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ARTICLE
Epidemiology

Influence of obesity-related risk factors in the aetiology of
glioma
Linden Disney-Hogg1, Amit Sud1, Philip J. Law1, Alex J. Cornish1, Ben Kinnersley1, Quinn T. Ostrom2, Karim Labreche1,
Jeanette E. Eckel-Passow3, Georgina N. Armstrong4, Elizabeth B. Claus5,6, Dora Il’yasova7,8,9, Joellen Schildkraut8,9,
Jill S. Barnholtz-Sloan3, Sara H. Olson10, Jonine L. Bernstein10, Rose K. Lai11, Anthony J. Swerdlow1,12, Matthias Simon13,
Per Hoffmann14,15, Markus M. Nöthen15,16, Karl-Heinz Jöckel17, Stephen Chanock18, Preetha Rajaraman18, Christoffer Johansen19,20,
Robert B. Jenkins21, Beatrice S. Melin22, Margaret R. Wrensch23,24, Marc Sanson25,26, Melissa L. Bondy4 and Richard S. Houlston1,27

BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in
epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether
obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse
causation.
METHODS: Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was
evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds
ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal
relationship.
RESULTS: No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio,
lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between
obesity-related traits with subtypes of glioma–glioblastoma (GBM) or non-GBM tumours.
CONCLUSIONS: This study provides no evidence to implicate obesity-related factors as causes of glioma.

British Journal of Cancer (2018) 118:1020–1027; https://doi.org/10.1038/s41416-018-0009-x

INTRODUCTION
Glioma is the most common primary intracranial tumour,
accounting for around 80% of all malignant brain tumours.1 Thus
far, few established risk factors for the development of glioma
have been robustly identified.2

Obesity-related factors are increasingly being recognised
as risk determinants for the development many of common
cancers, such as those of the breast and colorectum.3 Evidence
from epidemiological observational studies, for obesity-

related traits being a risk factor for the development of glioma
have, however been inconsistent, with only a subset of studies
reporting a significant association.4–9 Furthermore, in contrast to
most cancers, some studies have reported diabetes to be
protective against glioma.10–13 Obesity-related exposures are
however inherently interrelated,14, 15 and in traditional epidemio-
logical studies it can be problematic to isolate specific risk factors
that may exert a causal influence on disease from those that are
merely associated with an underlying causal factor (i.e.
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confounded). In addition, findings can be affected by reverse
causation.
Mendelian randomisation (MR) is an analytical approach to the

traditional epidemiological study whereby genetic markers are
used as proxies or instrumental variables (IVs) of environmental
and lifestyle-related risk factors.16 Such genetic markers cannot be
influenced by reverse causation and can act as unconfounded
markers of exposures provided the variants are not associated
with the disease through an alternative mechanism.16 Under these
circumstances, the association between a genetic variant (or set of
variants) and outcome of interest implies a causal relationship
between the risk factor and outcome. MR has therefore been
compared to a natural randomised controlled trial, circumventing
some of the limitations of epidemiological observational studies.17

However, as IVs used in MR often explain a small proportion of the
exposure phenotypic variance, large sample sizes are required to
have sufficient power.18

To gain insight into the aetiology of glioma, we have examined
the role of obesity-related risk factors in glioma using an MR-

based framework. Specifically, we identified genetic variants
associated with 10 key obesity-related risk factors from external
genetic association studies. We implemented two-sample MR19 to
estimate associations between these genetic variants with glioma
risk using genome-wide association study (GWAS) data from the
Glioma International Case-Control Consortium study (GICC).20

MATERIALS AND METHODS
Two-sample MR was undertaken using GWAS data. Ethical
approval was not sought for this specific project because all data
came from the summary statistics of published GWAS, and no
individual-level data were used.

