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Abstract 45 

Artificial selection of individuals has been determinant in the elaboration of the Darwinian theory of 46 

natural selection. Nowadays, artificial selection of ecosystems has proven its efficiency and could 47 

contribute to a theory of natural selection at several organization levels. Here, we were not interested 48 

in identifying mechanisms of adaptation to selection, but in establishing the proof of principle that a 49 

specific structure of interaction network emerges under ecosystem artificial selection. We also 50 

investigated the limits in ecosystem artificial selection to evaluate its potential in terms of managing 51 

ecosystem function. By artificially selecting microbial communities for low CO2 emissions over 21 52 

generations (n = 7,560), we found a very high heritability of community phenotype (52%). Artificial 53 

selection was responsible for simpler interaction networks with lower interaction richness. Phenotype 54 

variance and heritability both decreased across generations, suggesting that selection was more likely 55 

limited by sampling effects than by stochastic ecosystem dynamics. 56 

 57 

 58 

 59 

 60 

 61 

  62 
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INTRODUCTION 63 

Because of the time required for natural selection to occur in nature, artificial selection has been a 64 

major argument in the development of the theory of heredity with modification by Darwin, with the 65 

deep analysis of pigeon breeding genealogy (Darwin 1859). In the line of Darwin, several 66 

experimental studies have investigated the effects of artificial selection at the group level, to feed the 67 

debate on the level of natural selection (Williams 1966; Lewontin 1970; Wilson 1997). Experiments 68 

testing group artificial selection involved beetle populations (Wade 1976, 1977; Craig 1982), plant 69 

populations (Goodnight 1985), chicken populations (Craig & Muir 1996), but also two-species beetle 70 

communities (Goodnight 1990a, 1990b) or multiple-species microbial ecosystems (Swenson et al. 71 

2000a, 2000b). Recent research also focusses on the ecological consequences of selection of plant 72 

trait-associated microbiomes (Lau & Lennon 2012; Panke-Buisse et al. 2015). Consequences of these 73 

results for natural selection in nature have already been discussed (Goodnight & Stevens 1997).   74 

In parallel, much of the work done in modern molecular genetics is focused on the genetic basis of 75 

organism phenotypes and changes in alleles frequencies associated with selected phenotypes. 76 

However, this cannot be the unique focus when dealing with community or ecosystem artificial 77 

selection: in addition to variations in gene frequencies, changes in ecosystem or community phenotype 78 

could be due to changes in intraspecies interactions among individuals and species composition 79 

(Goodnight 2000). A simulation model even demonstrate that ecosystem artificial selection can occur 80 

“without genetic changes”, i.e. only because of changes in species composition (Penn & Harvey 81 

2004). Before asking the question of genetic mechanisms involved in the modification of the 82 

ecosystem phenotype, it is important identifying the level at which phenotype variance occurs: 83 

community, population or individual genes? A first objective of this study was to bring an 84 

experimental proof of principle that community structure, especially the structure of interaction 85 

networks of communities, are significantly affected during the artificial selection procedure. 86 

A second objective was to document how far we can go in changing ecosystem phenotype by artificial 87 

selection. Whereas limits in artificial selection have been well described and formalized at the 88 
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individual level (Robertson 1960; Hill 1982), the degree to which ecosystem properties may be 89 

improved by artificial selection remains unclear (Goodnight 2000). Two different interpretations of the 90 

nature of variation in ecosystem artificial selection are leading to opposite predictions on the link 91 

between variance and heritability and their consequences on the limits in ecosystem artificial selection. 92 

Firstly, it has been well established that, during artificial selection of individual organisms, directional 93 

selection by truncation leads to a reduction in phenotypic variance, depending on the intensity of 94 

selection i. i = z/p, where z is the ordinate of the normal curve at the truncation point and p is the 95 

percentage of selected individuals (or the selection rate). In directional selection, the variance of the 96 

individuals selected in the parental generation decreases by a factor of 1-i(i-x), where x is the abscissa 97 

of the truncation point of the normal curve (Cochran 1951). Genetic variance can be “used up” by 98 

selection in a manner that is proportional to the relative reduction in parental phenotypic variance via 99 

the fixation of favorable alleles and the elimination of unfavorable alleles as well as rare alleles by 100 

drift (i.e. sampling effect). Exceptions occur when a selected trait involves a very large number of loci 101 

