracted from dried algal tissue grounded in
liquid nitrogen following the protocol originally described by Saunders (1993), with
modifications by Faugeron et al. (2001).

165

166 *COI and rbcL amplification and sequencing*. A partial sequence of the *COI* was obtained
167 using a newly defined forward primer COIF3 (5'-

168 AATTAGRATGGAAYTAGCKCAACC-3') and the GazR1 primer, following the

amplification protocols of Saunders (2005). A partial sequence of the *rbc*L was obtained

- using the primers F-*rbc*L and R-*rbc*S (Hommersand et al. 1994), following the previously
- 171 published amplification protocols (Hommersand et al. 1994, Fredericq and López-Bautista
- 172 2003). All PCR products were purified using UltraCleanTM DNA Purification kits (MO

173 BIO Laboratories, Carlsbad, CA, USA) and sequenced using the forward and reverse

174 primers used for amplification by Macrogen Inc. (Seoul, South Korea). Sequences were

aligned and edited using Bioedit (Hall 1999). Sixty-six specimens from the first sampling

scheme and 24 from the second sampling scheme (for morphological analyses) were

sequenced. During this study, 90 *COI* sequences (603 bp) and 46 *rbc*L sequences (873 bp)

178 were obtained and deposited in GENBANK. Details about specimen collection information

and GENBANK accession numbers are given in Table S1.

180

Species delimitation and phylogenetic relationship reconstruction. For the rbcL, in addition 181 to the 46 sequences newly obtained from Maitencillo, 174 sequences of Chilean Bangiales 182 specimens (including 20 sequences from Maitencillo, Guillemin et al. 2016) and 157 183 sequences retrieved from GENBANK were included in our data set. For the COI, in 184 addition to the 90 sequences newly obtained (i.e. first and second sampling scheme) from 185 186 Maitencillo, 159 sequences of Chilean Bangiales (including 20 from sequences from Maitencillo, Guillemin et al. 2016) as well as 39 sequences retrieved from GENBANK 187 were included in our data set. The complete list of specimens used in molecular analyses is 188 189 available in Tables S1 and S2.

190	The monophyly of each Pyropia and Porphyra species, previously determined by
191	Guillemin et al. (2016), was examined using a maximum likelihood (ML) phylogenetic
192	relationship reconstruction performed using IQ-TREE online server (Trifinopoulos et al.
193	2016). We selected the best-fit substitution model using the Akaike information criterion
194	implemented in IQ-TREE (Nguyen et al. 2015, Trifinopoulos et al. 2016). The selected
195	models were TIM3+F+G4 and TN+F+I+G4 for the COI (Pyropia and Porphyra,
196	respectively) and TIM+I+G4 for the <i>rbc</i> L. Statistical support was estimated using 1,000
197	ultrafast bootstrap replicates (Nguyen et al. 2014). Minerva aenigmata W.A. Nelson
198	(EU570053) and <i>Dione arcuata</i> W.A. Nelson (EU570052) were used as outgroups in the
199	phylogenetic analysis of <i>rbc</i> L. For the <i>COI</i> (Sutherland et al. 2011), tree reconstructions
200	were done separately for Pyropia and Porphyra species, using as outgroups Boreophylum
201	birdiae and Bangia fuscopurpurea, respectively, following Guillemin et al. (2016) and
202	Sutherland et al. (2011).
203	For each of the 90 specimens sequenced, affiliation to one of the 18 cryptic species
204	observed in Chile (Guillemin et al. 2016) or to a newly encountered species was determined
205	using the ML tree reconstruction. For the more problematic groups of sequences (i.e.
206	corresponding to the group of closely related species Pyropia sp. CHJ, Pyropia sp. CHK
207	and Pyropia orbicularis), we followed the grouping proposed by Guillemin et al. (2016)
208	and a COI phylogeographic network was reconstructed using the median-joining algorithm
209	implemented in HapView version Beta (Salzburger et al. 2011). For Pyropia sp. CHJ,
210	Pyropia sp. CHK and Pyropia orbicularis, we calculated mean genetic distances within-
211	and between-species for the COI in Mega6 (Tamura et al. 2013). Distances were calculated
212	using the Maximum Composite Likelihood method and variation rate among sites was
213	modeled with a gamma distribution; codon positions included were $1st + 2nd + 3rd$.

214	
215	Development of PCR-RFLP to rapidly assess putative species identity of Maitencillo foliose
216	Bangiales
217	Using the 44 sequences of <i>rbc</i> L available for the four more common species of foliose
218	Bangiales encountered in Maintecillo (this study, Ramírez et al. 2014, Guillemin et al.
219	2016, see results for more information), we developed a method of species identification
220	using polymerase chain reaction restriction fragment length polymorphism analyses (PCR-
221	RFLP) of plastid DNA.
222	Differences in pattern of restriction digestion between species were examined in-
223	silico using the program Webcutter 2.0 (http://rna.lundberg.gu.se/cutter2/copyright 1997
224	Max Heiman). Amplification protocol of the <i>rbc</i> L used in the PCR-RFLP analyses was the
225	same as described above. Nonetheless, PCRs were done using a different forward primer
226	than previously mentioned. Our newly developed primer <i>rbc</i> L-Pyr-F (5'-
227	AGGTGTTGACCCGATTGAAG-3'), producing a longer fragment of 1230 bp instead of
228	873 bp, was used instead of F-rbcL (Hommersand et al. 1994) in the PCR mix. The
229	digestion of 0.5-1 µg of <i>rbc</i> L PCR product with 1.5 U AfaI (Thermo Scientific, Pittsburgh,
230	PA) was performed following manufacturer instructions, with slight modifications. After
231	16 h at 37 °C, the reaction was stopped using a heat denaturation of 20 min at 65 °C. The
232	fragments obtained after digestion with AfaI were separated on a 2 % TBE-agarose
233	electrophoresis. Because the <i>rbcL</i> PCR-RFLP patterns obtained were extremely similar
234	between the two Pyropia species (see results for more details), a partial sequence of the
235	COI was obtained for 24 Pyropia samples using the same protocol as described above to
236	confirm the species identification obtained by PCR-RFLP.
237	

238 Morphological measurements and statistical analyses

239 For classical descriptions of foliose Bangiales species found at Maitencillo, the thallus 240 shape, color, texture, and rhizoid position were described in 87 specimens previously 241 identified at the species level using the newly developed PCR-RFLP method and COI 242 sequences (see above). Microscopic observations of superficial and hand-cut transverse sections were used to establish tissue thickness and the number of cell layers, as well as to 243 identify vegetative (generally at the thallus center) and reproductive structures (generally at 244 245 the thallus border). More precisely, eight microscopic features of the gametophytic thallus 246 were recorded, measuring three cells in three visual fields per photo, in a total of three photos per specimen. These morphological microscopic traits were the length and width of 247 248 rhizoidal, vegetative, and zygotosporangial cells (surface views) and the thickness of vegetative and zygostosporangial lamina (hand-cut transverse sections). Moreover, the 249 250 maximum length and maximum width of the thallus were also measured and considered in statistical analyses as macroscopic characteristics. Images were captured on an upright 251 252 Leica ICC50 HD microscope (Wetzlar, Germany) using the Leica Application Suite 253 Advanced Fluorescence EZ Imaging Software v.3.0 (Wetzlar, Germany).

To describe in multivariate space and search for morphological differences between 254 foliose Bangiales species present at Maitencillo, principal component analysis (PCA) was 255 256 applied to microscopic and macroscopic measurements using the software PAST specifying a variance-covariance matrix (Hammer et al. 2001). All statistical analyses were done with 257 normalized data, using the Box-Cox transformation option (Box and Cox 1964) available in 258 the statistical software R (R core team, 2017). Statistical differences between species for all 259 traits were assessed through multivariate nested, permutational ANOVA using the Adonis 260 function in R (Anderson 2001). The "plant" (i.e. individual) level was treated as nested 261

262	factor within the main factor "species". Moreover, data for each morphological trait was
263	subjected to univariate post-hoc Tukey multiple comparisons in R (Abdi and Williams
264	2010) (after univariate ANOVA were done) to detect specific treatment differences
265	between species.
266	
267	
268	RESULTS
269	
270	Genetic species present at Maitencillo. The Maximum Likelihood rooted tree for rbcL
271	sequences of Bangiales reconstructed with 46 new sequences obtained in this study (Fig. S2
272	a and b), reproduced the same general topology with almost the same support values as in
273	Fig. 1 of Guillemin et al. (2016). As shown by the Maximum Likelihood phylogenetic trees
274	reconstructed with COI sequences (Fig. 1 a and b) and rbcL sequences (Fig. S2 a and b),
275	the 90 Bangiales samples from Maitencillo were assigned to 5 genetic species of bladed
276	Bangiales (i.e. represented as black triangles in the tree reconstructions). All five-delimited
277	species correspond to genetic entities previously identified by Guillemin et al. (2016).
278	Among these five species, four were dominant at Maitencillo: Pyropia orbicularis (N =
279	14), <i>Pyropia</i> sp. CHK (N = 47), <i>Porphyra</i> sp. CHE (N = 16) and <i>Porphyra</i> sp. CHC (N =
280	12). Their habits are shown in Fig. 2. A fifth species, Porphyra sp. CHF, was also present
281	but in low frequency (N = 2, Table 1 and Table S1). <i>Porphyra</i> sp. CHE and <i>Porphyra</i> sp.
282	CHF were recovered as monophyletic sister groups both in the <i>rbc</i> L and <i>COI</i> phylogenetic
283	trees (Fig. 1). Porphyra sp. CHC was also retrieved as a well-supported monophyletic
284	group in the two phylogenetic trees (Fig. 1 and Fig. S2). On the other hand, phylogenetic
285	trees were less clear concerning the number of distinct species that could be defined within

286	the Pyropia orbicularis / Pyropia sp. CHK / Pyropia sp. CHJ species complex. Mean
287	sequence divergence between species pairs was higher than 6% between Pyropia
288	orbicularis and the other two species, whereas the distance between Pyropia sp. CHK and
289	Pyropia sp. CHJ was 3.7% (Table S3). All mean sequence divergences calculated within
290	species were, at least, five times lower than the ones calculated between species (Table S3)
291	Moreover, three groups of highly differentiated haplotypes (Pyropia orbicularis, Pyropia
292	sp. CHK, and <i>Pyropia</i> sp. CHJ) were clearly shown by the reconstruction of the <i>COI</i>
293	network for these recently diverged species (Supplementary material 4; Guillemin et al.
294	2016), all our newly acquired sequences being part of the Pyropia orbicularis and Pyropia
295	sp. CHK groups (Fig. S3).

296

Microhabitats and intertidal distribution of genetic species. Species distribution of foliose 297 298 Bangiales reported here is based on the information obtained during our first sampling scheme (66 specimens sequenced for the COI and 46 for rbcL). Foliose Bangiales were 299 300 never observed in medium or low intertidal zones of the rocky platform (Table 1). From 301 twenty-five foliose Bangiales sampled at the high intertidal zone on the rocky platform, 13 were assigned to Pyropia sp. CHK, nine to Porphyra sp. CHE, and three to Pyropia 302 orbicularis (Table 1). On the rocky wall, 15 of the 17-sampled foliose Bangiales were 303 304 identified as Pyropia sp. CHK, one as Porphyra sp. CHE, and one as Pyropia orbicularis (Table 1). In the boulder zone surrounded by rocky pools, six of the 12 samples were 305 classified as *Porphyra* sp. CHE, four as *Pyropia* sp. CHK, and two as *Porphyra* sp. CHF 306 (Table 1). In the boulder zone surrounded by pools of sandy bottom, all 12 samples were 307 assigned to the genetic species Porphyra sp. CHC (Table 1). Fig. 2 shows the habits of the 308 309 four dominant genetic species observed at Maitencillo beach.

311 PCR-RFLP development and analysis for the rbcL. Among the 1230 bp fragment amplified 312 by PCR for the *rbc*L, 94 polymorphic sites can be observed between aligned sequences of the four Bangiales species dominating the intertidal of Maitencillo. The sequence positions 313 314 (i.e. variable sites) corresponding to the restriction site of AFA I in the *rbc*L-amplified fragment are given in Table 2. As shown in Fig. 3, PCR-RFLP patterns of the *rbcL* allowed 315 us to easily distinguish Porphyra sp. CHE from Porphyra sp. CHC and from the two 316 317 species of *Pvropia*. One very intense fragment located at approximately 900 bp was observed in Porphyra sp. CHC, whereas two fragments of approximately 580 and 430 bp 318 were the most visible and characteristic of *Porphyra* sp. CHE (Fig. 3). On the other hand, 319 only the presence of two fragments of approximately 600 and 700 bp in Pyropia 320 orbicularis and only one in Pyropia sp. CHK in the same size range, allowed 321 322 differentiating the two closes by *Pvropia* species (Fig. 3). Restriction patterns were extremely similar between the two Pyropia species and generate doubts about species 323 determination for most samples of Pyropia. Indeed, as visible in Fig. 3, the two Pyropia 324 325 orbicularis bands of roughly similar size are not easily separated and generate a very intense band/smear around 600-700 bp. This pattern can easily be confounded with Pyropia 326 sp. CHK for which PCR-RFLP products are overloaded. In order to complement our PCR-327 328 RFLP analysis, 24 samples of Pyropia were then sequenced for the COI gene. Fifteen samples corresponded to Pyropia sp. CHK and 9 to Pyropia orbicularis. Only these 24 329 sequenced individuals were used for morphological analyses when considering Pyropia 330 samples. 331

332

Variation in morphological characters. Results of the PCA based on morphological 333 334 characters are shown in Fig. 4. According to the eigenvalues, the cumulative proportion of the first two principal components explains 81% of the total variation in the data. 335 Component 1 was represented mainly by thallus width and component 2 by thallus length. 336 337 If we do not take into account the *Pyropia* sp. CHK data, specimens of *Porphyra* sp. CHE and *Pyropia orbicularis* would appear as discrete morphological clusters (data not shown). 338 Nevertheless, both species show a high level of overlap with *Pyropia* sp. CHK in the PCA 339 340 (Fig. 4). Conversely, Porphyra sp. CHC formed a discrete and distinctive morphological cluster in the PCA. Multivariate nested, permutational ANOVA (permanova) realized using 341 the ten morphological traits measured, indicated that statistical differences exist between 342 343 species and between plants (i.e. specimens) within species (Table 3). Indeed, post-hoc Tukey test for multiple comparisons identified significant differences (p < 0.05) between all 344 345 pairs of species for four out of ten traits (Fig. 5). The largest values in length and width of 346 the thallus were observed in *Porphyra* sp. CHC and *Porphyra* sp. CHE, respectively, while the thinnest and thickest reproductive laminae characterized Porphyra sp. CHC and 347 348 Pvropia orbicularis, respectively. Within Porphyra, Porphyra sp. CHE showed bigger vegetative and zygotosporangial cells than *Porphyra* sp. CHC. Within *Pyropia*, *Pyropia* sp. 349 CHK reached a larger width of vegetative cells and a smaller length and width of 350 351 zygotosporangial cells than Pyropia orbicularis. Even if statistical analyses indicate that the width of vegetative cells is different between all 4 species, the boxplots for this trait in Fig. 352 5 show that the high variance observed in *Pyropia* sp. CHK overlap values measured in 353 both *Porphyra* sp. CHC and *Porphyra* sp. CHE. 354

