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Abstract

In this paper, we study the problem of matching
a set of items to a set of agents partitioned into
types so as to balance fairness towards the types
against overall utility/efficiency. We extend mul-
tiple desirable properties of indivisible goods allo-
cation to our model and investigate the possibility
and hardness of achieving combinations of these
properties, e.g. we prove that maximizing utili-
tarian social welfare under constraints of typewise
envy-freeness up to one item (TEF1) is computa-
tionally intractable. We also define a new con-
cept of waste for this setting, show experimen-
tally that augmenting an existing algorithm with
a marginal utility maximization heuristic can pro-
duce a TEF1 solution with reduced waste, and
also provide a polynomial-time algorithm for com-
puting a non-wasteful TEF1 allocation for binary
agent-item utilities.

1 Introduction

Consider an academic department looking to assign incom-
ing graduate students to advisers. It has computed a score for
each potential advisor-advisee pair and cares not just about
the overall score of the matching but also about a fair distribu-
tion of scores across the research clusters into which the fac-
ulty is divided. A similar trade-off between efficiency/welfare
and fairness might be desirable in other planning/allocation
scenarios such as public housing allocation; e.g. the Singa-
pore Housing and Development Board imposes ethnicity quo-
tas on the matching of tenant households to flats in its housing
blocks to promote diversity [Benabbou er al., 2018] but an al-
ternative approach could be to aim for a fair distribution of
overall utility across ethnic groups.

We can model these problems as a variant of fair alloca-
tion of indivisible goods (see e.g. [Bouveret er al., 2016]):
We have an underlying weighted bipartite matching problem,
the nodes on the two sides corresponding to items and agents;
however, the parties we are trying to be fair towards are not
individual agents but subsets forming a partition over agents
— we call these subsets fypes. An important aspect of this
problem is that all agents in a type do not derive utility from

all items in the bundle allocated to that type (unlike the pub-
lic goods scenario [Fain er al., 2016]), each agent being as-
signed at most one item. Hence, the parties (types) under
consideration end up violating the additive bundle-valuation
assumption present in much of recent work. There are some
approaches (e.g. [Lipton et al., 2004]) that achieve good fair-
ness guarantees under mild assumptions on the (non-negative,
non-decreasing) valuation function but, for that very reason,
can result in allocations that are wasteful/inefficient in some
way given the structure of our problem, if used naively. These
considerations necessitate novel solution concepts and tech-
niques for our setting.

1.1 Our Contributions

We describe a new model of typewise fair allocation and
define our desirable properties in Section 2 — in particular,
non-wastefulness and typewise envy-freeness up to one item
(TEF1) as well as a marginal envy-based variant of the latter.
In Sections 3 and 4, we explore the problems of determining
Pareto optimal, TMEF]1 allocations and TEF1 allocations that
maximize overall sum of weights/utilties respectively. In Sec-
tion 5, we show experimentally that the classic algorithm of
Lipton et al. [2004] equipped with a simple heuristic can pro-
duce TEF1 allocations with significantly reduced waste. Sec-
tion 6 details a polynomial-time algorithm for computing a
non-wasteful TEF1 allocation for binary agent-item utilities.
We conclude with directions for future research in Section 7.

1.2 Related Work

There is a rich body of work on approaches towards the
fair allocation of indivisible goods [Bouveret et al., 2016;
Markakis, 2017]. A popular fairness concept is envy-freeness
[Foley, 1967]. A complete envy-free (EF) allocation may not
exist but a relaxation that always does is one that is envy-free
up to one item (EF1) [Budish, 2011] where any envy towards
an agent can be eliminated by removing an item from its bun-
dle. The bounded-envy, polynomial-time algorithm due to
Lipton et al. [2004] also produces an EF1 allocation for gen-
eral valuation functions [Plaut and Roughgarden, 2018].
Extensions of envy-freeness to groups include strict envy-
freeness [Zhou, 1992]; coalition fairness or group envy-
freeness [Lahaie and Parkes, 2009] as well as envy-freeness
of an individual/a group towards a group [Todo et al., 2011],
both under monetary transfers; group fairness as defined



by Conitzer et al. [2019]. Barman er al. [2018a] re-
cently defined a groupwise extension to the maximin share-
based fairness concept. A major difference of these contri-
butions with our model is that they deal with a o-algebra of
subsets of agents rather than an exogenously defined parti-
tion over agents. Notable papers that define fairness with
respect to pre-defined groups of multiple players include
Manurangsi and Suksompong [2017], Suksompong [2018],
Segal-Halevi and Suksompong [2018], and Elzayn et al.
[2019] whose concepts of utility and/or fairness are signifi-
cantly different from ours. Recent work [Fain er al., 2016;
Fain et al., 2018] has also explored non-envy-based fairness
criteria in public goods allocation under additive valuations.