Genetic instruments for obesity and related risk factors
Genetic instruments were identified as a panel of single-
nucleotide polymorphisms (SNPs) identified from recent meta-
analyses or largest studies published to date. Specifically: (i) SNPs
for body mass index (BMI) and waist-to-hip ratio (WHR) were

Table 1. Metabolic risk factors for which genetic instruments were developed and evaluated in relation to disease risk

Trait SNPsa Mean (SD) Units PVE (%) References

Two hour post-challenge glucose 7 5.6 (1.7) mmol/l 1.7 24

BMI 75 27.0 (4.6) kg/m2 2.4 21

Fasting glucose 33 5.2 (0.8) mmol/l 4.8 24

Fasting insulin 12 56.9 (44.4) pmol/l 1.2 24

HDL cholesterol 54 53.3 (15.5) mg/dl 13.7 23

LDL cholesterol 26 133.6 (38.0) mg/dl 14.6 23

Type-2 diabetes 34 — — 1.6 25

Total cholesterol 37 213.3 (42.6) mg/dl 15.0 23

Triglycerides 24 140.9 (87.8) mg/dl 11.7 23

WHR 33 1.1 (0.1) cm/cm 0.7 22

BMI body mass index, HDL high-density lipoprotein, LDL low-density lipoprotein, PVE proportion of variance explained, SD standard deviation, SNP single-
nucleotide polymorphism, WHR waist–hip ratio
aNumber of SNPs used after quality control
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identified from the Genetic Investigation of ANthropometric Traits
(GIANT) consortium;21, 22 (ii) SNPs for circulating high-density and
low-density lipoprotein cholesterol (HDL and LDL), total choles-
terol and triglycerides, were identified from the Global Lipids
Genetic Consortium (GLGC);23 (iii) SNPs for factors related to
hyperglycaemia and hyperinsulinemia—fasting glucose, fasting
insulin and 2-h post-challenge glucose, were obtained from the
Meta-Analysis of Glucose and Insulin related traits Consortium
(MAGIC)24 and (iv) SNPs for type-2 diabetes were identified from.25

For each SNP, we recovered the chromosome position, the effect
estimate expressed in standard deviations (SD) of the trait per-
allele along with the corresponding standard error (Supplemen-
tary Table 1). We restricted our analysis to SNPs associated at
genome-wide significance (i.e. P≤ 5.0 × 10−8) in individuals with
European ancestry. To avoid co-linearity between SNPs for each
trait, we excluded SNPs that were correlated (i.e. r2≥ 0.01) within
each trait, and only considered the SNPs with the strongest effect
on the trait for inclusion in genetic risk scores (Supplementary
Table 2). For type-2 diabetes, linkage disequilibrium (LD) scores
with rs140730081 were calculated via a proxy SNP rs2259835 (r2 =
0.48). After imposing these criteria, we obtained 7 SNPs for 2-h
post-challenge glucose, 75 for BMI, 33 for fasting glucose, 13 for
fasting insulin, 54 for HDL cholesterol, 26 for LDL cholesterol, 38
for type-2 diabetes, 39 for total cholesterol, 25 for triglycerides and
33 for WHR.

Glioma association results
To evaluate the association of each genetic instrument with
glioma risk, we made use of data from the most recent meta-
analysis of GWAS in glioma, comprising >10 million genetic
variants (after imputation) in 12,488 glioma patients and 18,169
controls from eight independent GWAS data sets of individuals of
European descent (Supplementary Table 3).20 Comprehensive
details of the genotyping and quality control of the seven GWAS
have been previously reported.20 To limit the effects of cryptic
population stratification, association test statistics for six of the
glioma GWAS were generated using principal components as
previously detailed.20 Gliomas are heterogeneous and different
tumour subtypes, defined in part by malignancy grade (e.g.
pilocytic astrocytoma World Health Organization (WHO) grade I,
diffuse ‘low-grade’ glioma WHO grade II, anaplastic glioma WHO
grade III and GBM WHO grade IV) can be distinguished.26 For the
sake of diagnostic brevity, we considered gliomas as being either
GBM or non-GBM tumours.