355

356	Taxonomic treatment. Below we describe in detail three previously unnamed species: one
357	new species of <i>Pyropia</i> and two new species of <i>Porphyra</i> (See Fig. 2, Figs. 6-9, Table 4).
358	For the <i>P. orbicularis</i> description, see Fig. S4 and Ramírez et al. (2014).
359	1 Porphyra luchensis Meynard, Ramírez, Contreras-Porcia sp. nov.
360	Description: The gametangial blades are semi-translucent, $39.0-156.0 \ \mu m$ thick in
361	transverse section, reniform, rhomboid to spear-shaped and asymmetrical when fully
362	extended, 5.0-22.0 cm long and 0.5-9.0 cm wide (Fig. 2A and Fig. 6A) with a loose,
363	wrinkled surface. Blade margins are spiny to undulated, often folded. Color green on the
364	center of the blade to reddish-brown on the margins. Blades are attached to rock substratum
365	by a basal rhizoidal holdfast. Thalli are monostromatic and monoecious. In sectional view,
366	blade vegetative portions are monostromatic and their thickness range from 68.0 to 156.0
367	μ m (Fig. 6 C-D). Sexual regions of the thalli are monoecious, 39.0-136.0 μ m thick in
368	sectional view (Fig. 6 E-H), with contiguous groups of cells forming either spermatangia or
369	zygotosporangia and divided into separate male and female sectors. Reproductive cells are
370	formed as continuous areas along the margins of the blade. The division formula of
371	spermatangia is 128 (a/4, b/4, c/8) whereas the division formula of zygotosporangia is 64
372	(a/2, b/4, c/8) or 128 (a/4, b/4, c/8) (Fig. 6 E-H). Table 4 summarizes the detailed
373	morphological features of 32 blades of Po. luchensis identified through molecular assisted
374	methods (i.e. PCR-RFLP).
375	Holotype: Voucher specimen = SGO168338, housed in the herbarium of the National
376	Museum of Natural History, Chile; sample code = CHE0027; gametophytic blade

377 (vegetative) collected from boulders in the upper intertidal zone from Maitencillo beach

378	(Chile: Valparaíso), 32° 39'S, 71° 26' W, coll. Zapata, Contreras-Porcia, 10 Oct 2013. (Fig.
379	6A). GenBank accession numbers: COI, MH123945 and rbcL, MH124031.
380	Distribution: Chile, from Atacama, Chañaral de Aceituno (29°04'S, 71°29'W), to
381	Valparaíso, Maitencillo beach, (32°39'S, 71°26'W).
382	Habitat: Thalli present year-round but more abundant in winter and spring, growing on
383	boulders surrounded by stony ground pools at low tide. The species is less abundant in
384	summer in the high and intermediate intertidal zones of rock platforms, where Pyropia
385	orbicularis is dominant.
386	Etymology: The specific epithet <i>luchensis</i> refers to the word "luche", a traditional name
387	used by fishermen communities along the Chilean coast and referring to the bladed
388	Bangiales harvested and sold for food consumption.
389	Comments: Porphyra luchensis Meynard, Ramírez, Contreras-Porcia sp. nov. corresponds
390	to the genetic species <i>Porphyra</i> sp. CHE originally identified by Guillemin et al. (2016).
391	
392	2 Porphyra longissima Meynard, Ramírez, Contreras-Porcia sp. nov.
393	Description: The gametangial blades are semi-translucent, 36.0-122.0 μ m thick in
394	transverse section, linear to lanceolate and very long in comparison to their width, 16.0-
395	50.0 cm long and 0.3-3.5 cm wide, and having a soft, relatively mucilaginous and flexible

- surface (Fig. 2B, and Fig. 7A). Blade margins are entire to sinuate. Color rosy pink to
- brown. Blades are attached to rock substratum by a basal rhizoidal holdfast. Thalli are
- 398 monostromatic and monoecious. In sectional view, vegetative portions of blades are

399	monostromatic, and their thickness range from 38.0 to 122.0 μ m (Figs. 7C-D). Sexual
400	regions of the thalli are monoecious, $36.0-94.0 \ \mu m$ thick in transverse section and divided
401	into separate male and female sectors by a vertical line. Spermatangia are light green while
402	zygotosporangia are light reddish-brown (Figs. 7 E-H). Zygotosporangia are formed as
403	continuous areas along most of the thallus, except the basal portion (vegetative and
404	rhizoidal cells), whereas spermatangia develop along the margins of the blade. The division
405	formula of spermatangia is 128 (a/4, b/4, c/8) whereas the division formula of
406	zygotosporangia is 64 (a/4, b/4, c/4) (Figs. 7 E-H). Table 4 summarizes the detailed
407	morphological features of 32 blades of Po. longissima identified through molecular assisted
408	methods (i.e. PCR-RFLP).
409	Holotype: Voucher specimen = SGO168348, housed in the herbarium of the National
410	Museum of Natural History, Chile; sample code = CHC0010; gametophytic blade
411	(reproductive) collected from boulders of the upper intertidal zone of Maitencillo beach
412	(Chile: Valparaíso, 32°39'S, 71°26'W), coll. Zapata, Contreras-Porcia, 12 Aug 2014. (Fig.
413	7A). GenBank accession numbers: COI, MH123931 and rbcL, MH124021.
414	Distribution: Chile-from Atacama, Los Burros (28°55'S/71°31'W), to Los Ríos, Playa
415	Rosada (39°48′S/73°24′W).
416	Habitat: Gametophytic thalli only registered in winter, growing on boulders surrounded by
417	sandy bottom or even buried in sand (Fig. 2B).
418	Comments: Porphyra longissima Meynard, Ramírez, Contreras-Porcia, sp. nov.
419	corresponds to the genetic species <i>Porphyra</i> sp. CHC, originally identified by Guillemin et

420 al. (2016).

л	2	1
-	~	т.

422 3.- *Pyropia variabilis* Zapata, Meynard, Ramírez, Contreras-Porcia sp. nov.

423	Description: The gametangial blades are monostromatic and monoecious. Blades are 63.0-
424	139.0 μ m thick in transverse section, oblong to lanceolate, sometimes cuneate or
425	acuminate, with wavy surface, 2.8-14.0 cm long and 1.1-7.0 cm wide, generally very
426	flexible and relatively resistant (Figs. 2D-E, Figs. 8A and 9A). Blade margins are entire to
427	undulate or lobate. Blades are attached to rock substratum by a basal or subcentral
428	rhizoidal holdfast. This species shows two different gametophytic morphotypes, occurring
429	in different intertidal microhabitats, and characterized principally by external morphology
430	(see Figs. 2D-E, Figs. 8A and 9A). The Green Morph (GM), consists of a single blade,
431	generally lanceolate and forest green to yellowish green in color (Figs. 2D and 8A). A
432	second morphotype, the Long Morph (LM), generally forestgreen to light-brown in color, is
433	characterized by a long central blade and one or two additional shorter blades arising from
434	a subcentral disc (Figs. 2E and 9A). LM blades are highly variable, being oblong to
435	lanceolate, cuneate or acuminate. In spite of their variable morphology, all fresh
436	gametophytic blades of Py. variabilis mostly display shades of green and present wavy
437	ruffled-margins (Figs. 2D-E). In sectional view, vegetative portions of blades are
438	monostromatic, and their thickness range from 63.0 to 137.0 μ m (Figs. 8C-D and 9C-D).
439	Sexual regions of the thalli are monoecious, $68.0-139.0 \ \mu m$ thick (Figs. 8E-H and 9E-H),
440	with contiguous groups of cells forming either spermatangia or zygotosporangia and
441	divided into separate male and female sectors by a vertical line. Reproductive cells are
442	formed as continuous areas along the margins of the blade. The division formula of
443	spermatangia is 128 (a/4, b/4, c/8) whereas the division formula of zygotosporangia is 16

444	(a/2, b/2, c/4) or 32 (a/2, b/4, c/4) (Figs. 8E-H and 9E-H). Table 4 summarizes the detailed
445	morphological features of 15 sequenced blades of Py. variabilis identified through
446	molecular assisted methods (i.e. sequencing and PCR-RFLP).
447	Holotype: Voucher specimen = SGO168333, housed in the herbarium of the National
448	Museum of Natural History, Chile; sample code = CHK0025; gametophytic blade
449	(reproductive) collected from a rocky platform of the upper intertidal zone of Maitencillo
450	beach (Chile: Valparaíso), 32° 39'S, 71° 26' W, coll. J. Zapata, L. Contreras-Porcia, 6
451	September 2013 (Fig. 9A). GenBank accession numbers: COI, MH123975 and rbcL,
452	MH124050.
453	Isotype: Voucher specimen = SGO168334, housed in the herbarium of the National
454	Museum of Natural History, Chile; sample code = CHK0028; gametophytic blade
455	(reproductive) collected from steep rock faces of the upper intertidal zone of Maitencillo
456	beach (Chile: Valparaíso), 32° 39'S, 71° 26' W, coll. C. Fierro, F. Castañeda, 10 October
457	2013 (Fig. 8A). GenBank accession numbers: COI, MH123978 and rbcL, MH124051.
458	Distribution: Chile-from Antofagasta, Pan de Azúcar (26°10'S/70°38'W) to Coquimbo,
459	Horcón (32°42′S/71°29′W).
460	Habitat: Thalli of the GM morphotype grow on shady and humid steep rock faces (Fig.
461	2D). This morphotype is present mainly during the winter and spring seasons and is almost
462	absent in summer. Thalli of the LM morphotype grow on the sunnier and drier platforms of
463	the high intertidal (Fig. 2E). It is present mainly during the winter and spring seasons
464	(Zapata 2016).

465 Etymology: *variabilis*-variable in shape. The name *variabilis* aims to describe the very466 variable morphology of the gametophytic habit.

467 Comments: *Pyropia variabilis* Zapata, Meynard, Ramírez, Contreras-Porcia, sp. nov.
468 corresponds to the genetic species *Pyropia* sp. CHK, originally identified by Guillemin et
469 al. (2016).

470

471

DISCUSSION

Few molecular studies have characterized genetic and morphological local diversity 472 of bladed Bangiales and considered different types of habitats of the intertidal to describe 473 474 their distribution within this environment. We have confirmed the presence of five species of bladed Bangiales in the rocky intertidal of Maitencillo beach, four of them being 475 476 dominant, during winter-spring 2013-2014. All correspond to species previously detected 477 by Guillemin et al. (2016) along the coasts of Chile, but our study report for the first time the presence of *Porphyra* sp. CHF, *Porphyra*. sp. CHE and *Porphyra*. sp. CHC in 478 479 Maitencillo. Porphyra. sp. CHE was reported by Guillemin et al. (2016) in only one site 480 located at 29°S of latitude in Chile. It is clear that the species is probably more common 481 and broadly distributed than previously described, extending at least to Central Chile (32°S 482 of latitude). Phylogenetic analyses of *rbcL* and *COI* gene sequences (Figs. 1 and S2) were 483 not fully concordant, only the COI allowing to clearly separate Pyropia sp. CHJ, Pyropia 484 orbicularis and Pyropia sp. CHK as three highly supported monophyletic clades (Figs. 1 and S3). Incongruence between *rbc*L and *COI* results could be the result of the lower base-485 substitution mutation rate of the *rbc*L gene for which incomplete lineage sorting and lack of 486

487	monophyly has been observed in macroalgae species complex (Tellier et al. 2009,
488	Montecinos et al. 2012). COI sequences, in contrast, allowed to determine genetic species
489	in these recently diverged species complex. In red macroalgae, hybridization and
490	introgression have also been linked to the existence of incongruence between mitochondrial
491	and chloroplast markers (Destombe et al. 2010). We cannot discard the possibility of past
492	and/or ongoing gene flow between the three Pyropia sp. CHJ, Pyropia orbicularis and
493	Pyropia sp. CHK, especially in central Chile where they co-occur (see Niwa et al. 2009 for
494	an example of introgression in Bangiales, between Py. Yezoensis and Py. tenera).
495	In spite of significant differences between all pairs of species for four
496	morphological characters, the huge variance in traits observed for Pyropia sp. CHK only
497	allow to clearly separate the species Porphyra sp. CHC from the other three dominant
498	bladed Bangiales of Maitencillo Beach using morphology. Indeed, Porphyra sp. CHC
499	consistently shows extreme values of length and width of the thallus and thickness of the
500	reproductive lamina (see Fig. 5). Porphyra sp. CHC is also the only species showing a
501	specific habitat preference in the intertidal and was encountered only on boulders
502	surrounded by pools of sandy bottom. This suggests that, unlike the other three dominant
503	species present at the study site, Porphyra sp. CHC morphology and/or other associated
504	characteristics (e.g. metabolites or physiological traits) could be central in explaining its
505	local distribution. Interestingly, a recent study reported the presence of a morphologically
506	very similar species of Porphyra with long thin blades, Po. mumfordii, on boulders
507	surrounded by sand in central Chile (see Fig. 2 of Muñoz-Muga et al. 2018), supporting the
508	possibility of morphs adapted to particular habitats.
509	Our study suggests that only one out of the four-dominant foliose Bangiales species

509 Our study suggests that only one out of the four-dominant foliose Bangiales species 510 show specific distributional ranges in the intertidal at Maitencillo since the distribution of

Pvropia orbicularis, Porphyra sp. CHE and Pvropia sp. CHK overlap at the high intertidal 511 512 zone on the rocky platform and at the boulder zone surrounded by rocky pools. 513 Nevertheless, even if the three species were generally observed sympatrically, some habitats seem mostly dominated by one species (e.g. Pvropia sp. CHK along the rocky 514 515 wall). As previously reported in distributional studies supported by molecular tools for intertidal sites in New England, USA (West et al. 2005) and in the southern West Cape, 516 South Africa (Griffin et al. 1999), we expected that the abundance and occurrence of 517 518 specific intertidal zones by bladed Bangiales would differ. Indeed, in a highly heterogeneous environment, in terms of landscape complexity, physical and chemical 519 variables and biotic interactions, differences in microhabitats could be expected among 520 521 related species (Billard et al. 2010, Couceiro et al. 2015, Muangmai et al. 2016, Montecinos et al. 2017). Nonetheless, in our study, most specimens occurred in the high intertidal, 522 523 probably experiencing relatively homogeneous abiotic or biotic conditions during late 524 winter and early spring (i.e. study period). Accordingly, Scweikert et al. (2012) found no distinct intertidal zonation patterns for bladed *Porphyra* sp. at Brighton Beach, southeast 525 526 New Zealand, with two dominant species showing a similar distributional pattern across intertidal zones and seasons and seven other species being present only sporadically. 527 In the present study we have focused only on differences in zonation, but we did 528 529 not, however, test if Pyropia orbicularis, Porphyra sp. CHE and Pyropia sp. CHK presented any differences in micro-ecological niches. Supporting this possibility, Scweikert 530 et al. (2012) hypothesized that the differing distributional patterns within and between 531 seasons observed in the generally overlapping *Porphyra* sp. in Brighton Beach could still 532 be explained by their differing degrees of physiological adaptation to abiotic factors. 533 Previous studies integrating finer sampling scale than in our study, or the one of Scweikert 534