We must also mention the literature on statistical fair-
ness (also called group fairness) in the fundamentally dif-
ferent problem domain of classification in machine learning:
the equalization of some statistical property of the classifier
across groups of data instances based on sensitive/protected
attributes ([Dwork et al., 2012; Hardt et al., 2016; Kearns et
al., 2018] and references therein); we, on the other hand, are
interested in fairness notions in terms of subjective valuations
of items from the economics/social choice literature.

2 Model And Definitions

Throughout the paper, [r] will denote the set {1,2,--- ,r} for
any positive integer . Our model, an extension of the classic
framework of matching on a weighted bipartite graph [Lovasz
and Plummer, 2009], has the following ingredients:

(i) a set N of n vertices called agents partitioned into k
types Ny, ..., Ng,

(i) aset M of m vertices called items,

(iii) a weight/utility u (7, j) € R4 for each agent-item edge
(i,j) € N x M, such that for at least one i € N (resp.
at least one 5 € M), there is at least one j € M (resp.
each i € N) with u(z,7) > 0.

Forany T C N andany S C M, a (T, S)-matching is defined
as a subset of the edges 7" x .S such that every vertex in 7'U S
is incident on at most one of the edges or, equivalently, as a
binary matrix X = (x;;)ier jes such that for each agent ¢
(resp. item j), there is at most one item j (resp. agent ¢) with
235 = 1, i.e. each item is assigned to at most one agent and
each agent is assigned at most one item. The utilitarian social
welfare USW(X) (or total weight) of a matching X is defined

as the sum of the realized utilities of all agents under that
A

matching: USW(X) = >, .7 > cq®iju(i,j). An optimal
matching is one that maximizes the corresponding USW.

We are interested in a (NN, M )-matching that trades off
some welfare/efficiency concept against some fairness crite-
rion defined with respect to the agent types. More precisely,
for every type p € [k], we are given a fype-value function
vp 2% — R, which quantifies some concept of overall
welfare derived by N, from some bundle or subset of items
S C M in terms of the weights u(4, ), (¢,7) € N, x S.
In this paper, we will use the following specific type-value
function for every type:

Definition 1 (Utilitarian type-value function). The utilitarian
type-value of any type p € [k] for any bundle S C M is

defined as the total weight of an optimal (N, S)-matching:

v,(S) 2 maxyex(n,,s) USW(X), ifS#0;
P 0, otherwise.

where X (N,, S) is the collection of all (N, S)-matchings.

We will define the marginal utility A,(S; j) of anitem j € M
for a type p € [k] and a bundle S C M as:

iy o [u(SU{G}) —vp(9),
A(S;)) £ {Up(s) —vp(S\{7}),

Given a type p and a bundle S, there can be multiple optimal
(N,, S)-matchings with the same type-value but possibly dif-
fering in other efficiency and/or fairness properties (see Ex-
ample 1 at the end of this section) — with this in mind, we
define an allocation in our setting as follows:

ifj & 5;
otherwise.

Definition 2 (Allocation). An allocation A is a collection of
bundles M, --- | M{A, such that M{*U...U M C M and
M;,“ n M(;‘1 = ( forall p,q € [k] with p # q, along with an
optimal matching between each type N, and the correspond-
ing bundle M;‘ for all p € [k], thereby inducing a unique
(N, M)-matching X* = (m;‘]‘-)ieNﬁjeM.

We call M];“ the allocated bundle of type p under A and
Mgt = M\ Uyepy M3 the set of withheld items (we will
sometimes drop the superscript A when there is no ambigu-
ity). Thus, item assignment within a type is socially optimal
(by design) and EF1 for individual agents (since each is as-
signed at most 1 item). Type p envies type q if vp(M;‘) <
vp(M;1); p envies q up to v items, v € [|[MA[], if there
is a subset C' C M such that |[C| = v and v,(M;}) >
vp(M;‘\C’) and, for every subset C’ C M;‘ with |C'| < v,
vp(M) < v,(MA\C’). We can analogously define the
envy of a type for a bundle (up to any number of items).

With these fundamentals in place, we now define the
desiderata of an allocation A that we investigate in this paper.
The first three are concerned with efficiency; the rest are ex-
tensions of efficiency-agnostic fairness concepts introduced
by Budish [2011] and Caragiannis ef al. [2016] respectively.

Definition 3 (Type-completeness). A is type-complete if
Upelk) MZ;“ = M otherwise it is type-incomplete.