Statistical analysis
The odds ratios (OR) of glioma per unit of SD increment for each
obesity-related trait, were estimated using generalised summary
data-based Mendelian randomisation (GSMR).27 This approach
performs a multi-SNP MR analysis, which is more powerful than
other existing summary data-based MR methodologies.28
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Separation of signals of causality from horizontal pleiotropy (a
single locus influencing affecting multiple phenotypes, also
referred to as type-II pleiotropy) is a recognised issue in MR
analyses and we therefore used a HEIDI-outlier test27 to detect and
eliminate genetic instruments that have apparent pleiotropic
effects on both the obesity-related trait and glioma. A P value
threshold of 0.01 for the HEIDI-outlier test was utilised as
recommended by Zhu et al. The HEIDI-outlier test may also in
theory detect additional violations of the assumptions of MR such
as the exclusion restriction assumption. Given that glioma is a
binary outcome and type-2 diabetes a binary exposure, the
resulting causal effect estimate in this scenario represents the
odds for glioma risk per unit increase in the log OR for type-2
diabetes.
For each statistical test, we considered a global significance

level of P < 0.05 as being satisfactory to derive conclusions. To
assess the robustness of our conclusions, we imposed a
Bonferroni-corrected significance threshold of 0.0017 (i.e. 0.05/
30, to correct for testing 10 traits over three outcomes). We
considered a P value > 0.05 as non-significant (i.e. no association),

a P value≤ 0.05 as evidence for a potential causal association, and
a P value≤ 0.0017 as significant evidence for an association.
Additionally, we defined the Bayesian false null probability (BFNP)
using the Bayesian false discovery probability (BFDP) as per
Wakefield29 by BFNP = 1 − BFDP. Then to assess whether null
results found could be considered reliable, we calculated the
minimum prior probability of the alternative hypothesis for which
the BFNP was >10%. The power of an MR investigation depends
greatly on the proportion of variance in the risk factor that is
explained by the respective IV. We estimated study power a priori
using the methodology of Burgess.30 Statistical analyses were
undertaken using R software (Version 3.1.2).

RESULTS
In our data sets, there were missing data for one fasting insulin
SNP (rs1530559), four type-2 diabetes SNPs (rs2972156,
rs34706136, rs11257658, rs144613775) and one total cholesterol
SNP (rs7570971). These SNPs were excluded from our analysis.
Performing HEIDI-outlier analysis on the instruments for each trait
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identified two SNPs as violating the assumptions of MR with
respect to horizontal pleiotropy, rs11603023 for total cholesterol
and rs5756931 for triglyceride, which were further excluded. Both
SNPs are in LD with the lead SNP in glioma risk loci.
Subsequently, Table 1 details the number of SNPs used as an IV

for each of the obesity-related traits, the mean and SD of the risk
factor in the original discovery study, and the proportion of
variance explained for each factor by the corresponding genetic
instruments. Effect estimates for each SNP used as genetic
instruments for each risk factor and disease risk are detailed in
Supplementary Table 1. For BMI and LDL, the SNPs rs12016871
and rs9411489 have since merged with the SNPs rs9581854 and
rs635634, respectively, and it is from these subsequent SNPs the
associations with glioma were derived. Figure 1 shows the
statistical power of genetic instruments for different levels of
predicted ORs for each obesity-related trait.
Figure 2 shows a plot of the association of each IV with

exposure against the association with glioma, together with the
resulting GSMR estimate of the log OR. For each of the obesity-
related traits under investigation, an approximately null estimate
for effect was obtained, with the strongest association being
shown by fasting insulin. Setting a threshold of P≤ 0.05, no
statistically significant associations were shown for 2-h post-

challenge glucose (ORSD = 1.25, 95% confidence interval (CI) =
0.93–1.67), BMI (ORSD = 0.91, 95% CI = 0.77–1.07), fasting glucose
(ORSD = 1.00, 95% CI = 0.78–1.3), fasting insulin (ORSD = 1.32, 95%
CI = 0.71–2.46), HDL cholesterol (ORSD = 1.01, 95% CI = 0.98–1.05),
LDL cholesterol (ORSD = 1.00, 95% CI = 0.95–1.05), type-2 diabetes
(ORSD = 1.04, 95% CI = 0.97–1.11), total cholesterol (ORSD = 0.98,
95% CI = 0.88–1.09), triglycerides (ORSD = 1.01, 95% CI = 0.97–1.06)
and WHR (ORSD = 1.11, 95% CI = 0.84–1.46).
We explored the possibility that a relationship between an