Page 24 of 71

535	et al. (2012), and records of physical environmental factors in distinct micro-habitats, have
536	revealed differences in micro-niche partitioning between related species of macroalgae. The
537	study of Muangmai et al. (2016) describing the small-scale distribution of three sympatric
538	cryptic species of the red alga Bostrychia intricata (Bory) Montagne (Ceramiales,
539	Rhodophyta) along the shore of Moa Point, Wellington, New Zealand, selected sampling
540	patches according to three a priori contrasting factors: tidal position, wave exposure, and
541	sun exposure. Muangmai et al. (2016) demonstrated that the distribution of three cryptic
542	species of Bostrychia in the intertidal was non-random, and highly influenced by tidal
543	height and wave exposure. In the case of the brown algae Ectocarpus crouaniorum Thuret
544	in Le Jolis and E. siliculosus (Dillwyn) Lyngbye, Coucerio et al. (2015) revealed that
545	differences in micro-niches existed between species and phases (i.e. gametophytes and
546	sporophytes). Along the European coast, the Fucus species complex (Fucales, Ochrophyta)
547	was observed as the succession of different ecological species along a tidal gradient of
548	contrasting habitats with a segregation between species in less than 50 cm on the vertical
549	shore gradient (Billard et al. 2010). As in the marine gastropod Littorina saxatilis (Olivi),
550	where ecotypes are segregated in different habitats along the shore (Butlin et al. 2008),
551	divergence and speciation has been deemed to be driven by slight differences in ecological
552	selective pressures as desiccation stress in <i>Fucus</i> (Billard et al. 2010). It is possible that our
553	sampling was too coarse to detect microhabitat differences between Pyropia orbicularis,
554	Porphyra sp. CHE and Pyropia sp. CHK in Maitencillo, and new field observation along a
555	fine vertical shore gradient linked with the acquisition of data on physical environmental
556	factors and biotic local interaction should now be performed.
557	However, in our study, we observed what seems to be a variable or specialized

ecotype of *Pyropia* sp. CHK (see Figs. 2E-D, and Figs. 8A and 9A). Indeed, gametophytes

of the GM morphotype of *Pyropia* sp. CHK were dominant on rocky walls, with very low 559 presence of gametophytes of the LM morphotype of Pyropia sp. CHK or other bladed 560 561 Bangiales species therein (Zapata 2016, Betancourtt et al. 2018, this study). Interestingly, in 562 the study of Coucerio et al. (2015), two ecotypes were observed among the *E. siliculosus* 563 sporophytes sampled in North West France with one ecotype encountered as epiphyte on 564 several different algal hosts and the other attached to abiotic substrates. The authors proposed that these two ecotypes probably arose due to phenotypic plasticity in the case of 565 566 *E. siliculosus*. Our molecular data sets include only sequences of the *COI* and *rbc*L genes and these were not sufficiently variable to detect genetic difference between our two 567 568 *Pyropia* sp. CHK ecotypes. However, these two molecular markers are characterized by 569 low mutational rates in comparison to microsatellites (Jarne and Lagoda 1996), and we cannot discard the hypothesis of possible genetic adaptation of the GM morphotype in 570 571 *Pvropia* sp. CHK to the conditions encountered on the step walls of Maitencillo. To 572 determine if the two ecotypes within *Pyropia* sp. CHK are due to phenotypic plasticity or represent traits related to intraspecific genetic differentiation and adaptation, samples 573 574 should be genotyped using more variables markers (i.e. microsatellites or SNP's) that allow testing for signatures of selection (e.g. Schlotterer 2000, Haasl et al. 2014). We also 575 propose that transplant experiments and/or common garden experiments should be 576 577 considered to complement the population genetic analyses and to test for adaptation (e.g. de Villemereuil et al. 2016). 578 579 CONCLUSIONS 580

581 As pointed out by Sutherland et al. 2011 (following Matsuyama-Serisawa et al. 582 2004) the very simple and at the same time highly variable morphology of foliose

Bangiales make taxonomic identification using key morphological traits an unresolved 583 584 problem in this group. On the other hand, phylogenetic reconstructions using molecular 585 markers have revealed cryptic diversity at the genus and species level in Porphyra and Pvropia (e.g. Guillemin et al. 2016 in Chile), and allowed the accurate reassignment of 586 587 these organisms (e.g. Nelson and Broom 2010 in New Zealand). In our study, in spite of substantial sample sizes and significant differences between all pairs of species for various 588 morphological characters, the overlap observed in morphological trait values between 589 590 *Porphyra* and *Pyropia* species suggests that morphology is not sufficient to delineate genetic species in this group. In spite of this, some clear morphological differences were 591 observed among the four species of foliose Bangiales analyzed, such as the differential 592 thickness of the blade. This trait was associated with a differential degree of palatability 593 (Niwa et al. 2008) and would have a potential utility in the selection of strains (each 594 595 belonging to one or more species) for the food industry. Scweikert et al. (2012) proposed 596 that the very similar morphology between some foliose Bangiales implies that they 597 developed the most suited thallus shape for their gametophytes in their habitat. In this case, 598 an optimal (and common) structure in phenotypic morphology in this group of algae would have been shaped by the particular genetic, developmental and environmental constraints 599 operating on these algal taxa (Rosen 1967). The rapid and accurate identification of local 600 601 genetic diversity in foliose Bangiales recently achieved using molecular techniques (Scweikert et al. 2012, Nelson et al. 2013, Dumilag et al. 2016, Guillemin et al. 2016, 602 Reddy et al. 2018, Yang et al. 2018) will allow researchers to refine the knowledge about 603 the intrinsic and environmental determinants of their distribution across tidal gradients of 604 contrasting habitats and climates. 605

607

ACKNOWLEDGEMENTS

- 608 This work was supported by FONDECYT 1120117, 1170881, and DI-501-14/R & DI-
- 609 1245-16/R (Universidad Andrés Bello) awarded to LC-P. We would like to thank two
- 610 anonymous reviewers for their insightful and constructive comments.

612	REFERENCES
613 614 615	Abdi, H. & Williams, L. J. 2010. Honestly significant difference (HSD) test. In Salkind, N.J., Dougherty, D.M. & Frey, B. [Ed.] <i>Encyclopedia of Research Design</i> , Sage, Thousand Oaks, CA, USA (2010), pp. 583-585.
616 617 618	Aguilar-Rosas, R. & Aguilar-Rosas, L. E. 2003. El género <i>Porphyra</i> (Bangiaceae, Rhodophyta) en la costa Pacífico de México. I. <i>Porphyra suborbiculata</i> Kjellman. <i>Hidrobiológica</i> , 13:51–56.
619 620	Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. <i>Austral Ecol.</i> , 26:32–46.
621 622	Bandelt, H-J., Forster, P. & Röhl, A. 1999. Median-Joining Networks for Inferring Intraspecific Phylogenies. <i>Mol. Biol. Evol.</i> 16:37–48.
623 624 625 626 627 628	 Betancourtt, C., Zapata, J., Latorre, N., Anguita, C., Castañeda, F., Meynard, A., Fierro, C., Espinoza, C., Guajardo, E., Núñez, A., Salas, N., González, C., Ramírez, M.L., Bulboa-Contador, C. & Contreras-Porcia, L. 2018. Spatio-temporal variation in the composition of the macroalgae assemblage of the intertidal rocky zone from Maitencillo, Valparaíso, central coast of Chile. <i>Rev. Biol. Mar. Oceanogr.</i> 53(1):105–117.
629 630 631	Billard, E., Serrao, E., Pearson, G; Destombe, C. & Valero, M. 2010. Fucus vesiculosus and spiralis species complex: a nested model of local adaptation at the shore level. Mar. Ecol. Prog. Ser. 405:163–174.
632 633	Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. <i>Porphyra</i> : a marine crop shaped by stress. <i>Trends Plant Sci.</i> 16:29–37.
634 635	Box, G.E. P. & Cox, D. R. 1964. An analysis of transformations (with discussion). J. R. Stat. Soc. Series B. Stat. Methodol. 26:211–252.
636 637 638 639	Brodie, J., Bartsch, I., Neefus, C., Orfanidis, S., Bray, T. & Mathieson, A. C. 2007. New insights into the cryptic diversity of the North Atlantic–Mediterranean <i>Porphyra</i> <i>leucosticta</i> complex: <i>P. olivii</i> sp. nov. and <i>P. rosengurttii</i> (Bangiales, Rhodophyta). <i>Eur. J. Phycol.</i> 42:3–28.
640 641 642 643	 Broom, J. E., Nelson, W. A., Yarish, C., Jones, W. A., Aguilar-Rosas, R. & Aguilar-Rosas, L. E. 2002. A reassessment of the taxonomic status of <i>Porphyra suborbiculata</i>, <i>Porphyra carolinensis</i> and <i>Porphyra lilliputiana</i> (Bangiales, Rhodophyta) based on molecular and morphological data. <i>Eur. J. Phycol.</i> 37:227–35.
644 645	Butlin, R. K., Galindo, J. & Grahame, J. W. 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation? <i>Transt. R. Soc. B.</i> 363: 2997–3007.Collén

646 647	J & Davison IR. 1999a. Reactive oxygen production and damage in intertidal <i>Fucus</i> spp.(Phaeophyceae). <i>J. Phycol.</i> 35: 54–61.
648 649 650	Collén, J., & Davison, I. R. 1999b. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds <i>Mastocarpus stellatus</i> and <i>Chondrus crispus</i> . <i>Plant, Cell & Environment</i> . 22(9): 1143–1151.
651 652 653 654	Couceiro, L., Le Gac, M., Hunsperger, H.M., Mauger, S., Destombes, C., Cock, J.M., Ahmed, S., Coelho, S.M., Valero, M. & Peters, A.F. 2015. Evolution and maintenance of haploid-diploid life cycles in natural populations: The case of the marine brown alga <i>Ectocarpus</i> . <i>Evolution</i> 69-7:1808–1822.
655 656 657 658	Destombe, C., Valero, M., & Guillemin, M-L. 2010. Diversity and natural hybridization in two related red algae species: <i>Gracilaria gracilis</i> and <i>Gracilaria dura</i> using multi DNA markers: resurrection of the species <i>G. dura</i> previously described in the Northern Atlantic 200 years ago. <i>J. Phycol.</i> 46:720–727.
659 660 661	de Villemereuil, Gaggiotti, O.E., Mouterde, M. & Till-Bottraud, I. 2016. Common garden experiments in the genomic era: new perspectives and opportunities. <i>Heredity</i> 116:249–254.
662 663	Dillehay, T.D. 2008. Monte Verde: Seaweed, Food, Medicine, and the Peopling of South America. <i>Science</i> 320:784–6.
664 665 666 667	Dumilag, R.V., Aguinaldo, Z-Z.A., Mintu, C.B., Quinto, M.P., Ame, E.C., Andres, R.C., Monotilla, W.D. & Yap, S.L. 2016. Morphological and molecular confirmation of the occurrence of <i>Pyropia tanegashimensis</i> (Bangiales, Rhodophyta) from Palaui Is., Sta. Ana, Cagayan, Philippines. <i>Phytotaxa</i> 255:83–90.
668 669 670	Faugeron, S., Valero, M., Destombe, C., Martínez, E. A. & Correa J. A. 2001. Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga <i>Mazzaella laminarioides</i> (Gigartinales, Rohodophyta). J. Phycol. 37:705–16.
671 672 673 674	Flores-Molina, M.R., Thomas, D., Lovazzano, C., Núñez, A., Zapata, J., Kumar, M., Correa, J.A. & Contreras-Porcia, L. 2014. Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. <i>Aquat. Bot.</i> 113:90–99.
675 676 677	Fredericq, S., Anderson, R. J. & Lopez-Bautista, J. M. 2003. Circumscription of some Phyllophoraceae (Gigartinales, Rhodophyta) from the Cape region, South Africa, based on molecular evidence. <i>Proc. Int. Seaweed Symp.</i> 17:263–73.
678 679	Guillemin, M. L., Contreras-Porcia, L., Ramírez, M. E., Macaya, E. C., Bulboa-Contador, C., Woods, H., Wyatt, C. & Brodie, J. 2016. The bladed Bangiales (Rhodophyta) of

680 681	the South Eastern Pacific: Molecular species delimitation reveals extensive diversity. <i>Mol. Phylogenet. Evol.</i> 94:814–26.
682	Griffin, N. J., Bolton, J. J. & Anderson, R. J. 1999. Porphyra aeodis sp. nov. (Bangiales,
683	Rhodophyta), an epiphyte of Aeodes orbitosa from South Africa. Eur. J. Phycol.
684	34:505–12.
685	Haasl, R.J., Jonson, R.C. & Payseur, B.A. 2014. The effects of microsatellite selection on
686	linked sequences diversity. <i>Genome Biol. Evol.</i> 6(7):1843–1861.
687 688	Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <i>Nucl. Acids. Symp. Ser.</i> 41:95–8.
689 690 691	 Hammer, Ø., Harper, D.A.T., and P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.
692	Hilton, Z., Wellenreuther, M., & Clements, K. D. 2008. Physiology underpins habitat
693	partitioning in a sympatric sister species pair of intertidal fishes. <i>Funct. Ecol.</i> 22:
694	1108–1117.
695	Hoffmann, A., Santelices, B., 1997. Flora marina de Chile central (Marine Flora of Central
696	Chile). Universidad Católica de Chile, Santiago, Chile (in Spanish).
697	Hommersand, M. H., Fredericq, S. & Freshwater, D. W. 1994. Phylogenetic systematics
698	and biogeography of the Gigartinaceae (Gigartinales, Rodophyta) based on the
699	sequence analysis of <i>rbcL. Bot. Mar.</i> 37:193–203.
700 701	Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C.H. 2014. <i>Seaweed Ecology and Physiology</i> . 2nd ed. Cambridge University Press, Cambridge, 551 pp.
702	Jarne, P. & Lagoda, P.J.L. 1996. Microsatellites, from molecules to populations and back.
703	<i>TREE</i> . 11 (10):424–429.
704	Koh, Y.H. & Kim, M.S. 2018. DNA barcoding reveals cryptic diversity of economic red
705	algae, <i>Pyropia</i> (Bangiales, Rhodophyta): description of novel species from Korea. J.
706	<i>Appl. Phycol.</i> https://doi.org/10.1007/s10811-018-1529-8.
707	Krueger-Hadfield, S.A., Collén, J., Daguin-Thiébaut, C. & Valero, M. 2011. Genetic
708	population structure and mating system in <i>Chondrus crispus</i> (Rhodophyta). <i>J Phycol.</i>
709	47:440–450.
710	Krueger-Hadfield, S.A., Roze, D., Mauger, S. & Valero, M. 2013 Intergametophytic selfing
711	and microgeographic genetic structure shape populations of the intertidal red seaweed
712	<i>Chondrus crispus. Mol. Ecol.</i> 22:3242–60.