(Bulmer 1976). To summarize, a decreased genetic variance should lead to decreased phenotypic 102 

variance and consequently to a decrease in heritability and selection efficiency. This could be true for 103 

other level of organization such as the ecosystem, in which genetic variance could be “used up” 104 

through the successive loss of rare alleles, individuals or species. In this case, an observed decrease in 105 

the variance of ecosystem phenotype should be interpreted as a loss of genetic diversity by sampling 106 

effect; ecosystem phenotype variance and heritability should thus decrease along generations and be 107 

positively correlated. The limits in ecosystem artificial selection would thus be determined by the 108 

initial genetic diversity, size of the population and intensity of the sampling effect. 109 

Another argument leads to an opposite prediction on nature of the limits in ecosystem selection and 110 

the sign of the correlation between variance and heritability. According to Lewontin, there are three 111 

conditions needed for selection to occur (Lewontin 1970): (i) there must be phenotypic variance 112 

among the different individuals experiencing selection; (ii) this phenotypic variance must be heritable; 113 

and (iii) phenotypic differences must be linked with different fitness values. In artificial selection 114 

experiments, this third condition is always true, as the breeder/experimenter selects individuals based 115 
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on phenotypic differences. But Penn et al. pointed out that Lewontin’s first and second conditions 116 

(variance and heritability) could be at odds as far as ecosystem artificial selection is concerned (Penn 117 

2003; Penn & Harvey 2004). Indeed, Swenson et al. did not observe any effect of the size of the 118 

sample used to create the offspring generation (6.0 vs. 0.06 g of soil) on ecosystem phenotype 119 

variance; they interpreted this result as a proof that the intensity of the sampling effect was not 120 

determinant in the variance of the ecosystem phenotype, because its importance should have been 121 

lower with large samples than with small ones. Consequently, they proposed that ecosystem variance 122 

was determined by the stochastic dynamics of ecosystem or butterfly effect (Lorenz 1993), which 123 

occurs whatever the importance of initial differences due to the sampling effect (Swenson et al. 124 

2000b). For Penn et al. (2003; 2004), the stochastic ecosystem dynamics could potentially reduce the 125 

heritability of ecosystem phenotypes because it leads to differences between parental and offspring 126 

communities. As a consequence, a high variance in ecosystem phenotype due to the stochastic 127 

dynamics of ecosystem would be associated with a low heritability and vice versa. If true, a negative 128 

correlation should be observed between ecosystem phenotypic variance and heritability. In that case, 129 

artificial selection might involve more than a search for ecosystems with desired phenotypic traits; it 130 

might also be a selection of ecosystems quickly arriving at stable local equilibria, such that their 131 

properties can be reliably transmitted to the next generation. In ecosystem artificial selection, the 132 

limits to transmission of selected variations would thus rely on the ability for ecosystem dynamics to 133 

reach quickly a stable equilibrium, not on sampling effect and consequences on initial genetic 134 

diversity. 135 

To test our hypotheses, we repeatedly selected for ecosystems with low CO2 emissions, over 21 136 

selection events hereafter referred to as “generations”. The control (random selection) and selection 137 

treatment (selection for low CO2 emissions) each contained 6 independent lines of 30 communities 138 

apiece, which allowed us to test the effects of ecosystem selection in a statistically sound way (Fig. 1). 139 

For each generation, we also determined community biomass and carbon assimilation yield. To 140 

determine if a part of the community phenotype variance could be due to changes in community 141 

structure, we looked for non-random changes in community composition and ecological network 142 



7 
 

structure in lines of the control and selection treatment. In this aim, microbial community composition 143 

was determined by characterizing the T-RFLP-defined genetic units present in the last generation. To 144 

reveal ecological interaction network structure, we used co-occurrence patterns (see Faust & Raes 145 

(2012) for a detailed discussion); we built co-occurrence networks using genetic-unit-based correlation 146 

matrices and were thus able to explore how the structure of ecological interactions responded to 147 

ecosystem selection. To identify if the limits in ecosystem artificial selection were due to sampling 148 

effect or ecosystem dynamics, we confronted the two opposite predictions on the sign of the 149 

correlation between variance and heritability. In this aim, we calculated the heritability of CO2 150 

emissions at the ecosystem level by (i) regressing emissions by offspring communities against mean 151 

emissions by artificially selected parental communities and (ii) using the breeder’s equation 152 