obesity-related trait and glioma might be subtype-specific,
considering GBM and non-GBM separately. Figures 3 and 4 show
corresponding plots of the association of each IV with exposure
against the association with GBM and non-GBM glioma. The
strongest association was provided by the relationship between
increased triglyceride level and risk of non-GBM glioma (ORSD =
1.07, 95% CI = 1.00–1.13, P = 0.044), albeit non-significant after
adjustment for multiple testing (Table 2). Table 3 presents the
minimum prior probabilities of an association required for each
trait to have a BFNP≥ 0.1. Where possible, the maximum likely OR
has been taken from the largest value reported in observational
studies.7, 12, 31 In the event that this was not possible, an upper
bound of 2 was chosen. If the ‘true’ maximum likely OR were
lower, then the smallest required prior probability would in fact be
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lower. There is no current precedent for what value should be
taken for the prior probability of an association, indeed attempt-
ing to sample published papers would produce an over estimation
due to winners curse, but it is noted that a value of 10% would
ensure all the results reported would have significance.

DISCUSSION
There is an abundance of studies that have implicated obesity and
related traits (notably diabetes), as risk factors for all of the major
common cancers, including breast, colorectal, oesophageal,
pancreatic, ovarian and renal.3 Furthermore, there is increasing
evidence that obesity is likely to also be a risk factor for many of
the less common tumours, such as those of the haematopoietic
system.3, 32 The mechanistic basis of how obesity and diabetes
affects an increased cancer risk is poorly understood. The long-
term metabolic consequences of obesity and its related traits are
complex and several mechanisms have been suggested, including

increased insulin and insulin-like growth factor signalling, chronic
inflammation and signalling via adipokines.33 Such mechanisms
would be compatible with obesity and related traits having a
generic effect on cancer risk.
Evidence for obesity influencing risk of glioma from previous

observational studies has been mixed.4, 6, 9 Intriguingly, in contrast
to other cancers, an inverse relationship between both diabetes
and increased HbA1c with risk of glioma has been reported in
some but not all studies.4–7, 9 Furthermore, in so far as it has been
studied, anti-diabetic treatment has been reported to not
influence glioma risk.12 In terms of the wider spectrum of the
metabolic syndrome, a study has linked elevated levels of
triglyceride to risk of developing glioma.9

Our findings do not support a causal role for higher BMI and
related metabolic risk factors, including diagnosis of type-2
diabetes and blood lipid levels, in influencing glioma risk. An
important strength of our analysis is that by utilising the random
allocation of genetic variants, we were able to overcome potential
confounding, for example, from other interrelated traits.14, 15

Furthermore, reverse causation and selection bias may have
biased estimates from previously published observational studies.
By exploiting data from large genetic consortia for multiple
obesity-related traits and glioma risk has enabled us to more
precisely test study hypotheses than if we had been reliant on
individual-level data from a small study. The only obesity-related
trait with a first-stage F-statistic <10 was WHR (F = 6.75) and
therefore weak instrument bias for other traits is unlikely.34 In
addition, given that a poor outcome from glioma is almost
universal, it is unlikely that survival bias will have influenced study
findings materially. Finally, we have employed a Bayesian
approach to interpret the significance of the null results while
comparing our findings to published observational epidemiologi-
cal studies. There is currently no precedent within the MR
community as to what value is an accurate representation of the
prior probability of association. If the true value is ~20%, then the
null findings for 2 h post-challenge glucose, BMI, fasting glucose,
fasting insulin and WHR all have a >10% chance of being false.
There are however potential limitations in our analysis that

warrant further discussion. Firstly, the use of summary test
statistics in two-sample MR analyses requires consideration of
sample overlap, the winner’s curse and genotype uncertainty.35, 36

Sample overlap between the association studies of the exposure
traits and outcome trait has the potential of inflating the type I
error rate. The number of controls shared between the glioma
GWAS and the anthropometric and lipid GWAS are, however <2%
of the respective exposure sample size. Although we are unable to

Table 2. GSMR results for the combined obesity-related IVs

Trait All glioma GBM Non-GBM

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Two hour post-challenge glucose 1.25 (0.93–1.67) 0.132 1.28 (0.90–1.83) 0.173 1.13 (0.77–1.66) 0.525