Lindstrom, S. C., Hughey, J. R. & Aguilar-Rosas, L. E. 2015. Four new species of <i>Pyropia</i> (Bangiales, Rhodophyta) from the west coast of North America: the <i>Pyropia lanceolata</i> species complex updated. <i>PhytoKeys</i> 52:1–22.
Martin Henry H. Stevens, adapted to vegan by Jari Oksanen: Community Ecology Package. 2009. R package vegan version 1.16-32. http://cran.r-project.org/, http://vegan.r-forge.r-project.org/
Matsuyama-Serisawa, K., Couceiro, L., Yamazaki, S., Kitade, Y., Serisawa, Y., Kuwano, K. & Saga, N. 2004. Tracing of systematic characters of Bangiales (Rhodophyta) based on molecular phylogeny inferred from sequences of nuclear small subunit rRNA genes. <i>Suisanzoshoku</i> 52:185–198.
Montecinos, A., Broitman, B.R., Faugeron, S., Haye, P.A., Tellier, F. & Guillemin, M.L. 2012. Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga <i>Mazzaella laminaroides</i> along the south east pacific. <i>BMC</i> . <i>Evol. Biol.</i> 12(1):97.
Montecinos, A.E., Couceiro, L., Peters, A.F., Desrut, A., Valero, M., & Guillemin, M.L. 2017. Species delimitation and phylogeographic analyses in the <i>Ectocarpus</i> subgroup <i>siliculosi</i> (Ectocarpales, Phaeophyceae). J. Phycol. 53:17–31.
Muangmai, N., von Ammon, U. & Zuccarello, G.C. 2016. Cryptic species in sympatry: nonrandom small-scale distribution patterns in <i>Bostrychia intricata</i> (Ceramiales, Rhodophyta). <i>Phycologia</i> 55:424–30.
Muñoz-Muga, P., Romo, H., Calderón, C., Evrard, O. & Díaz, H. 2018. Amplificación del gen <i>rbc</i> L revela primer registro de <i>Porphyra mumfordii</i> (Bangiales, Rhodophyta) en la Bahía de Valparaíso, Chile central. <i>Rev. Biol. Mar. Oceanogr.</i> 53(1):131–140.
 Neefus, C. D., Mathieson, A. C., Bray, T. L. & Yarish, C. 2008. The distribution, morphology, and ecology of three introduced asiatic species of <i>Porphyra</i> (Bangiales, Rhodophyta) in the Northwestern Atlantic. <i>J. Phycol.</i> 44:1399–414.
Nelson, W. A. & Broom, J.E.S. 2010. <i>Porphyra columbina</i> (Bangiales, Rhodophyta): originally described from the New Zealand subantarctic islands. <i>Austral. Syst.Bot.</i> 23:16–26.
Nelson, W. A. 2013. <i>Pyropia plicata</i> sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand. <i>PhytoKeys</i> 21:17–28.
Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. <i>Mol. Biol. Evol.</i> 32: 268–274.

747 748 749	Niwa, K., Kobiyama, A. & Aruga, Y. 2005. Confirmation of cultivated <i>Porphyra tenera</i> (Bangiales, Rhodophyta) by polymerase chain reaction restriction fragment length polymorphism analyses of the plastid and nuclear DNA. <i>Phycol. Res.</i> 53: 296–302.
750 751	Niwa, K. & Aruga, Y. 2006. Identification of currently cultivated <i>Poprhyra</i> species by PCR-RFLP analysis. <i>Fisheries Science</i> . 72:143–48.
752 753 754 755	Niwa, K., Furuita, H. & Yamamoto, T. 2008. Changes of growth characteristics and free amino acid content of cultivated <i>Porhyra yezoensis</i> Ueda (Bangiales, Rhodophyta) blades with the progression of the number of harvest in a nori farm. <i>Fisheries Science</i> . 72:143–48.
756 757 758 759	 Niwa, K., Iida, S., Kato, A., Kawai, H., Kikuchi, N., Kobiyama, A. & Aruga, Y. 2009. Genetic diversity and introgression in two cultivated species (<i>Porphyra yezoensis</i> and <i>Porphyra tenera</i>) and closely related wild species of <i>Porphyra</i> (Bangiales, Rhodophyta). J. Phycol. 45:493–502.
760 761 762	Niwa, K., Kobiyama, A. & Sakamoto, T. 2010a. Interspecific hybridization in the haploid blade-forming marine crop <i>Porphyra</i> (Bangiales, Rhodophyta): occurrence of allodiploidy in surviving F1 gametophytic blades. <i>J. Phycol.</i> 46:693–702.
763 764	Niwa, K. & Sakamoto, T. 2010b. Allopolyploidy in natural and cultivated populations of <i>Porphyra</i> (Bangiales, Rhodophyta). <i>J. Phycol.</i> 46:1097–1105.
765 766	Niwa, K. & Kobiyama, A. 2014. Speciation in the marine crop <i>Pyropia yezoensis</i> (Bangiales, Rhodophyta). <i>J. Phycol.</i> 50:897–900.
767 768 769	Niwa, K., Kikuchi, N., Hwang, M.S., Choi, H.G., Aruga, Y., 2014. Cryptic species in the <i>Pyropia yezoensis</i> complex (Bangiales, Rhodophyta): sympatric occurrence of two cryptic species even on same rocks. <i>Phycol. Res.</i> 62: 36–43.
770 771 772	Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D. & Vogler, A. P. 2006. Sequence-Based species delimitation for the DNA taxonomy of undescribed insects. <i>Syst. Biol.</i> 55:595–609.
773 774 775	R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
776 777 778 779 780	 Ramírez, M.E., Contreras-Porcia, L., Guillemin, M.L., Brodie, J., Valdivia, C., Flores-Molina, M.R., Núñez, A, Bulboa Contador, C. & Lovazzano, C. 2014. <i>Pyropia orbicularis</i> sp. nov. (Rhodophyta, Bangiaceae) based on a population previously known as <i>Porphyra columbina</i> from the central coast of Chile. <i>Phytotaxa</i> 158:133–153.

781 782 783	Reddy, M.M., A, De Clerck, O., Leliaert, F., Anderson, R.J. & Bolton, J.J. 2018. A rosette by any other name: species diversity in the Bangiales (Rhodophyta) along the South African coast. <i>Eur. J. Phycol.</i> 53:267–82.
784 785	Rosen, R. 1967. Optimality Principles in Biology. In: The Vascular System, Butterworths, London, Chapter 3, 41-60.
786 787 788 789	 Sánchez, N., Vergés, A., Peteiro, C., Sutherland, J.E. & Brodie, J. 2014. Diversity of bladed Bangiales (Rhodophyta) in western Mediterranean: recognition of the genus <i>Themis</i> and descriptions of <i>T. iberica</i> sp. nov., and <i>Pyropia parva</i> sp. nov. <i>J. Phycol.</i> 50:908–29.
790 791 792	Salzburger, W., Ewing, G.B. & Von Haeseler, A. 2011. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. <i>Mol. Ecol.</i> 20:1952–1963.
793 794 795	Saunders, G.W. 1993. Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase-chain reaction-friendly DNA. <i>J. Phycol.</i> 29:251–54.
796 797	Saunders, G.W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. <i>Phil. Trans. R. Soc. B.</i> 360:1879–1888.
798 799	Schlotterer, C. 2002. A microsatellite-based multilocus screen for the identification of local selective sweeps. <i>Genetics</i> 160:753–763.
800 801 802	Schweikert, K., Sutherland, J.E., Burritt, D.J. & Hurd, C.L. 2012. Analysis of spatial and temporal diversity and distribution of <i>Porphyra</i> (Rhodophyta) in southeastern New Zealand supported by the use of molecular tools. <i>J. Phycol.</i> 48:530–38.
803 804 805 806	 Sutherland, J.E., Lindstrom, S., Nelson, W., Brodie, J., Lynch, M., Hwang, M.S., Choi, H. G., Miyata, M., Kikuchi, N., Oliveira, M., Farr, T., Neefus, C., Mortensen, A., Milstein, D. & Müller, K. 2011. A new look at an ancient order: generic revision of the Bangiales. <i>J. Phycol.</i> 47:1131–1151.
807 808	Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. Molecular evolutionary genetics analysis version 6.0. <i>Mol. Biol. Evol.</i> 30:2725–2729.
809 810 811 812	 Teasdale, B., West, A., Taylor, H.E. & Klein, A.S. 2002. A simple Restriction Fragment Length Polymorphism (RFLP) Assay to discriminate common <i>Porphyra</i> (Bangiophyceae, Rhodophyta) taxa from the Northwest Atlantic. <i>J. Appl. Phycol.</i> 38:293–298.
813 814	Tellier, F., Meynard, A.P., Correa, J.A., Faugeron, S. & Valero, M. 2009. Phylogeographic analysis of the 30°S south-east Pacific biogeographic transition zone establish the

815 816	occurrence of a sharp genetic discontinuity in the kelp <i>Lessonia nigrescens</i> : Vicariance or parapatry? <i>Mol. Phyl. Evol.</i> 53(3): 679-693.
817 818 819	Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. 2016. W-IQ-TREE: a fast- online phylogenetic tool for maximum likelihood analysis. <i>Nucleic Acids Res.</i> 44(W1): W232-5.
820 821 822 823	 Vanelslander, B., Creach, V., Vanormelingen, P., Ernst, A., Chepurnov, V. A., Sahan, E., & Sabbe, K. 2009. Ecological differentiation between sympatric pseudocryptic species in the estuarine benthic diatom <i>Navicula phyllepta</i> (Bacillariophyceae). <i>J. Phycol.</i> 45: 1278–1289.
824 825 826	West, A.L., Mathieson, A.C., Klein, A.S., Neefus, C.D. & Bray, T.L. 2005. Molecular ecological studies of New England species of <i>Porphyra</i> (Rhodophyta, Bangiales). <i>Nova Hedwigia</i> 80:1–24.
827 828 829 830	Yang, L.E., Zhou, W., Hu, C.M., Deng, Y.Y., Xu, G.P., Zhang, T., Russell, S., Zhu, J.Y., Lu, Q.Q. & Brodie, J. 2018. A molecular phylogeny of the bladed Bangiales (Rhodophyta) in China provides insights into biodiversity and biogeography of the genus <i>Pyropia</i> . <i>Mol. Phyl. Evol.</i> 120:94–102.
831 832 833 834	Zapata, J. 2016. Diferenciación ecológica entre ecotipos de dos especies hermanas de Pyropia (Bangiales, Rhodophyta) mediado por estrés ambiental. Tesis de grado en Magister en Biología Marina, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello.
835 836	Zuccarello, J. 2011. What are you eating? It may be nori, but it is probably not <i>Porphyra</i> anymore. <i>J. Phycol.</i> 47:967–8.
837	
838	
839	
840	
841	
842	
843	
844	
845	
Table 1. Distribution of the five taxa of foliose Bangiales sampled in the site of Maitencillo
along different intertidal habitats: *Pyropia* sp. CHK, *Pyropia orbicularis*, *Porphyra* sp.
CHE, *Porphyra* sp. CHC and *Porphyra sp*. CHF. Species delimitation was based on
molecular criteria using sequences of *COI* (66 sequences) and *rbc*L (46 sequences).

	INTERTIDAL HABITATS					
Species	Rocky Wall	High	Medium	Low	Boulders (rocky pools)	Boulders (sandy pools)
<i>Pyropia</i> sp. CHK	15	13	0	0	4	0
Pyropia orbicularis	1	3	0	0	0	0
<i>Porphyra</i> sp. CHE	1	9	0	0	6	0
Porphyra sp. CHC	0	0	0	0	0	12
<i>Porphyra</i> sp. CHF	0	0	0	0	2	0

850

Journal of Phycology

852	Table 2. AFA I cut sites (base position) among the variable bases of the aligned <i>rbcL</i>
853	sequences of Pyropia sp. CHK, Pyropia orbicularis, Porphyra sp. CHE and Porphyra sp.
854	CHC. A total of 873 sites were analyzed using the program Webcutter 2.0. We show base
855	positions going from the forward to the reverse primers and indicate as reference for base
856	position the <i>rbc</i> L sequence AB818919.1 of <i>Pyropia yezoensis</i> retrieved from Genbank. It is
857	worth mentioning that amplified fragments used for PCR-RFLP were larger (1230 bp) than
858	our obtained sequences (873 bp). See Materials and Methods for more details.

Base Position	582	765	996	1134
<i>Pyropia</i> sp. CHK	Т	С	Т	Т
Pyropia orbicularis	Т	С	Т	А
Porphyra sp. CHE	С	Т	А	А
Porphyra sp. CHC	Т	Т	А	А

Table 3. Nested Permanova carried out on the eight microscopic and two macroscopic morphological characters measured for four dominant sympatric *Pyropia* and *Porphyra* species. Null hypothesis: no morphological differences between species.