(Goodnight 2000).  153 

  154 
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MATERIALS AND METHODS 155 

 156 

Artificial selection experiment 157 

An initial source ecosystem was obtained from the outlet of the Valenton water treatment plant 158 

(France) in April 2012. It was stored at 4 °C for 3 weeks and then, before the experiment, a 250-ml 159 

sample was incubated at 25 °C for 12 h to allow for acclimation to experimental conditions. Terminal 160 

restriction fragment length polymorphism (T-RFLP) analysis (see below) revealed that this sample 161 

contained an initial microbial community composed of 55 genetic units (Shannon index = 1.61). The 162 

experiment involved a control and a selection treatment, which were each made up of 6 independent 163 

lines of 30 communities apiece (Fig. 1). In the control, three communities were randomly chosen from 164 

each generation of each line; these parental communities were then pooled to produce the offspring 165 

communities of the next generation. In the selection treatment, the three communities with the lowest 166 

CO2 emissions were selected, and the same procedure was followed. The experiment spanned 21 167 

generations, producing a total of 7,560 communities. Our micro-ecosystems consisted of 50 µl inocula 168 

taken from the initial source ecosystem (about 105 CFU ml-1) to which 750 µl of sterile liquid medium 169 

(1/20 diluted LB: 10 g l-1 Trypton, 15g l-1 TSB, 500 mg l-1 of yeast extract, pH=7.3) was added; they 170 

were cultivated in 96-deep-well microplates. In each plate, six control wells were filled with 800 µl of 171 

sterile liquid medium to detect any contamination. The microplates were incubated at 25 °C in the 172 

dark for 24 h; this time period was defined as the generation time. CO2 emissions and microbial 173 

biomass were measured at the end of each 24-hour period. The new generation was created by taking 174 

50 µl from each pool of control or artificially selected communities.  175 

 176 

Quantification of ecosystem properties 177 

As stated above, communities were selected based on their CO2 emissions. CO2 measurements were 178 

performed using the MicroRespTM system (Campbell et al. 2003), adapted for use with aquatic 179 
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communities (Tlili et al. 2011). The CO2 emissions of each community were quantified by examining 180 

the relative change in the cresol red indicator dye suspended above each well of the 96-well plates. 181 

After a 24-hour incubation period, the absorbance of the indicator dye was measured at 570 nm using 182 

a microplate reader (Synergy HT, BioTek, USA); the values obtained were converted into estimates of 183 

CO2 emissions using a calibration curve previously established at 25 °C (Lerch et al. 2013). Each 184 

community’s microbial biomass was estimated using a 200-µl sample. Samples were placed in the 185 

wells of a 300-µL microplate and their absorbance at 600 nm (Synergy HT, BioTek, USA) was 186 

measured to assess the density of bacterial cells (cells ml-1). Cell density was converted to C biomass 187 

(referred to as CBio below, µg C ml-1) assuming 10-12 g wet weight per cell, a water content of 70%, 188 

and a C content as 40% of dry weight (Bratbak & Dundas 1984). The metabolic efficiency of the 189 

microbial communities was estimated using carbon assimilation yield (Y), which was calculated as 190 

follows: 191 

MinBio

Bio

CC

C
Y


  192 

where CBio and CMin are the amounts of assimilated and mineralized carbon, respectively (Lerch et al. 193 

2007a). 194 

 195 

Community composition 196 

The composition of the bacterial communities was determined on the last generation (21th) using T-197 

RFLP analysis. The details of the T-RFLP analysis are provided in Supplementary Information and the 198 

length of the restriction fragments is provided in SI Tab. 1. The richness of the T-RFLP profiles was 199 

expressed as the total number of T-RFs, and the evenness of the profiles was estimated using the 200 

Shannon index (H’) (Shannon 1948), which was calculated as follows: 201 

 202 
H’ = ∑ piln(pi) 

S 

i = 1 
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where pi represents the relative abundance of a given T-RF i. Past work has found that these indices 203 

are significantly correlated with true soil bacterial community richness and diversity (R² = 0.71, P = 204 