BMI 0.91 (0.77–1.07) 0.247 0.89 (0.73–1.08) 0.237 0.93 (0.75–1.15) 0.510

Fasting glucose 1.00 (0.78–1.3) 0.974 0.89 (0.66–1.22) 0.484 1.04 (0.75–1.45) 0.809

Fasting insulin 1.32 (0.71–2.46) 0.374 1.41 (0.66–3.00) 0.377 1.35 (0.60–3.04) 0.471

HDL cholesterol 1.01 (0.98–1.05) 0.375 1.01 (0.97–1.05) 0.532 1.03 (0.99–1.08) 0.167

LDL cholesterol 1.00 (0.95–1.05) 0.939 0.96 (0.90–1.02) 0.197 1.05 (0.98–1.12) 0.195

Type-2 diabetes 1.04 (0.97–1.11) 0.290 1.00 (0.92–1.08) 0.933 1.08 (0.99–1.18) 0.076

Total cholesterol 0.98 (0.88–1.09) 0.736 1.00 (0.87–1.14) 0.949 0.95 (0.83–1.10) 0.505

Triglycerides 1.01 (0.97–1.06) 0.637 0.97 (0.92–1.03) 0.291 1.07 (1.00–1.13) 0.044

WHR 1.11 (0.84–1.46) 0.456 0.97 (0.69–1.35) 0.847 1.34 (0.94–1.93) 0.109

BMI body mass index, CI confidence interval, GBM glioblastoma multiforme, GSMR generalised summary data-based Mendelian randomisation, HDL high-
density lipoprotein, IV instrumental variable, LDL low-density lipoprotein, OR odds ratio, SD standard deviation, WHR waist–hip ratio

Table 3. Prior probability of association required for BFNP> 0.1, for
the combined obesity-related IVs

Trait Glioma References

Maximum
likely OR

Minimum required
prior probability

Two hour post-
challenge glucose

2.00 0.10 N/A

BMI 1.27 0.11 8

Fasting glucose 1.57 0.18 31

Fasting insulin 2.00 0.12 N/A

HDL cholesterol 200 0.64 N/A

LDL cholesterol 2.00 0.61 N/A

Type-2 diabetes 0.60 0.31 12

Total cholesterol 2.00 0.41 N/A

Triglycerides 2.00 0.60 N/A

WHR 2.00 0.19 N/A

BFNP Bayesian false null probability, BMI body mass index, HDL high-
density lipoprotein, IV instrumental variable, LDL low-density lipoprotein,
WHR waist–hip ratio, OR odds ratio, N/A no observational data to inform
maximum likely OR, value of 2 taken
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calculate an exact number of glioma cases sampled in the
exposure GWAS, given the lifetime risk of glioma is only 0.24%,
very few numbers of glioma cases will have been analysed in the
exposure trait studies. Hence, such sample overlap is unlikely to
contribute to type I error rate inflation.36 As the instrumental
variables were discovered in the data used in this two-sample MR
analysis, weak instrument bias will be accentuated due to winner’s
curse, thus attenuating the causal effect estimate towards the
null.36 Uncertainty with respect to genotyping or disease
associations may diminish causal effect estimates.36 However IVs
used in this analysis are robust and only SNPs passing stringent
quality control thresholds were used in the analysis. Secondly, MR
is limited in the extent to which it can explore different life course
models, such as when an exposure has a temporal relationship to
the outcome risk.35 Finally, our study does have limitations related
to power. However, based on the relatively sizable fraction of
variance explained by the genetic instruments for the majority of
the obesity-related factors (Table 1), typically there was sufficient
statistical power (>80%) to detect even modest odds ratios of 1.43,
and close to complete statistical power (99%) to detect relative
risks of 1.72 (Fig. 1).
In conclusion, our findings shed light on an issue for which the

evidence to date has been mixed. Specifically, they provide
evidence against obesity and related traits as significant risk
factors for the development of glioma.

Availability of data and material
Genotype data from the GICC GWAS are available from the
database of Genotypes and Phenotypes (dbGaP) under accession
phs001319.v1.p1. In addition, genotypes from the GliomaScan
GWAS can be accessed through dbGaP accession phs000652.v1.
p1.
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