Source of Variation	df	Sums of Sqs	Mean Sqs	F. Model	\mathbf{R}^2	Pr(>F)
Species	3	1.10743	0.36914	1583.01	0.44084	0.001***
Species/Plant	88	1.23304	0.01401	60.09	0.49084	0.001***
Residuals	736	0.17163	0.00023		0.06832	
Total	827	2.51210			1.00000	

- 1 Table 4. Habits and morphological features of *Pyropia variabilis* sp. nov. (CHK), *Porphyra*
- 2 *luchensis* sp. nov. (CHE), *Porphyra longissima* sp. nov. (CHC), and *Pyropia orbicularis*
- 3 from Maitencillo beach, Valparaíso, Chile.
- 4

Feature	Pyropia orbicularis	Pyropia variabilis	Porphyra luchensis	Porphyra longissima
Size blade	2.8–5.5 x 2.4–5.3	2.8–14.0 x 1.1–7.0	5.4–22.0 x 0.5–9.0	16.0-50.0 x 0.3-3.5
(cm, length × width)				
Shape	Orbicular (Several	Oblong to lanceolate (one or	Reniform to spear-shaped	Linear to lanceolate,
	laminae interwined)	several laminae)	asymmetrical (One lamina)	very long (one lamina)
Color	Green-brown	Forestgreen to light-brown	Redish-brown to green	Rosy pinky to brown
Habitat	Upper-mid intertidal	Upper-mid intertidal zone	Boulders surrounded by stony	Boulders surrounded
	zone	and steep rock faces	ground and rocky platforms	by sand
Seasonality	Year-round:	Year-round:	Year-round:	Present only in Winter
	More abundant in	More abundant in Winter	More abundant in Winter and	
	Spring and Summer	and Spring	Spring	
Sexuality	Monoecious	Monoecious	Monoecious	Monoecious
Vegetative thickness	68–128	63–137	68-156	38-122
(μm)				
Reproductive	72–130	68–139	39-136	36-94
thickness (µm)				
Vegetative cells	16–30 x 10–22	12–35 x 8–27	17–43 x 12–29	9–42 x 6–30
(μ m, length × width)				
Rhizoidal cells	17–46 x 15–41	16–55 x 14–48	24–59 x 21–48	13–49 x 4–40
(μ m, length × width)				
Spermatangium	a4/b4/c4	a4/b4/c8	a4/b4/c8	a4/b4/c8
Zygotosporangium	a2/b2/c4	a2/b2/c4 or a2/b4/c4	a2/b4/c8 or a4/b4/c8	a4/b4/c4

7	
8	FIGURE LEGENDS
9	
10	Figure 1. Maximum likelihood (ML) trees of Pyropia and Porphyra using Boreophylum
11	birdiae and Bangia fuscopurpurea as outgroups, respectively, and based on DNA
12	sequences of the cytochrome oxidase I (COI) gene. a) Details of the Pyropia COI ML tree
13	(outgroup not shown). b) Details of the Porphyra COI ML tree (outgroup not shown). For
14	each node, ML bootstrap values are indicated. Only high support values (>80) are shown.
15	For species for which two or more sequences were considered in the analyses branches
16	have been collapsed for easier reading and are represented as triangles. Black triangles
17	indicate species present at the study site, Maitencillo Beach.
18	
19	Figure 2. Habit of the four dominant genetic species of foliose Bangiales observed at
20	Maitencillo beach. Scale bar = 10 cm. For taxonomical characteristics see Table 4 and
21	Results section. A) Porphyra sp. CHE, B) Porphyra sp. CHC, C) Pyropia orbicularis, D)
22	Pyropia sp. CHK LM (Long Morph), E) Pyropia sp. CHK GM (Green Morph).
23	
24	Figure 3. PCR-RFLP profiles resulting from the digestion of the 1230 bp <i>rbc</i> L
25	amplification fragment by the enzyme AFA I. Restriction pattern observed for the four
26	dominant genetic species found at the intertidal in Maitencillo Beach are shown. Legend for
27	each lane corresponds to: Marker, molecular weight marker (bp: base pairs); Po. CHC =
28	<i>Porphyra</i> sp. CHC; <i>Po</i> . CHE = <i>Porphyra</i> sp. CHE, <i>Py</i> . CHK = <i>Pyropia</i> sp. CHK; and <i>Py</i> .
29	<i>orb = Pyropia orbicularis</i> . PD: primer dimer products.

Journal of Phycology

Figure 4. PCA plot carried out for two microscopic and two macroscopic traits (i.e. 30 31 normalized data after Box-Cox transformation) measured in specimens of the fourdominant foliose Bangiales observed at Maitencillo beach. Points correspond to scores for 32 each specimen (gametophyte) in the coordinates of the principal components PC1 and PC2, 33 34 and ellipses indicate the 95% confidence intervals of the scores for each species. Green vectors are projections of the original variables into the new axes of the principal 35 components. The greatest contribution to PC1 is from the thallus length and thallus width 36 and allows separating *Porphyra* sp. CHC (with the longest and thinnest blades) from the 37 other three species. Red - Porphyra sp. CHC; pink - Porphyra sp. CHE; green - Pyropia sp. 38 CHK and brown - Pyropia orbicularis. 39 40 Figure 5. Boxplot of the sizes of two out of eight microscopic traits (all in Log µm) and two 41 42 out of two macroscopic traits (in Log cm) measured in the four-dominant foliose Bangiales species observed at Maitencillo beach. Different letters indicate statistically significant 43 differences between species in Tukey multiple comparisons test. *Po.* CHC = *Porphyra* sp. 44 CHC; *Po.* CHE = *Porphyra* sp. CHE; *Pv.* CHK= *Pyropia* sp. CHK; and *Pv. orb.* = *Pyropia* 45 orbicularis. 46

47

Figure 6. Images of macro and micromorphology of *Porphyra luchensis* sp. nov.,
SGO168338, holotype, Museo Nacional de Historia Natural, Santiago, Chile (Table S1). A)
Habit of the foliose gametophyte sampled from the intertidal zone in Maitencillo beach,
Valparaíso, Chile (scale bar = 10 cm). B) Surface view of basal, rhizoidal cells. C) Surface
view of vegetative region of the thallus. D) Cross-section of vegetative region of thallus. E)

Journal of Phycology

Surface view of zygotosporangia. F) Cross-section of zygotosporangial region of thallus.
G) Surface view of spermatangia (smaller and colourless). H) Cross-section of
spermatangial region of thallus. Scale bar B-H = 20 μm.

56

57

Figure 7. Images of macro and micromorphology of Porphyra longissima sp. nov., 58 SGO168348, holotype, Museo Nacional de Historia Natural, Santiago, Chile (Table S1). A) 59 Habit of the foliose gametophyte sampled from the intertidal zone in Maitencillo beach, 60 61 Valparaíso, Chile (scale bar = 10 cm). B) Surface view of basal, rhizoidal cells. C) Surface 62 view of vegetative region of the thallus. D) Cross-section of vegetative region of thallus. E) Surface view of zygotosporangia. F) Cross-section of zygotosporangial region of thallus. 63 64 G) Surface view of spermatangia (smaller and colourless). H) Cross-section of 65 spermatangial region of thallus. Scale bar $B-H = 20 \mu m$.

66

67

Figure 8. Images of macro and micromorphology of *Pyropia variabilis* sp. nov. (CHK) 68 69 Green Morph (GM), SGO168334, isotype, Museo Nacional de Historia Natural, Santiago, Chile (Table S1). A) Habit of the foliose gametophyte sampled from the intertidal zone in 70 Maitencillo beach, Valparaíso, Chile (scale bar = 10 cm). B) Surface view of basal, 71 72 rhizoidal cells. C) Surface view of vegetative region of the thallus. D) Cross-section of vegetative region of thallus. E) Surface view of zygotosporangia. F) Cross-section of 73 zygotosporangial region of thallus. G) Surface view of spermatangia (smaller and 74 colourless). H) Cross-section of spermatangial region of thallus. Scale bar B-H = $20 \mu m$. 75

Figure 9. Images of macro and micromorphology of Pyropia variabilis sp. nov. (CHK) 77 Long Morph (LM), SGO168333, holotype, Museo Nacional de Historia Natural, Santiago, 78 Chile (Table S1). A) Habit of the foliose gametophyte sampled from the intertidal zone in 79 Maitencillo beach, Valparaíso, Chile (scale bar = 10 cm). B) Surface view of basal, 80 rhizoidal cells. C) Surface view of vegetative region of the thallus. D) Cross-section of 81 vegetative region of thallus. E) Surface view of zygotosporangia. F) Cross-section of 82 zygotosporangial region of thallus. G) Surface view of spermatangia (smaller and 83 84 colourless). H) Cross-section of spermatangial region of thallus. Scale bar $B-H = 20 \mu m$.

Figure 1. Maximum likelihood (ML) trees of Pyropia and Porphyra using Boreophylum birdiae and Bangia fuscopurpurea as outgroups, respectively, and based on DNA sequences of the cytochrome oxidase I (COI) gene. a) Details of the Pyropia COI ML tree (outgroup not shown). b) Details of the Porphyra COI ML tree (outgroup not shown). b) Details of the Porphyra COI ML tree (outgroup not shown). For each node, ML bootstrap values are indicated. Only high support values (>80) are shown. For species for which two or more sequences were considered in the analyses branches have been collapsed for easier reading and are represented as triangles. Black triangles indicate species present at the study site, Maitencillo Beach.

231x163mm (96 x 96 DPI)

Figure 3. PCR-RFLP profiles resulting from the digestion of the 1230 bp rbcL amplification fragment by the enzyme AFA I. Restriction pattern observed for the four dominant genetic species found at the intertidal in Maitencillo Beach are shown. Legend for each lane corresponds to: Marker, molecular weight marker (bp: base pairs); Po. CHC = Porphyra sp. CHC; Po. CHE = Porphyra sp. CHE, Py. CHK = Pyropia sp. CHK; and Py. orb = Pyropia orbicularis. PD: primer dimer products.

84x90mm (96 x 96 DPI)

PCA plot carried out for two microscopic and two macroscopic traits (i.e. normalized data after Box-Cox transformation) measured in specimens of the four-dominant foliose Bangiales observed at Maitencillo beach. Points correspond to scores for each specimen (gametophyte) in the coordinates of the principal components PC1 and PC2, and ellipses indicate the 95% confidence intervals of the scores for each species. Green vectors are projections of the original variables into the new axes of the principal components. The greatest contribution to PC1 is from the thallus length and thallus width and allows separating Porphyra sp. CHC (with the longest and thinnest blades) from the other three species. Red - Porphyra sp. CHC; pink - Porphyra sp. CHE; green - Pyropia sp. CHK and brown - Pyropia orbicularis.

108x53mm (600 x 600 DPI)

Boxplot of the sizes of two out of eight microscopic traits (all in Log μ m) and two out of two macroscopic traits (in Log cm) measured in the four-dominant foliose Bangiales species observed at Maitencillo beach. Different letters indicate statistically significant differences between species in Tukey multiple comparisons test. Po. CHC = Porphyra sp. CHC; Po. CHE = Porphyra sp. CHE; Py. CHK= Pyropia sp. CHK; and Py. orb. = Pyropia orbicularis.

134x75mm (600 x 600 DPI)

Figure S1. Study site (map is given on the right) and google earth image of the Maitencillo beach including the locations of the intertidal habitats sampled during this study (given on the left). The three central lines, perpendicular to the beach, represent three sampling transects on the rocky platform. Colors correspond to the three intertidal zones sampled (for more details on zone delimitation see Materials and Methods): lower intertidal (green), middle intertidal (purple) and upper intertidal (red). The circle indicates the steep wall, the rhombus indicates the boulder zone surrounded by rocky pools, and the triangle indicates the boulder zone surrounded by pools of sandy bottoms (all are in colored in red since they were located in the upper intertidal zone). Scale bar, in white, 100 m.

Figure S2. Details of the Maximum Likelihood (ML) rooted tree for *rbcL* sequences (873 bp) of Bangiales. The complete tree is not shown but is similar to the one presented in Fig. 1 in Guillemin et al. (2016), save for some difference in branch support. a) Details of the *Porphyra* clade of the Bangiales *rbcL* ML rooted tree. b) Details of the *Pyropia* clade of the Bangiales *rbcL* ML rooted tree. For each node, ML bootstrap values are indicated. Only high support values (>80) are shown. For species for which two or more sequences were considered in the analyses branches have been collapsed for easier reading and are represented as triangles. Grey triangles indicate species present at the study site, Maitencillo Beach.

a

b

Figure S3: Haplotype network reconstructed using the *COI* data set for the *Pyropia orbicularis*, *Pyropia* sp. CHJ and *Pyropia* sp. CHK species complex. Each circle represents one haplotype and its size is proportional to the frequency in which the haplotype was encountered. White represents sequences from previous studies already deposited in GenBank and black the sequences acquired during this study. Non-interrupted blue lines represent one mutation step. When more than one mutational step separated two haplotypes, the number of segments (i.e. blue line disrupted by blue dots) indicated the number of steps.

Page 51 of 71

Figure S4. Images of macro and micromorphology of *Pyropia orbicularis* Ramírez, Contreras-Porcia & Guillemin. A) Habit of the foliose gametophyte sampled from the intertidal zone in Maitencillo beach, Valparaíso, Chile (scale bar= 10 cm). B) Surface view of basal, rhizoidal cells. C) Surface view of vegetative region of the thallus. D) Crosssection of vegetative region of thallus. E) Surface view of zygotosporangia. F) Crosssection of zygotosporangial region of thallus. G) Surface view of spermatangia (smaller and colourless). H) Cross-section of spermatangial region of thallus. Scale bar B-H = $20 \mu m$.

Pyropia orbicularis

Table S1. Specimen collection information, voucher numbers and GENBANK accession numbers of Pyropia sp. CHK, Porphyra sp.
CHC, Porphyra sp. CHE and Pyropia orbicularis from Maitencillo beach, Valparaíso, Chile, sequenced during this work.

Collection data	Sample code/	GENBAN	K accession number
	voucher number	COI	rbcL
12/08/2014. Collector: J. Zapata,	CHC0001/ SGO168341	MH123922	MH124012
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0002/ SGO168342	MH123923	MH124013
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0003/ SGO168343	MH123924	MH124014
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0004/ SGO168344	MH123925	MH124015
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0005/ SGO168345	MH123926	MH124016
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0006	MH123927	MH124017
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0007/ SGO168346	MH123928	MH124018
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0008/ SGO168347	MH123929	MH124019
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0009	MH123930	MH124020
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0010/ SGO168348	MH123931	MH124021
L.Contreras-Porcia			
12/08/2014. Collector: J. Zapata,	CHC0011/SGO168349	MH123932	MH124022
L.Contreras-Porcia			

12/08/2014. Collector: J. Zapata,	CHC0012/ SGO168350	MH123933	MH124023
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0001	MH123934	MH124024
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0002	MH123935	MH124025
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0004	MH123936	MH124026
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0005	MH123937	MH124027
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0007	MH123938	-
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0008	MH123939	MH124028
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0012	MH123940	MH124029
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0019	MH123941	-
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0031	MH123942	-
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0020	MH123943	-
Francisco Castañeda			
08/09/2014. Collector: J. Zapata,	CHE0015/SGO168337	MH123944	MH124030
Francisco Castañeda			
10/10/2013. Collector: J. Zapata,	CHE0027/SGO168338	MH123945	MH124031
L.Contreras-Porcia			
08/09/2014. Collector: C.Fierro,	CHE0029/SGO168339	MH123946	MH124032

F.Castañeda			
08/09/2014. Collector: C.Fierro,	CHE0030/SGO168340	MH123947	-
F.Castañeda			
08/09/2014. Collector: J. Zapata,	CHE0036	MH123948	-
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHE0035	MH123949	MH124033
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHF0003	MH123950	MH124034
L.Contreras-Porcia			
08/09/2014. Collector: J. Zapata,	CHF0010	MH123951	MH124035
L.Contreras-Porcia			
08/09/2014Collector: J. Zapata,	CHK006p	MH123953	MH124037
L.Contreras-Porcia			
08/09/2014Collector: J. Zapata,	CHK009p	MH123954	MH124038
L.Contreras-Porcia			
08/09/2014Collector: J. Zapata,	CHK0011p	MH123952	MH124040
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0001/SGO168324	MH123955	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0002/SGO168325	MH123956	MH124041
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0003/SGO168326	MH123957	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0005	MH123958	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK005b	MH123959	-
L.Contreras-Porcia			