0.05) only when communities contain less than 1,200 species (Blackwood et al. 2007), as was the case 205 

for our experimental communities. 206 

 207 

Statistical Analysis 208 

Statistical analyses were performed using the following variables quantified for each generation: (i) 209 

absolute CO2 emissions of the control and treatment lines; (ii) relative CO2 emissions of the six 210 

selection treatment lines (mean of each treatment line minus the overall control mean); (iii) mean 211 

relative CO2 emissions of the selection treatment (overall treatment mean minus the overall control 212 

mean). Biomass and carbon assimilation yield were similarly quantified, transformed, and analyzed. 213 

Data normality was tested using the nortest package in R (Gross & Ligges 2012). We found that the 214 

residuals of relative CO2 emissions, biomass, and carbon assimilation yield were normally distributed, 215 

but those of the absolute values of these variables were not. The former were consequently analyzed 216 

using linear models (stat package in R), while the latter were examined using generalized linear mixed 217 

models employing restricted maximum likelihood (REML, nlme package in R (Pinheiro et al. 2013) 218 

Time (generation), treatment, and their interaction were the fixed effects; line and microplate position 219 

in the incubator were the random effects.  220 

The T-RFLP profile data were analyzed using correspondence analysis (ade4 package in R (Chessel et 221 

al. 2004) An intergroup constrained analysis coupled with a Monte Carlo permutation test was 222 

performed to examine differences in community composition between the control and the selection 223 

treatment. The data were also used to build co-occurrence networks (i.e., comprising direct and 224 

indirect interactions). Using the abundance of the different genetic units, we calculated Spearman 225 

correlation coefficients for different genetic unit pairs and constructed a correlation matrix. Only 226 

significantly correlated pairs were included in the networks (P ≤ 0.05) (Barberan et al. 2012). Distinct 227 

positive and negative co-occurrence networks were built for the control and selection treatment by 228 
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converting the correlation matrix into an adjacency matrix with either positive or negative correlation 229 

coefficients. A global network that combined positive and negative co-occurrences was also 230 

constructed to provide an overview of ecological network structure. In this network, modularity, also 231 

called compartmentalization, equals the number of isolated sub-networks. The adjacency matrix was 232 

resampled via bootstrapping (boot package (Ripley 1999) in R) with a view to quantifying the 233 

variance associated with the estimation of the four following interaction network indices (statnet 234 

package (Handcock et al. 2008) in R): (1) average degree (D) is the average number of interactions 235 

engaged in by one genetic unit (equal to 0 for an unconnected unit)—it is a good estimate of network 236 

complexity; (2) average betweenness (B) is the average number of shorter chains going through one 237 

node—it can signal the presence of keystone species in the network (from a topological standpoint, 238 

i.e., a node with many links); (3) connectance (C) is the proportion of possible links between species 239 

that are actually realized—this index links the ecological network’s overall structure to the behavior of 240 

the genetic units; (4) connectedness (Cd) is the probability that at least one chain exists between any 241 

pair of units—it quantifies all the direct and indirect interactions within the network. Index values for 242 

the control and selection treatment were compared using a Wilcoxon rank sum test with continuity 243 

correction for non-parametric data. 244 

  245 
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RESULTS 246 

 247 

Artificial selection  248 

Artificial selection was successful: ecosystems from the selection treatment emitted significantly less 249 

CO2 than those of the control. Over the experiment’s 21 generations, CO2 emitted in selection 250 

treatment decreased by 0.253 µg C ml-1 (-60%) and only by 0.142 µg C ml-1 (-38%) in the control (SI 251 

Fig. 1). Three of the six treatment lines emitted significantly less CO2 over time relative to the control 252 

(SI Fig. 2). Mean overall CO2 emitted by the selection treatment decreased significantly more than that 253 

emitted by the control (R² = 0.23, P = 0.015) (Fig. 2a).  254 

 255 

Ecosystem function 256 

Relative carbon assimilation yield did not change over time in any of the treatment lines (SI Fig. 3) or 257 

in the group as a whole (R² = 0.009, P = 0.29) (Fig. 2b). In contrast, relative biomass production 258 

declined over time in each of the selection treatment lines (SI Fig. 4) and in the selection treatment as 259 

a whole (R² = 0.91, P <0.001) (Fig. 2c). The lower CO2 emissions of the treatment communities were 260 

thus due to lower biomass production. The greater R² value for biomass (0.91) as compared with the 261 

selected CO2 emissions (0.23) can be explained in two ways: (i)biomass measurements (made using 262 

optical density) were more accurate than the CO2 measurements (made using the MicroRespTM system) 263 