28/07/2014. Collector: J. Zapata,	CHK0006	MH123960	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK006b	MH123961	MH124043
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK007b	MH123962	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0008	MH123963	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0009/SGO168327	MH123964	MH124042
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0010	MH123965	MH124044
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0012	MH123966	MH124055
L.Contreras-Porcia			
28/07/2014. Collector:	CHK0013/SGO168328	MH123967	MH124045
C.Lovazzano, F.Castañeda			
28/07/2014. Collector:	CHK0014/SGO168329	MH123968	MH124046
C.Lovazzano, F.Castañeda			
28/07/2014. Collector: J. Zapata,	CHK0017/SGO168330	MH123969	MH124047
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0018/SGO168331	MH123970	MH124057
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0021	MH123971	MH124036
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0022	MH123972	MH124039
L.Contreras-Porcia			
28/07/2014 Collector: J. Zapata,	СНК0023	MH123973	-

L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0024/SGO168332	MH123974	MH124049
L.Contreras-Porcia			
06/09/2013. Collector: J. Zapata,	CHK0025/SGO168333	MH123975	MH124050
F.Castañeda			
28/07/2014. Collector: J. Zapata,	CHK0026	MH123976	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK026b	MH123977	-
L.Contreras-Porcia			
10/10/2013. Collector: C.Fierro-	CHK0028/SGO168334	MH123978	MH124051
F.Castañeda			
28/07/2014. Collector: J. Zapata,	CHK0032	MH123979	MH124056
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0033	MH123980	MH124052
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0034	MH123981	MH124053
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK0037/SGO168335	MH123982	MH124054
L.Contreras-Porcia			
28/07/2014. Collector:	CHK0040/SGO168336	MH123983	MH124048
C.Lovazzano- F.Castañeda			
28/07/2014. Collector: J. Zapata,	СНК0360	MH123984	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	СНК0380	MH123985	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK044o	MH123986	-
L.Contreras-Porcia			

28/07/2014. Collector: J. Zapata,	CHK050o	MH123987	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	СНК0550	MH123988	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK015v	MH123989	-
L.Contreras-Porcia			
28/07/2014. Collector: J. Zapata,	CHK030L	MH123990	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	СНК0350	MH123991	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	СНК0390	MH123992	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	CHK071o	MH123993	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	CHK1060	MH123994	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	CHK024v	MH123995	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	CHK033v	MH123996	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	CHK037L	MH123997	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	CHK105o	MH123998	-
L.Contreras-Porcia			
02/01/2014. Collector: J. Zapata,	ORB0004	MH123999	MH124058
L.Contreras-Porcia			
02/12/2013. Collector: J. Zapata,	ORB0011/SGO168323	MH124000	-

L.Contreras-Porcia			
02/01/2014. Collector: J. Zapata,	ORB0015	MH124001	-
L.Contreras-Porcia			
02/01/2014. Collector: J. Zapata,	ORB0016	MH124002	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0046	MH124003	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0061	MH124004	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0062	MH124005	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0064	MH124006	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0066	MH124007	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0063	MH124008	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0052	MH124009	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0075	MH124010	-
L.Contreras-Porcia			
28/09/2014. Collector: J. Zapata,	ORB0072	MH124011	-
L.Contreras-Porcia			

Taxon	Collection location	<i>COI</i> - GENBANK
		Accession no.
Bangia atropurpurea	Devon, Sidmouth, UK	DQ442886
Bangia atropurpurea	Dorset, Kimmeridge, UK	DQ442887
Bangia fuscopurpurea	Rhode Island, Brenton Point., Newport, USA	JN028460
Bangia sp. 1BAN	British Columbia, Whiffen Spit, Sooke Harbour, Vancouver Island,	JN028465
Danaia an 2DAN	Canada Ouchea Essaurring (Dua das Bilatas), Canada	11029476
Bangialag an UK 2011a	Quebec, Escourinins (Rue des Photes), Canada Dritich Columbia, Domosy Island (basch on NW coast), Curaii	JINU20470 INIO20401
Bangiales sp. HK-2011a	British Columbia, Ramsey Island (beach on NW coast), Gwall Haanas, Canada	JIN028481
Bangiales sp. HK-2011c	British Columbia, Ridley Island, Prince Rupert, Canada	JN028495
Boreophyllum birdiae	Newfoundland and Labrador, from Bonne Bay Station, Canada	JN028485
Fuscifolium sp. CHA	Región de Coquimbo, Choapa, Puerto Oscuro	KP781631
Porphyra corallicola	New Brunswick, Maces Bay, Bay of Fundy, Canada	JN028496
Porphyra dioica	Talmine, Sutherland, Scotland, UK	DQ191339
Porphyra sp. JB286	Sussex, Bracklesham Bay, England UK	DO191335
Porphyra sp. vD200 Porphyra mumfordii	British Columbia Bamfield Bradys Beach Canada	IN028502
Porphyra mumfordi	Región de Los Lagos Hueibue, Chiloé, Chile	KP781651
Porphyra mumfordi	Región de Los Ríos. Los Molinos Valdivia. Chile	KP781682
Pornhyra nurnurea	New Brunswick Richebucto Cane Breakwater Canada	IN028518
Pornhyra rosengurttii	Farce Islands	ΔΜ943399
Pornhyra sp. 1FIH	Chacao Chiloe Chile	INI028551 1
Pornhyra sp. CHB	Región de Los Lagos, Cucao, Chiloé	KP781663
Porphyra sp. CHC	Degión de Los Píos, Playa Posada, Valdivia, Chila	KI 781603 KD781684
Porphyra sp. CHC	Región de Volneroíse, Deteros, Solinos de Dulloy	VD791629/
Porphyra sp. CHC	Region de Valparaiso, Petorca, Sannas de Punay	NP / 81038/ VD791620
Describerer en CHC	Desián de la Amusanía Cautin Chausua	NP / 01039
Porphyra sp. CHC	Region de la Araucania, Cautin, Cheuque	KP/81045
Porpnyra sp. CHC	Region de Los Rios, Pichicuyin, Valdivia, Chile	KP / 81044/
		KP/81645
Porphyra sp. CHD	Region de Magallanes, Magallanes, Buque Quemado	KP/816/3
Porphyra sp. CHF	Region de Antolagasta, Antolagasta, Playa El Lenguado	KP/81562/ VD791562
Denselver at CHE	Parién de Carvinda Elsui Cuencevenilles	NP / 01303
Porphyra sp. CHF	Region de Coquimbo, Elqui, Guanaquernios	KP / 81559/
		KP/81504/
		KP/81565
Porphyra sp. CHF	Region de Coquimbo, Caleta las Conchas, Choapa, Chile	KP/81560
Porphyra sp. CHF	Región de Valparaiso, Quintay-Playa Chica, Valparaiso, Chile	KP/81567
Porphyra sp. CHF	Región de Valparaiso, Playa Amarilla, Valparaiso, Chile	KP/81689/
		KP781647
<i>Porphyra</i> sp. CHF	Región de Valparaíso, Valparaíso, Curaumilla, Chile	KP781674/
		KP781675/
		KP781691/
		KP781649
Porphyra sp. CHF	Región de Valparaíso, Valparaíso, Playa El Encanto, Chile	KP781690/
		KP781692/
		KP781693
Porphyra sp. CHF	Región de Valparaíso, San Antonio, Punta de Tralca, Chile	KP781568/
		KP781569/
		KP781570/
		KP781571/
		KP781572
Porphyra sp. CHF	Región de Valparaíso, San Antonio, Las Cruces, Chile	KP781573/

Table S2. Specimen collection information and GENBANK accession numbers of sequences of COI and *rbcL* used in Maximum Likelihood tree reconstruction to complement our data set (see Table S1). Specimens are in alphabetical order.

		KP781574
<i>Porphyra</i> sp. CHF	Región del Biobío, Concepción, Coliumo, Chile	KP781584/
		KP781585
Porphyra sp. CHF	Región del Libertador General Bernardo O'Higgins, Cardenal Caro, Pichilemu, Chile	KP781575
Porphyra sp CHF	Región del Libertador General Bernardo O'Higgins, Cardenal Caro	KP781677/
	La Boca Chile	KP781694/
	Lu Boou, Chilo	KP781678/
		KP781695/
		KP781680
Downhung on CHE	Pogión de Velnergico, Velnergico, Pleve El Encente: Chilo	KI /81080 V D791602
Porphyra sp. CHF	Region de Valparaiso, Valparaiso, Flaya El Elicanto, Chile	KF/01095 VD701502/
Porphyra sp. FIH	Region de Los Lagos, Lianquinue, Meuri, Chine	KP/81392/
		KP/81593/
		KP/81594/
		KP/81595/
		KP781596
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Llanquihue, Carelmapu, Chile	KP781597
<i>Porphyra</i> sp. FIH	Puerto Montt, Pargua, Punta Corona, Chile	KP781650/
		KP781646
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Ancud, Fátima, Chile	KP781653
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Ancud-Arena Gruesa, Chile	KP781654
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Puñihuil, Chile	KP781655/
		KP781656
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Quemchi, Chile	KP781657/
1 / 1		KP781658/
		KP781659/
		KP781660/
		KP781661
Pornhyra sn FIH	Región de Los Ríos Valdivia, Plava Rosada, Chile	KP781686/
i orphyra sp. i iii	Region de Los Rios, valdivia, i laya Rosada, enne	KP781688
Downhung on FILI	Pagión de Magellanes, Magellanes, Sano Otway, Dunte Canalo, Chile	VD791670/
<i>Forphyru</i> sp. FIH	Region de Magananes, Magananes, Seno Otway-Funda Canelo, Chine	KF / 010 / 0/ V D791671
Downlows on FIII	Desián de Massillance, Massillance, Sana Simine, Die Vande, Chile	KP/010/1 VD701(72
Porphyra sp. FIH	Region de Magananes, Magananes, Seno Skyring, Rio Verde, Chile	KP/810/2
<i>Porphyra</i> sp. FIH	Region de Los Rios, Valdivia, Isla Mancera, Chile	KP/81696/
		KP/816/9/
		KP781681
<i>Porphyra</i> sp. FIH	Región de la Araucanía, Cautin, Cheuque, Chile	KP781641/
		KP781642
Porphyra sp. HK-2011c	Rhode island, Jamestown, USA	HM917381.1
Porphyra sp. HK-2011d	Rhode island, Narragansett, USA	JN028798.1
Porphyra umbilicalis	Newfoundland and Labrador, St. Brides, Canada	JN028569
Pyropia abbottiae	British Columbia, Ridley Island, Canada	JN028597
Pyropia acanthophora	Praia da Lagoinha, Ubatuba, Sao Paulo, Brazil	JN222750
Pyropia fallax	British Columbia, Murchison Island Lagoon, Gwaii Haanas, Canada	HQ969862
Pyropia fucicola	British Columbia, Island #40 on Esperenza Inlet Chart, Tahsis,	JN028614
Pyropia gardneri	Canada British Columbia, Chaatl Island across from Newton Point, Haida	HM915300
	Gwaii, Canada	
Pyropia kurogii	British Columbia, Ridley Island, Prince Rupert, Canada	JN028655
Pyropia leucosticta	New Brunswick, Lepreau exposed biodiversity site, Bay of Fundy, Canada	JN028662
Pyropia nereocystis	British Columbia Cane Beale, exposed front Bamfield, Canada	IN028685
Pyropia nereocystis	British Columbia, Cape Deale, exposed from, Dannera, Canada British Columbia, Graham Island, Canada	HO010/10 1
1 yropia nereocysus Pwropia niordii	Nova Scotia, Degays Cove, Canada	IN028602
i yropia njorali Devenia njordii	nuva scolla, reggys Cove, Callada Ouches, Les Esseumins, Conside	JINU20093
r yropia njorali	Quebec, Les Escoumins, Canada	JINU28090.1
Pyropia orbicularis	Región de Valparaíso, Petorca, Salinas de Pullay, Chile	KP781637/

		VD701(40
D		KP/81640
Pyropia orbicularis	Región de Valparaiso, Maitencillo, Chile	KF4/9515/
		KF479507/
		KF479516/
		KF479502/
		KF479503/
		KF479504/
		KF479505/
		KF479506/
		KF479508/
		KI 470500/
		KF4/9309/
		KF4/9512/
		KF4/9513/
		KF4/9514
Pyropia orbicularis	Región del Maule, Duao, Curico, Chile	KP781576/
		KP781577/
		KP781578/
		KP781579
Pyropia orbicularis	Región del Maule, Constitución, Talca, Chile	KP781580/
		KP781581/
		KP781582/
		KP781583
Pyropia orbicularis	Región del Biobío Lota Concención Chile	KP781587
Pyropia orbicularis	Región de Los Ríos, Calfuco, Valdivia, Chile	KP781589
Pyropia orbicularis	Región de Los Ríos, Canaco, Valdivia, Chile	VD781501
Pyropia orbicularis	Region de Los Rios, Nicola, Valuivia, Chile Degión de Los Logos, Chenchi, Chileá, Chile	KF / 01391
	Region de Los Lagos, Chonchi, Chinoe, Chine	KP / 81002
Pyropia orbicularis	Region de Los Lagos, Llanquinue, Puerto Montt-Estaquilla	KP/81652
Pyropia orbicularis	Región de Los Ríos, Valdivia, Playa Rosada	KP/81685/
		KP781697
Pyropia orbicularis	Región de Magallanes, Magallanes, Fuerte Bulnes	KP781665/
		KP781666/
		KP781667
Pyropia perforata	California, Montara Beach, USA	HQ919270.1
<i>Pyropia</i> sp. 1Cal	California, Jade Cove, USA	JN028786
<i>Pyropia</i> sp. 1POR	British Columbia, Whiffen Spit, SookeHarbour, Vancouver Island,	JN028790
	Canada	
<i>Pvropia</i> sp. 2Cal	California, McAbee Beach, Monterey, USA	JN028791
<i>Pvropia</i> sp. 6POR	Texas, South Jetty, Port Arkansas, USA	JN028792
Pyropia sp. CHH	Región de Los Ríos, Valdivia, Niebla (Plava Grande)	KP781676
Pyropia sp. CHI	Región de Arica y Parinacota Arica Playa Corazón Chile	KP781561
Pyropia sp. CHI	Región de Coquimbo Elqui Abalanera Chica, Chila	KD781620/
<i>i yropiu</i> sp. Cili	Region de Coquinido, Elqui, Abaionera Cinca, Cinc	KI 701020/
		KF / 01021/
		KP/81622
Pyropia sp. CHJ	Region del Biobio, Coliumo, Concepcion, Chile	KP/81586
<i>Pyropia</i> sp. CHJ	Concepción, Lebu, Chile	KP/81588
<i>Pyropia</i> sp. CHJ	Región de Los Ríos, Valdivia, Niebla, Chile	KP781590
<i>Pyropia</i> sp. CHJ	Región de Los Ríos, Valdivia, Niebla (Playa Grande), Chile	KP781687
<i>Pyropia</i> sp. CHJ	Región de Los Lagos, Chiloé, Playa Mar Brava, Chile	KP781600
<i>Pyropia</i> sp. CHJ	Región de Los Lagos, Chiloé, Cucao, Chile	KP781662/
		KP781648
<i>Pyropia</i> sp. CHJ	Región de Los Ríos, Valdivia, Los Molinos, Chile	KP781683
Pyropia sp. CHJ	Región del Biobío, Concepción, Coliumo, Chile	KP781586
Pvropia sp. CHJ	Región de Los Lagos, Llanguihue, Carelmanu, Chile	KP781598
Pyronia sp. CHI	Región de Los Lagos, Chiloé, Cucao, Chile	KP781601
Pyronia sp. CHI	Región de Los Lagos, Chiloé, Plava Mar Brava, Chile	KP781500
Puropia sp. CHJ	Región de Valnaraísa, Harcán Valnaraísa, Chila	KD701566
Dwopia op. CHK	Dagión de Atagama Las Durras Hugsan Chila	VD701211/
<i>г угоріа</i> sp. Снк	Region de Atacama, Los Dunos, Huasco, Unite	KP/81011/