(Campbell et al. 2003) or (ii)biomass values tend to integrate temporal variation, unlike CO2 264 

emissions. 265 

 266 

Community structure 267 

The analysis of the genetic composition of the last generation of microbial communities showed that 268 

neither the erosion of diversity nor the presence of a single, specific genetic unit could explain the 269 
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stronger decrease in CO2 emissions in the selection treatment. Indeed, genetic diversity was similar in 270 

the control and selected communities (specific richness of 20 and 18 genetic units and Shannon index 271 

of 0.87 and 0.83 for the control and selection treatment respectively). The treatment explained 23% of 272 

the variance in community composition (constrained correspondence analysis; axis 1: 27%, axis 2: 273 

20%, Monte Carlo test: P = 0.002) (Fig. 3). Despite an important variation in the different lines within 274 

the control and selection treatment, species composition differed significantly between the control and 275 

the treatment.  276 

 277 

Ecological network structure 278 

Microbial interaction networks can only be analyzed in terms of co-occurrence networks (see Faust & 279 

Raes (2012) for a detailed discussion of the difference between interaction and co-occurrence 280 

networks). . To build the co-occurrence networks in the control and selection treatment, we calculated 281 

the correlation coefficients for pairs of genetic units and selected those that were significantly 282 

positively or negatively correlated (P < 0.05). The total number of such pairs, often referred to as 283 

“interaction richness” (Tylianakis et al. 2010), is a measure of interaction diversity, which is positively 284 

correlated with the rate of ecosystem processes (Snyder et al. 2006; Hoehn et al. 2008). Interaction 285 

richness was equal to 54 and 28 for the control and selection treatment, respectively. Connectance, i.e. 286 

realized interaction richness reported to potential interaction richness, was also lower in the selection 287 

treatment network than in the control for the overall network (-23%, P < 0.0001, Fig. 4e) as for the 288 

positive and negative co-occurrence  networks (SI Fig. 5e, 6e). Interaction diversity can additionally 289 

be expressed by the average degree which reveals the average number of interactions involving each 290 

node (i.e., an individual genetic unit with at least one significant co-occurrence). Genetic units were 291 

involved in 3.2 interactions in the overall control network versus 2.0 in the overall selection treatment 292 

network (-35%, P = 0.038) (Fig. 4c); this difference was not significant for the positive and negative 293 

networks (P = 0.10 and 0.11, respectively, SI Fig. 5c, 6c). Approximately 48 and 46% of co-294 
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occurrences were negative in the control and treatment networks, respectively. Thus, artificial 295 

selection decreased interaction diversity but did not affect co-occurrence direction. 296 

Another useful information can be obtained from the number of clusters or sub-networks, a network 297 

indicia called compartmentalization or modularity. Modularity was similar for the positive and 298 

negative co-occurrence networks (SI Fig. 5a,b, 6a,b), but the overall control network contained a 299 

single cluster and the overall treatment network contained four clusters (Fig. 4a,b), which indicates the 300 

presence of isolated microbial groups. Average betweenness specifies the average proportion of 301 

centrally located nodes, which are viewed as “hubs” or “keystone species” from a network 302 

perspective. The overall selection treatment network contained far fewer hubs than the overall control 303 

network (-87%, P = 0.003, Fig. 4d); this also hold for the positive and negative networks (SI Fig. 5d, 304 

6d). Finally, connectedness is the probability that at least one chain exists between any pair of units, 305 

i.e. it quantifies all direct and indirect interactions within the network. Once again, the overall 306 

selection treatment network had lower connectedness than the overall control network (-71%, P < 307 

0.0001, Fig. 4f); positive and negative networks showed similar patterns (SI Fig. 5f, 6f). Taken 308 

together, the results for these three indices show that the treatment network was formed by the 309 

juxtaposition of several small networks, characterized by many isolated compartments and contained 310 

fewer hubs.  311 

 312 

Ecosystem-level heritability 313 

Heritability has been defined as the covariance between average effects and average excess (Fisher 314 

1930), or as the proportion of total variance that can contribute to a response to selection (Goodnight 315 