		KP781612/
		KP781613/
		KP781614/
<i>Pyropia</i> sp. CHK	Región de Atacama, Chañaral de Aceituno, Huasco, Chile	KP781615/
	-	KP781616/
		KP781617/
		KP781618
<i>Pyropia</i> sp. CHK	Región de Coquimbo, Elqui, Abalonera Chica, Chile	KP781619/
		KP781623/
		KP781624
<i>Pyropia</i> sp. CHK	Región de Coquimbo, Puerto Aldea, Elqui, Chile	KP781625
Pyropia sp. CHK	Región de Coquimbo, Mina Talca, Limarí, Chile	KP781626/
		KP781627/
		KP781628
<i>Pyropia</i> sp. CHK	Región de Coquimbo, Choapa, Puerto Oscuro, Chile	KP781629/
		KP781630/
		KP781632
<i>Pyropia</i> sp. CHK	Región de Valparaíso, Petorca, Los Molles, Chile	KP781633/
		KP781634/
		KP781635
<i>Pyropia</i> sp. CHK	Región de Valparaíso, Valparaíso, Maitencillo, Chile	KP781604/
		KP781605/
		KP781606/
		KP781607/
		KP781608/
		KP781609/
		KP781610
Pyropia sp. CHK	Región de Valparaíso, Petorca, Salinas de Pullay, Chile	KP781636
<i>Pyropia</i> sp. FIA	Región de Magallanes, Punta Arenas, Chile	KP781603
<i>Pyropia</i> sp. FIA	Región de Magallanes, Fuerte Bulnes, Chile	KP781668
<i>Pyropia</i> sp. FIA	Región de Magallanes, Agua Fresca, Chile	KP781669
Pyropia sp. HK-2011d	Rhode Island, Governor Sprague Bridge 17, Narragansett, USA	JN028798
Pyropia spiralis	Espírito Santo, Vila Velha, Brazil	JN222754
Pyropia tanegashimensis	Sao Paulo, Praia Dura, Ubatuba, Brazil	JN222752
Pyropia thuretii	British Columbia, Island south of Clotchman I., Spanish Pilot Group,	JN028801
	Tahsis, Canada	
Pyropia torta	British Columbia, Alder Island, Gwaii Haanas, Canada	JN028802
Pyropia vietnamensis	Parnaíba, Pedra do Sal, Piauí, Brazil	JN222751
Wildemania amplissima	British Columbia, Murchison Island Lagoon, Gwaii Haanas, Canada	HQ969863
Wildemania miniata	Quebec, Escoumins, Canada	JN028874
Wildemania occidentalis	British Columbia, Tahsis Nuchatliz Island, Canada	JN028923
<i>Wildemania</i> sp. FII	Región de Magallanes, Buque Quemado, San Gregorio Chile	KP781664

Taxon	Collection location	RBCL - GENBANK
		Accession no.
Bangia atropurpurea	Ysselmeer, Enschede, Netherlands	AF169330
'Bangia fuscopurpurea' BB	Bolinas Bay, CA, USA	EU289018
Bf 1		
'Bangia fuscopurpurea'	Banda, Tateyama, Chiba, Japan	HQ687502
'Bangia fuscopurpurea'	Nice, France	AF168659
France		
'Bangia fuscopurpurea'	Taiwan	AF168654
Taiwan		
'Bangia fuscopurpurea' WA	Fisherman's Bay, WA, USA	AF169329
'Bangia' gloiopeltidicola	Shinori, Hakodate, Hokkaido, Japan	HQ687503
'Bangia' maxima	Bolinas Bay, CA, USA	EU289020
Bangia' sp. BC Can	Ogden Point, Victoria, BC, Canada	AF043376
Bangia' sp. BCH	Taylor's Mistake, Christchurch, South I, NZ	HQ687504
Bangia' sp. BFK	Frank Kitts Lagoon, Wellington, North I, NZ	HQ68/505
Bangia sp. BGA	Gentie Annie, westland, South I, NZ	HQ68/506
Bangia sp. BII	14 Mile Diuli, Westialia, South I, NZ	U040404
Bangia's p. BJB	Causel Cove, Doublin Sound, Florand, NZ Makawhia, North I, NZ	ПQ08/30/ НО687508
'Bangia' sp. BIN w	Makawillo, Noluli I, NZ Bawley Doint N. of Bateman's Bay, NSW Australia	HQ687500
'Bangia' sp. BNS	Maketu Bay of Plenty North I NZ	HQ687510
' <i>Bangia</i> ' sp. BRM	Kaka Point Otago South I NZ	HQ687511
<i>Bangia</i> 'sp. BIUN	Woodpecker Bay Paparoa Wesland South I NZ	EU570051
<i>Bangia</i> ' sp. CH620	Supseom Jejudo Korea	HO728203
Bangia sp. Ireland	Shannon River, Ireland	AF043371
'Bangia' sp. MA	Woods Hole, MA, USA	AF043369
'Bangia' sp. NthBC Can	Triple Island, BC, Canada	AF043372
'Bangia' sp. NWT	Rankin Inlet, NWT, Canada	AF043366
'Bangia' sp. OR	Lincoln City, OR, USA	AF043367
'Bangia' sp. SB Bf 1	Solana Beach, CA, USA	EU289019
<i>'Bangia</i> ' sp. TX	Port Aransas, TX, USA	AF043377
'Bangia' vermicularis	Golden Gate, San Francisco Bay, CA, USA	EU289022
Boreophyllum aestivale	Captains Bay, Amaknak Island, AK, USA	EU223033
Boreophyllum birdiae	Herring Cove, NS, Canada	AY180909
Boreophyllum	Erimo, Hokkaido, Japan	HQ687512
pseudocrassum		
Boreophyllum sp. 148	Village of Akutan, AK, USA	EU223240
Clymene coleana	Leigh, North I, NZ	FJ263672
Clymene sp. OTA	Brighton, Otago, South I, NZ	GU214023
Ciymene sp. 115	Chau Stream Kaikoura, South I New Zealand	HQ08/314 EU570052
Dione urcuulu Eusoifolium papanfussii	Saldovia Doint AK USA	EU370032 EU222120
Fuscifolium sp. CHA	Región de Coguimbo, Choana, Puerto Oscuro	KP781730
Fuscifolium tasa	Spray Cane Unalaska Island AK USA	FU223226
Miuraea misitae	Osaka Bay Osaka Janan	EU521643
Pornhvra dioica	Sidmouth UK	HO687546
Porphyra linearis	Abervstwyth, UK	HO687547
Porphyra lucasii	Trigg Beach, WA, Australia	AY139687
Porphyra mumfordii	Región de Los Ríos, Valdivia, Los Molinos, Chile	KP781809
Porphyra mumfordii	Región de la Araucanía, Cautin, Cheuque, Chile	KP781768
Porphyra purpurea	Litstock, Somerset, UK	HQ687516
Porphyra sp. CHB	Región de Los Lagos, Chiloé, Cucao, Chile	KP781808
Porphyra sp. CHC	Región de Valparaíso, Petorca, Salinas de Pullay, Chile	KP781737/
		KP781738
Porphyra sp. CHC	Región de Los Ríos, Valdivia, Playa Rosada, Chile	KP781811
Porphyra sp. CHC	Región de la Araucanía, Cautin, Cheuque, Chile	KP781769

Porphyra sp. CHC	Región de Los Ríos, Valdivia, Pichicuyin, Chile	KP781770/
		KP781771
<i>Porphyra</i> sp. CHC	Región de Atacama, Huasco, Los Burros, Chile	KP781705
Porphyra sp CHF	Región de Antofagasta Antofagasta Playa El Lenguado Chile	KP781699
Porphyra sp. CHF	Región de Coquimbo, Elqui, Guanaquerillos, Chile	KP781719/
<i>i orphyru</i> sp. em	Region de Coquimoo, Elqui, Ouunaquermos, Cime	KP781720
Pornhurg sp CHE	Región de Coquimbo, Elqui, Puerto Aldea, Chile	KI /01/20 KP781723/
<i>i orphyru</i> sp. cm	Region de Coquimoo, Elqui, i deito Aldea, Chine	KI 781723/ KD781724
Downhung on CHE	Desión de Atacama Unasco, Chañaral de Accituna, Chilo	KI /01/24 VD791707/
Porphyra sp. CHF	Region de Atacama, Huasco, Chanaraí de Acentuno, Cime	KP/81/0//
	Deside de Cominghe, Charge, Caleta las Complete Chile	KP/81/08
Porphyra sp. CHF	Region de Coquimbo, Choapa, Caleta las Conchas, Chile	KP/81/31
Porphyra sp. CHF	Region de Valparaiso, San Antonio, Punta de Traica, Chile	KP/81/49/
		KP/81/50
<i>Porphyra</i> sp. CHF	Region del Libertador General Bernardo O'Higgins, Cardenal Caro, Pichilemu, Chile	KP/81/51
Porphyra sp. CHF	Región del Libertador General Bernardo O'Higgins, Cardenal Caro,	KP781847/
	La Boca, Chile	KP781848/
		HQ687552/
		KP781849/
		KP781850/
		KP781854
Pornhyra sp CHF	Región del Biobío, Concepción, Coliumo, Chile	KP781764
Porphyra sp. CHF	Región de Valnaraíso Valnaraíso Playa Amarilla Chile	KP781838
Porphyra sp. CHF	Región de Valparaíso, Valparaíso, Playa Fl Encanto, Chile	KP781839/
i orphyru sp. eini	Region de Vulpuruiso, Vulpuruiso, i luyu El Eneunio, enne	KP781844/
		KP781846
Pornhurg sp CHE	Región de Valnaraísa, Valnaraísa, Curaumilla, Chile	KP781840/
<i>i orphyru</i> sp. cm	Region de Valparaiso, Valparaiso, Curadinina, Cine	KP7818/11/
		KI /01041/ KD701042/
		KF / 01042/ VD701042
Downhung on FID	Fall-land Ia	CU165940
Porphyra sp. FIB	Faikianu IS Waddall Ian Waddall Ia Fall-land Ia	GU103840
Porphyra sp. FIG	Weddell Inn, Weddell IS, Faikland IS	GU103883
Porphyra sp. FIG	Region de Magallanes, Magallanes, Buque Quemado, Unite	KP/81819
<i>Porpnyra</i> sp. FIG	Region de Magallanes, Magallanes, Fuerte Buines, Chile	KP/81828/
		KP/81832
<i>Porphyra</i> sp. FIH	Region de la Araucania, Cautin, Cheuque, Chile	KP/81/6/
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Llanquihue, Metri, Chile	KP/81//4/
		KP781775/
		KP781776/
		KP781777/
		KP781778/
		KP781779/
		KP781780/
<i>Porphyra</i> sp. FIH	Región de Magallanes, Magallanes, Punta Arenas, Chile	KP781781
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Playa Mar Brava, Chile	KP781787
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Llanquihue, Carelmapu, Chile	KP781782
		KP781792
Porphyra sp. FIH	Puerto Montt, Pargua, Punta Corona, Chile	KP781794/
		KP781795
Porphyra sp. FIH	Región de Los Lagos, Chiloé, Ancud, Fátima, Chile	KP781798
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Ancud-Arena Gruesa, Chile	KP781799
Porphyra sp. FIH	Región de Los Lagos, Chiloé, Puñihuil, Chile	KP781800
<i>Porphyra</i> sp. FIH	Región de Los Lagos, Chiloé, Quemchi, Chile	KP781801/
	-	KP781802/
		KP781803/
		KP781804/

KP781805

Porphyra sp. FIH	Región de Los Ríos, Valdivia, Playa Rosada, Chile	KP781814/
		KP781816
<i>Porphyra</i> sp. FIH	Región de Magallanes, Magallanes, Fuerte Bulnes, Chile	KP781829/
Boundary EIL	Pagión da Magallanas, Magallanas, Sana Otway, Dunta Canala, Chila	KP/81830/
<i>Porphyra</i> sp. FIH	Region de Magananes, Magananes, Seno Otway-Punta Canelo, Cinte	KP / 81834/ KP781835
Pornhyra sp FIH	Región de Magallanes Magallanes Seno Skyring Rio Verde Chile	KP781836
Porphyra sp. FIH	Región de Los Ríos, Valdivia, Isla Mancera, Chile	KP781851/
		KP781852/
		KP781853
Porphyra sp. GDM	Dead Man Beach, Stewart I, NZ	GU046415
Porphyra sp. GRB108	Cape Wanbrow, Otago, South I, NZ	GU214021
Porphyra sp. GRB178	Whatariki Beach Nelson NZ	HQ687548
Porphyra sp. GRB287	Panaroa, Westland, South I, NZ (2 collections: Seal Island &	HQ687550
	opposite coast)	
Porphyra sp. GRB368	Kaka Point, Otago, NZ	HQ687551
Porphyra sp. GRB488	Chatham Is, NZ	GU046405
Porphyra sp. JBCH26A	Playa Amarillo, nr Valparaiso, Chile	HQ687552
Porphyra sp. LGD	Lyall Bay, Wellington, NZ Mounganui Dluff Northland North L NZ	GU046409
Porphyra sp. MTK	Ohau Stream Kaikoura South I NZ	HQ687554
Porphyra sp. SBA	Derry Castle, Auckland Island, NZ	GU046414
Porphyra sp. SIR	Ringaringa, Stewart I (nrSSU); Torias Corner, Stewart I (rbcL) NZ	GU046417
Porphyra sp. TAS	Blinkers Billy Pt, Derwent Estuary, (nrSSU) & Taroona Point (rbcL)	GU046427
<i>Porphyra</i> sp. WLR	Brighton, Otago, South I, NZ	GU165837
Porphyra sp. ZBS	St Helena Bay, South Africa	HQ687555
Porphyra sp. ZCE	The Boulders, False Bay, South Africa	GU046424
Porphyra sp. ZDR	The Boulders, South Africa	GU046425
Porphyra sp. ZGR	St Helena Bay, South Africa	HQ687556
Porphyra sp. ZIR	St Helena Bay, South Africa	GU214022
Porphyra sp. ZPP	Port Alfred breakwater, South Africa	HQ687557
Porphyra sp. ZSM	Tietiesbaai, South Africa	HQ687558
Porphyra umbilicalis	Sidmouth, UK	HQ687559
Pyropia abbottiae	Harling Point, Victoria, BC, Canada	EU223024
Pyropia acanthophora	Ubatuba, São Paulo, Brazil	HQ605695
Pyropia aeodis	Paternoster, South Africa	GU165843
Pyropia brumalis	Stanley Park, Vancouver, BC, Canada	EU223038
Pyropia cf crassa	Nosappu, Nemuro, Hokkaido, Japan	HQ687518
Pyropia cf pseudolinearis	Bridget Cove, AK, USA	EU223172
Pyropia cf thuretii	Olas Altas, Mazatlan, Sinaloa, Mexico	HQ687519
Pyropia cinnamomea	Bruce's Rock, Otago, South I, NZ	EU521637
Pyropia columbina	Top Island, Port Stanley, East Falkland, Falkland Is	GU046423
Pyropia conwayae	French Beach, BC, Canada	EU223045
Pyropia dentata	Shirahama, Chiba, Japan	HQ687520
Pyropia denticulata	Mooloolaba, Queensland, Australia	HQ687521
Pyropia fallax	Avatanak Island, AK, USA	GU319865
Pyropia fucicola	SW side, 29 end of runway, Sitka airport, Japonski Island, AK, USA	EU223088