2000). Heritability at the ecosystem level can be calculated using the slope of the regression between 316 

the mean trait values of the selected parental ecosystems and the trait values of the offspring 317 

ecosystems (Goodnight 2000). Accounting for the decrease in CO2 emissions observed in the control, 318 

we found a very high overall heritability (h²) of 51.9±1.4% (mean±s.e.) (P < 2 x 10-16, N = 3600) (Fig. 319 

5). For lines 1 to 6 (N = 600), h² equaled 61.7±3.9% (P < 2 x 10-16), 70.4±4.3% (P < 2 x 10-16), 320 
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81.6±3.8% (P < 2 x 10-16), 41.3±3.8% (P < 2 x 10-16), 32.0±3.3% (P < 2 x 10-16) and 32.5±3.2% (P < 2 321 

x 10-16), respectively (SI Fig. 7). The dramatic differences in h² among lines (32 to 82%) suggested 322 

that independent trajectories of the lines resulted in large differences in their selection potential. 323 

To determine the sign of the correlation between heritability and ecosystem phenotype variance, we 324 

estimated h² at each generation using the standard breeder’s equation: h² = R/S, where R is the 325 

response to selection and S is the selection differential (Goodnight 2000). This calculation can yield 326 

results greater than 1 when population sizes are small. We found a significant positive correlation 327 

between heritability and variance for all the parental ecosystems within a given generation (P = 0.006, 328 

Fig. 5), even if the relationship was weak (R² = 0.07). This positive correlation may be due to a time 329 

effect because both the variance and heritability of the parental generation decreased over time (R² = 330 

0.10, P = 0.0007 and R² = 0.04, P = 0.0316, respectively; N = 115,). 331 

 332 

  333 
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DISCUSSION 334 

 335 

Statistically sound evidence that ecosystems can be artificially selected 336 

Artificial selection of ecosystems was successful. Decreased CO2 emissions were observed in both the 337 

selection treatment and the control because biomass declined over time, probably due to a dilution 338 

effect. However, the decrease in emissions was significantly greater in the selection treatment than in 339 

the control. Previous studies demonstrating artificial selection of complex ecosystem properties were 340 

lacking statistical robustness because of an absence of line replication (Swenson et al. 2000b) or 341 

synthetic regression analysis (Swenson et al. 2000a). Here, with a large data set obtained using 7,560 342 

ecosystems (12 independent lines of 30 ecosystems each allowed to run for 21 generations), we have 343 

clearly demonstrated that artificial selection can lead to a statistically significant difference in 344 

ecosystem properties.  345 

 346 

Levels of selection 347 

Evolution at the ecosystem level has mainly been discussed in terms of sources of variation related to 348 

target ecosystem phenotypes. Changes in ecosystem phenotype could be due to modifications in intra- 349 

or inter-species interactions or species composition (Goodnight 2000; Penn & Harvey 2004). An 350 

artificial selection experiment shows that, in two-species communities, artificial selection can lead to 351 

the emergence of correlated interspecific responses, which suggests that genetically based interactions 352 

among individuals are involved (Goodnight 1990a, 1990b). An individual-based evolutionary 353 

simulation model has also confirmed that artificial selection can act on complex communities by the 354 

way of ecological interactions (Williams & Lenton 2007). By showing that the group’s response was 355 

not simply the sum of the responses of its individual components, the model revealed that many 356 

communities are selected because of selective pressures acting on ecological interactions, not on 357 

individual species.  358 
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In our study, we were not able to analyze all possible sources of variance, but our results provide 359 

several new pieces of knowledge regarding the nature of variance of ecosystem phenotype. Firstly, 360 

microbial ecosystem selection does not select for a single genetic species; indeed, at the end of the 361 

experiment, selected communities were not comprised of one or a few species. Instead, species 362 

richness was equally high in the selection treatment and the control. Mean numbers of genetic units 363 

and Shannon index values were similar for the control and selection treatment. However, rare species 364 

that could not be detected with our molecular methods might have been impacted. Secondly, changes 365 

in community composition are an ecosystem response to selection. Although a large amount of 366 

variance resulted from sampling effects and the lines’ different evolutionary trajectories, the control 367 

and treatment groups nonetheless differed dramatically in community composition and structure (Fig. 368 

3). A significant effect of artificial selection on microbial community composition has also been 369 

observed for plant trait-associated microbiomes obtained in multigenerational selection experiments 370 

(Lau & Lennon 2012; Panke-Buisse et al. 2015). Thirdly, specific ecological network patterns, 371 

especially interaction richness, can be selected for: co-occurrence network analysis showed that 372 

ecological network structure was very different in the control versus the selection treatment (Fig. 4), 373 

especially with regards to interaction richness. Since lower interaction richness may be associated with 374 

lower rates of ecosystem function (Snyder et al. 2006; Hoehn et al. 2008; Tylianakis et al. 2010), it is 375 

likely that selection resulted in reduced CO2 emissions by reducing interaction richness. It is thus 376 

unlikely that individual organism-level selection could have acted to shape ecological co-occurrence 377 

patterns, which emerge at the community level.  378 

Our results call for epistemological considerations. First, in ecosystem artificial selection experiments, 379 

the nature of the selected entities (either community or ecosystem) depends on the amount of abiotic 380 

(even if biogenic) material transmitted with the inoculum, and its functional consequences. However, 381 

it was not possible to assess the role played by this abiotic material in our experiment. Secondly, the 382 

level of the selected unit was methodologically defined by the generation time and the volume of 383 

ecosystems. Reproduction is a step of the experimental protocol. This is responsible for a disjunction 384 

between the generation time and size of the selected unit as compared with the range of generation 385 
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times of microorganisms belonging to different species (Fig. 3) and the size of their populations. 386 

Nevertheless, artificial selection operates. This argues in favor of an enlarged vision of evolution 387 

based on operationally defined functional entities (CO2 emitting ecosystems in our case), rather than 388 

on organism reproduction and their populations (see Bouchard 2014 and Doolittle 2014 for a detailed 389 

analysis). 390 

 391 

Limits on the artificial selection of ecosystems 392 

The results of our experiment indicate that variance in the parental generation decreased over time. 393 

This finding illustrates that genetic diversity is progressively lost through the fixation of favorable 394 

alleles (see Introduction). Variance in ecosystem phenotype could be due to the sampling effect of the 395 

community or to the stochastic ecosystem dynamics (see Introduction). Because a decreased variance 396 

is expected in the case of an important sampling effect and not in the case of an important stochastic 397 

dynamics, the decrease in variance over time suggests that sampling effect is at the origin of 398 

ecosystem phenotype variance. 399 

 400 

Heritability calculated as the slope of the regression of CO2 emissions by offspring communities 401 

against mean emissions by artificially selected parental communities (Fig. 5) provided a very high 402 

heritability value of 52%in the selection treatment, far greater than the 15% found by Goodnight 403 

(2000),  the only other estimate, to our knowledge. This indicated a strong potential for changing an 404 

ecosystem phenotype in the desired direction by ecosystem artificial selection (see also the review by 405 

Goodnight & Stevens, 1997). In addition, heritability calculated using the breeder’s equation declined 406 

over time, together with artificial selection efficiency. The reduced probability of improving 407 

ecosystem properties over time can be understood in the context of Fisher’s geometric model (Fisher 408 

1930). At the ecosystem level, changes in species ecological interaction or community composition 409 

responsible for a given amount of change in ecosystem phenotype can, in fact, be selected for when 410 

the level of adaptation is low (i.e., during the first generations of an ecosystem selection experiment). 411 
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However, as fitness increases, such changes have a reduced ability to improve future fitness. Only 412 

changes causing smaller changes can increase fitness in the later generations.  413 

Both variance and heritability were positively correlated. As explained in the Introduction, if the 414 

stochastic dynamics of ecosystem were responsible for ecosystem phenotype variance (Swenson et al. 415 

2000a, 2000b; Penn 2003; Penn & Harvey 2004), we should observe a negative correlation between 416 

variance and heritability. Conversely, by extrapolating Cochran hypothesis (1951) from the individual 417 

organism level to the ecosystem level, if the sampling effect was dominant, we should observe a 418 

positive correlation between variance and heritability. Our results show a positive correlation, which 419 

suggests that stochastic ecosystem dynamics did not have a large effect on heritability and selection 420 

efficiency, whereas sampling effect seems to be mainly at the origin of phenotype variance.  421 

Goodnight found that communities that exhibited heritable variation also tended to be small, integrated 422 

communities in which sampling effects had major consequences (Goodnight 2000, 2011). However, 423 