Pyropia gardneri AK	Northeast Ushagat Island, AK, USA	EU223096
Pyropia gardneri	Caminitos (Cabo Punta Banda), Baja California, Mexico	HQ687522
Pyropia haitanensis	Yuge, Ehime, Japan	AB118585
Pyropia hiberna	foot of 15th Street, Pacific Grove, Monterey County, CA, USA	GU319866
Pyropia hollenbergii	Agua Verde, Baja California Sur, Mexico	HQ687523
Pyropia ishigecola	Yoshio, Katsuura, Chiba, Japan	HQ687524
Pvropia kanakaensis	between Makah Bay and Sekui, Olympic Peninsula, WA, USA	EU223099
Pvronia katadae Japan	Ise. Mie. Japan	HO687525
Pyropia katadae Korea	Pohang Gyeongsangbukdo Korea	HO728199
Pyropia kinositae	Arito Suttu Hokkaido Japan	EU521641
Pyropia koreana	Obori Gangwondo Korea	H0728198
Pyropia kuniedae	Sachan Namhae Gueongsangnamdo Korea	HQ728190
$P_{\text{vropia kurogii}} \Lambda K$	Sachon, Nammae, Gyeongsangnamdo, Korea	EU223105
I yropia kurogii AK	Utora Hakkaida Japan	LO223105
Pyropia kurogii Japan	Shirahama Chiha Japan	HQ087520
	Silmanana, Cinoa, Japan	HQ087527
		HQ68/528
Pyropia moriensis	Otaru, Hokkaido, Japan	EU521645
Pyropia nereocystis	Northeast Ushagat Island, AK, USA	EU223117
Pyropia onoi	Mori, Hokkaido, Japan	HQ687529
Pyropia orbicularis	Región de Valparaíso, Petorca, Salinas de Pullay	KP781735/
		KP781730
Pyropia orbicularis	Región de Valparaíso, Valparaíso, Maitencillo	KF479481/
		KF479482/
		KF479484/
		KF479485/ KF479486/
		KF479488/
		KF479489/
		KF479490/
		KF479491/
		KF4/9492/ KF479497/
		KF479498/
		KF479499
Pyropia orbicularis	Región del Maule, Curico, Duao	KP781752/
		KP781753/
		KP/81/54/ KP781755/
		KP781756/
		KP781757
Pyropia orbicularis	Región del Maule, Talca, Constitución	KP781758/
		KP781759/
		KP781761/
		KP/81/62/ VD701762
Pvropia orhicularis	Región del Biobío, Concepción, Cocholgue	KP781765
Pyropia orbicularis	Región del Biobío Concención Lota	KP781766
Pyropia orbicularis	Región de Los Ríos Valdivia Calfuco	KP781777
Puropia orbicularis	Región de Los Lagos, Chiloá Playa Mar Braya	KD701700
r yropia orbicularis	Region de Los Lagos, Chinoe, Playa Mar Brava	Kr/81/88

Pyropia orbicularis	Región de Los Lagos, Chiloé, Chonchi	KP781791
Pyropia orbicularis	Región de Los Lagos, Llanquihue, Punta Corona	KP781796
Pyropia orbicularis	Región de Los Lagos, Llanquihue, Puerto Montt-Estaquilla	KP781797
Pyropia orbicularis	Región de Los Lagos, Chiloé, Achao, Punta Palqui	KP781806
Pyropia orbicularis	Región de Los Ríos, Valdivia, Playa Rosada	KP781812
Pyropia orbicularis	Región de Los Ríos, Valdivia, Playa Rosada	KP781813
Pyropia orbicularis	Región de Magallanes, Magallanes, Fuerte Bulnes	KP781825/
Dunania nandula	Colorito Doio Colifornio Sur Mauico	KP781827
Pyropia penaula Duropia porfonata	Calenta, Baja California Sul, Mexico	EU222127
Pyropia perforaia	Lighthouse. Del Norte County, CA, USA (rbcL)	EU223127
Pyropia pseudolanceolata	Harling Point, Victoria, BC, Canada	EU223145
<i>Pyropia pseudolinearis</i> Japan	Choshi, Chiba, Japan	HQ687531
<i>Pyropia pseudolinearis</i> Korea	Dokdo, Gyeongsangbukdo, Korea	HQ728196
Pyropia pulchella	Waihau Bay East, North I, NZ	HQ687532
Pyropia rakiura	Ocean View, Kaikoura, South I, NZ	EU521646
Pyropia saldanhae	Kommetjie, South Africa	GU165838
Pyropia seriata	Hondo, Kumamoto, Japan	HQ687533
Pyropia smithii	Nudibranch Point, Barkley Sound, Vancouver Island, BC, Canada	EU223224
Pyropia sp. 480	Spanish Bay, Monterey County, CA, USA	GU319867
<i>Pyropia</i> sp. 485	Mussel Rock, Cape Mendocino, CA, USA	GU319868
<i>Pyropia</i> sp. 523	outside Chichagof Harbor, Attu Island, AK, USA	GU319869
<i>Pyropia</i> sp. 551	Gerringong boat harbor, NSW, Australia	GU319870
Pyropia sp. AKL	Southeast Sandy Bay, Enderby I, Auckland Is, NZ	GU046403
Pyropia sp. Antar68	Admiralty Bay, King George Island, South Shetlands	HQ605698
<i>Pvropia</i> sp. CHG	Región de Magallanes, Magallanes, Punta Carrera	KP781837
<i>Pyropia</i> sp. CHH	Región de Los Ríos, Valdivia, Niebla (Playa Grande)	KP781845
<i>Pyropia</i> sp. CHH	Región de Los Lagos, Chiloé, Playa Mar Brava	KP781784
<i>Pyropia</i> sp. CHI	Región de Arica y Parinacota, Arica, Playa Corazón, Chile	KP781698
<i>Pyropia</i> sp. CHI	Región de Coquimbo, Elqui, Abalonera chica	KP781713/
V I I		KP781714/
Dunonia on CUI	Posión del Maule, Teles, Constitución	KP781715
Pyropia sp. CHJ	Región de Los Ríos, Valdivia, Nichla	KF / 01 / 00
Pyropia sp. CHI	Región de Los Lagos Llanguibue Carelmanu	KI 781773 KP781783
Pyropia sp. CHI	Región de Los Lagos, Chiloé Playa Mar Braya	KI /81/85
<i>i yropiu</i> sp. Citi	Region de Los Lagos, Childe, Flaya Mai Brava	KP781785
Pyropia sp. CHJ	Región de Los Lagos, Chiloé, Cucao	KP781789/
		KP781790/
<i>Pvropia</i> sp. CHJ	Región de Los Ríos, Valdivia, Los Molinos	KP781807
<i>Pyropia</i> sp. CHJ	Región de Los Ríos, Valdivia, Niebla (Plava Grande)	KP781815
Pvropia sp. CHK	Región de Atacama, Huasco, Los Burros, Chile	KP781701/
· · · · · · · · · · · · · · · · · · ·	<u> </u>	KP781702/
		KP781703/

KP781703/ KP781704

<i>Pyropia</i> sp. CHK	Región de Atacama, Huasco, Chañaral de Aceituno, Chile	KP781706/ KP781709/ KP781710/
<i>Pyropia</i> sp. CHK	Región de Coquimbo, Elqui, Abalonera Chica, Chile	KP/81/11 KP781712/ KP781716/ KP781717/
Pyropia sp. CHK	Región de Coquimbo, Elqui, Puerto Aldea, Chile	KP781721/
<i>Pyropia</i> sp. CHK	Región de Coquimbo, Limarí, Mina Talca, Chile	KP781725/ KP781726/
<i>Pyropia</i> sp. CHK	Región de Coquimbo, Choapa, Puerto Oscuro, Chile	KP781727 KP781728/ KP781729
<i>Pyropia</i> sp. CHK	Región de Valparaíso, Petorca, Los Molles, Chile	KP781732/ KP781733
Pyropia sp. CHK	Región de Valparaíso, Petorca, Salinas de Pullay, Chile	KP781734
<i>Pyropia</i> sp. CHK	Región de Valparaíso, Valparaíso, Maitencillo, Chile	KP781740/ KP781741/ KP781742/ KP781743/ KP781744/ KP781745/ KP781746/ KP781747
Pyropia sp. CHK	Región de Valparaíso, Valparaíso, Playa Caucao	KP781748
Pyropia sp. DRB	Sumner, Christchurch, South I, NZ	HQ687534
<i>Pyropia</i> sp. FAL	Saldamando, Baja California, Mexico	HQ687535
Pyropia sp. FIA	Top Island, Port Stanley, East Falkland, Falkland Is.	GU165842
<i>Pyropia</i> sp. FIA	Región de Magallanes, Magallanes, Gregorio	KP781821/ KP781822
<i>Pyropia</i> sp. FIA	Region de Magallanes, Magallanes, Fuerte Bulnes	KP/81831
<i>Pyropia</i> sp. FIA	Region de Magallanes, Magallanes, Agua Fresca	KP/81833
<i>Pyropia</i> sp. FIC	For Loofers See Lies L Fallend Is	GU046422
<i>Pyropia</i> sp. FID	East Loarers, Sea Lion I, Faikland IS.	GU046406
<i>Pyropia</i> sp. FID	Region de Magallanes, Magallanes, Fuerte Buines	KP781793/ KP781823/ KP781826
<i>Pyropia</i> sp. FIE	Top Island, Port Stanley, East Falkland, Falkland Is.	GU046408
<i>Pyropia</i> sp. GEP	Avon/Heathcote Estuary, Christchurch, South I, NZ	GU165841
<i>Pyropia</i> sp. MIG	Faru de San Miguel, Baja California, Mexico	HQ687536
Pyropia sp. Piaui	Parnaiba, Piaui, Brazil	HQ605697
<i>Pyropia</i> sp. PTK	Northwest Bay, Manawa Tawhi, Three Kings Islands, NZ	HQ687537
Pyropia sp. ROS054	Ocean View, Kaikoura, South I, NZ	GU046410
Pyropia sp. ROS125	Henderson Point, North I, NZ	HQ687538
<i>Pyropia</i> sp. SMR	Curio Bay, Southland, South I, NZ	HQ687539
Pyropia sp. SSR053	Ocean View, Kaikoura, South I, NZ	GU046411
<i>Pyropia</i> sp. SSR091	Brighton, Otago, South I, NZ (2 collections, 11 Feb 1997 nrSSU & 21 May 2001 rbcL)	GU046421
Pyropia sp. STI	Campbell Point, Otago, South I, NZ	HQ687540

<i>Pyropia</i> sp. TCH	Torias Corner, Stewart I, NZ	GU046418
Pyropia sp. WRO	Punakaiki, Westland, South I, NZ	HQ687541
<i>Pyropia</i> sp. ZLI	Paternoster, South Africa	GU165839
Pyropia spiralis	Vila Velha, Espírito Santo, Brazil	HQ605696
Pyropia suborbiculata	Wonsando, Chungchungnamdo, Korea	HQ728201
Pyropia tanegashimensis	Iseki, Tanegashima, Kagoshima, Japan	HQ687542
Pyropia tenera	Kawaura, Kumamoto, Japan	HQ687543
Pyropia tenuipedalis	Urayasu, Chiba, Japan	EU521649
Pyropia torta	Vista Mar, San Juan Island, WA, USA	EU223236
Pyropia vietnamensis	Thangeseri (Kerala) India	HQ687544
Pyropia virididentata	Lyall Bay, Wellington, North I, NZ	EU521650
Pyropia yezoensis	Galmok, Tongyoung, Gyeongsangnamdo, Korea	HQ728197
Wildemania amplissima	Nosappu, Nemuro, Hokkaido, Japan	HQ687560
Wildemania norrisii	Harling Point, Victoria, BC, Canada	EU223212
Wildemania occidentalis	Cape Palmerston, Vancouver Island, BC, Canada	EU223118
Wildemania schizophylla	Van Damme State Park, Mendocino County, CA, USA	GU319871
Wildemania sp. Antar23	Admiralty Bay, King George Island, South Shetlands Archipelago, Antarctica	HQ605700
Wildemania sp. FII	Región de Magallanes, Magallanes, Buque Quemado	KP781817/ KP781818/
		KP781820
<i>Wildemania</i> sp. FII	Hill cove kelp forest west of jetty, West Falkland, Falkland Is.	GU165883
Wildemania sp. HM080	Songjiho, Gangwondo, Korea	HQ728202
Wildemania variegata AK	Kagamil Island, AK, USA	EU223237
Wildemania variegata Japan	Mori, Hokkaido, Japan	GU046430
Table S3. Mean genetic distances calculated within- and between species for *Pyropia* sp. CHJ, *Pyropia* sp. CHK and *Pyropia orbicularis* for the *COI*. Genetic distances calculated within species are noted in bold along the diagonal. Genetic distances calculated between species pairs are noted below the diagonal. Sequences obtained in Maitencillo during this work were completed by the ones already available in Guillemin et al. (2016).

	Pyropia sp. CHJ	Pyropia orbicularis	Pyropia sp. CHK
Pyropia sp. CHJ	0.008		
Pyropia orbicularis	0.073	0.006	
<i>Pyropia</i> sp. CHK	0.038	0.063	0.001