Swenson et al. did not observe any effect of the size of the sample used to create the offspring 424 

generation (6.0 vs. 0.06 g of soil); they interpreted this result as meaning that initial differences that 425 

form the basis of the butterfly effect (Lorenz 1993) can be arbitrarily small. Two explanations might 426 

account for the disparity between our results and those of Swenson et al. First, sample sizes tested in 427 

Swenson et al. experiment (6.0 vs. 0.06 g of soil) could both have been too large to exhibit notable 428 

differences due to sampling effects. This hypothesis could be tested by studying a larger range of 429 

sample sizes. Second, population size has been identified as placing strong limits on artificial selection 430 

at the individual level (Robertson 1960; Roberts 1966), because more non-optimal alleles can be fixed 431 

by drift when population size decreases. In our experiment, we observed a decrease in community 432 

biomass over time (Fig. 2c), likely to result from a decrease in population size. Over time, the 433 

increasing effect of drift could have taken precedence over the ecosystem’s stochastic dynamics and 434 

explain our results. This hypothesis could be tested by choosing longer generation time, to ensure a 435 

constant population size and drift effect.  436 

 437 
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Figure legends 596 

 597 

Figure 1 Experimental methodology. The control and treatment each contained six lines 598 

of 30 communities, which served as replicates. To create each line, we filled 30 wells of a 96-599 

well microplate with a 1/20-diluted LB medium; we then inoculated each well with stock 600 

from a natural, complex microbial community. After a 24-hour incubation period, the CO2 601 

emitted by each community was measured. In the selection treatment lines, the three 602 

communities with the lowest CO2 emissions were then selected and used to inoculate 30 new 603 

wells and thus formed the next generation. In the control lines, the three parental communities 604 

were randomly selected. This cycle was repeated for 20 generations. 605 

 606 

Figure 2 Changes in mean relative community properties in response to selection. 607 

Differences in community a) CO2 emissions, b) carbon assimilation yield, and c) biomass 608 

production. To determine the effects of artificial selection, the mean values for the control 609 

were subtracted from the mean values for the treatment. The R² and P-values were determined 610 

using linear models. A regression line is depicted if the slope of the regression was 611 

significantly different from zero. Dashed line: control; solid line: selection treatment. See the 612 

Supplementary Materials and Methods section for a detailed explanation of how carbon 613 

assimilation yield was calculated. 614 

 615 

Figure 3 Community microbial diversity at the end of the selection experiment: 616 

a) correlation circle for the correspondence analysis—each box corresponds to one 617 

T-RFLP-defined genetic unit and b) barycenters for the control (C) and selection treatment 618 

(S) groups. Each point represents one of the six lines found in each group. The control and 619 

treatment communities differed significantly in composition (Monte Carlo test: P = 0.002). 620 

Note that certain genetic units were present in some but not all selection treatment lines and 621 

absent from the control lines (e.g., X197, X235, X361) or vice versa (e.g., X114, X209, 622 

X240); some were also more common in the treatment than in the control (e.g., X187, X230, 623 

X364) and vice versa (e.g., X173, X185, X205).  624 

 625 
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Figure 4 Structure of the overall co-occurrence networks and values of the related 626 

indices. The co-occurrence matrices of the T-RFLP-defined genetic units present after 21 627 

generations were used to build interaction networks for a) the control (C) and b) the selection 628 

treatment (S). When two dots are connected by lines, it means that the abundances of the 629 

genetic units were significantly correlated (Spearman correlation coefficient; N = 6; P < 0.05). 630 

The interaction networks were used to calculate c) average degree and d) average 631 

betweenness for the two treatments. The networks were bootstrapped (200 random samples 632 

from each group’s pool of genetic units) to determine e) average connectance and f) average 633 

connectedness. The values of these indices were compared for the control and selection 634 

treatment using Wilcoxon rank-sum tests (employing a continuity correction for non-635 

parametric distributions). See the Supplementary Materials and Methods section for a full 636 

description of how the indices were calculated. 637 

 638 

Figure 5 Linear regression of the CO2 emissions of the 30 offspring communities as a 639 

function of the mean CO2 emissions of the three artificially selected parental communities (all 640 

generations included). The data were corrected by accounting for the decrease in CO2 641 

emissions in the control and standardized to get a slope, which was equal to heritability sensu 642 

stricto (h²). Regression equation: y = 0.52x (P < 2 x 10-16, N = 3600). 643 
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Figures 646 
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