Definition 4 (Waste and non-wastefulness). An item j € M
is said to be wasted by an allocation A if it has a positive
marginal utility for some type p € [k] (i.e. AP(MZ;‘\; 7)>0) but
is either withheld (i.e. j € Mé“) or belongs to the allocated
bundle of some type q # p for which it has zero marginal
utility (i.e. j € M,;‘1 and Aq(M(;“;j) = 0). A is called non-
wasteful if it has no wasted item, and wasteful otherwise.
Definition 5 (Typewise Pareto optimality). Allocation A; is
said to typewise Pareto dominate another allocation As if
vp(MIj“l) > vp(MI;“Q) Sor all types p € [k] and vp(M;‘l) >
vp(M;2) for some type p € [k]. An allocation that is not
typewise Pareto dominated by any other allocation is type-
wise Pareto optimal.

"Type-completness does not preclude an item j € M;,“ remain-
ing unassigned in the (N, M;!)-matching.



Definition 6 (Typewise envy-freeness up to one item). Allo-
cation A is typewise envy-free up to one item (TEF1) if for
any two types p,q € [k], p either does not envy q or envies
q up to one item, i.e. there exists an item j € M, (;4 such that
UP(M[)A) > Up(M;\\{j})-
Definition 7 (Typewise marginal envy-freeness up to one
item). Allocation A is typewise marginally envy-free up to
one item (TMEFI) if for any p,q € [k], there is an item
j€ M(;‘l such that vp(Mz;‘l) > 111,(]\41;4 U M(;‘\{j})f’L)p(M;‘)
We are now ready to formulate and analyze specific prob-
lems that approach ‘good’ allocations in different ways. But
first, we provide two problem instances that we will use as
running examples in the rest of the paper.

Example 1. The types N1, No and items M are as shown in
Figure 1: u(i,j) is 1 if there is an edge between agent i and
item j, and 0 otherwise. If bundles M, = {1,2,6} and My =
MA\M; are allocated to types Ny and N, there is a unique
optimal (Na, Ms)-matching with 3,4,5 assigned to by, ba, b3
respectively; but there are two optimal (N1, My )-matchings
in both of which 2 is assigned to as: If 1 is assigned to a,
and 6 remains unassigned, then we have a wasteful allocation
since 6 could be assigned to by so that Ao (Ms;6) = 1; but
if 6 is assigned to a; instead, the allocation is non-wasteful
since no agent in No has a positive utility for item 1.

Example 2. The types N1, No and items M are as shown in
Figure 2: All agents of the same type have the same utility for
an item, equal to the integer with which the edge between that
type and the item is labeled; no edge indicates zero utility.

Figure 1

Figure 2

3 Typewise Pareto Optimal TMEF1
Allocation

In this section, we will adapt a result of Caragiannis et al.

[2016] to our setting. To that end, we first state without proof

a property of our type-value function (Definition 1) that is
part of the folklore of weighted bipartite matching.

Theorem 1. The utilitarian type-value function v,(S) is a
non-additive, monotone submodular function of S € 2M.
Moreover, we define the Nash type-welfare of an allocation
A as the product of the type-values, i.e. Hﬁzl vp(M};‘l).

Theorem 2. Every allocation that maximizes the Nash type-
welfare is typewise Pareto optimal and TMEF 1.

Proof. Since each valuation function v,(-) is monotone sub-
modular by Theorem 1, a natural extension of Theorem 3.5
of [Caragiannis et al., 2016] suffices to prove the result. ]

The next result establishes that non-wastefulness is a weak-
ening of typewise Pareto optimality in our setting.

Lemma 1. Any typewise Pareto optimal allocation is non-
wasteful but the converse is not true.

Proof. If an allocation A had a wasted item j with positive
marginal utility for a type ¢, then, by the definition of waste,
we could augment M" with j for an improved type-value
without reducing any other type-value, resulting in an alloca-
tion that Pareto dominates 4. For the converse, Example 1
provides a counterexample: Take again the allocation .4
with bundles M = {1,2,6}, Mz" = M\M;", item 1 re-
maining unassigned and 2, . . . , 6 assigned to aq, by, bs, b3, a;
respectively. This is non-wasteful (and incidentally also
TEF1) but is Pareto dominated by allocation A, with bun-
dles M2 = {1,2,3}, Mz** = M\M;* since v, (M7'2) =
3> 2 =0 (M) and vy (M3'2) = vy (Mz") = 3. O

This implies, in conjunction with Theorem 2, that a maxi-
mum Nash type-welfare allocation is also non-wasteful. De-
spite the above existence results, maximizing Nash welfare
with indivisible items is known to be hard in general, and
the above guarantees may break down for constant-factor ap-
proximations [Caragiannis et al., 2016]. Moreover, marginal
envy-freeness up to one item (MEF1) is a relatively new fair-
ness concept that is less intuitive than envy-freeness up to
one item and not extensively used as yet. In fact, it is easy
to show that EF1 implies MEF1 for monotone submodular
bundle-valuation functions. Hence, we will henceforth focus
on efficient TEF1 allocations. Note that an allocation maxi-
mizing Nash type-welfare is not necessarily TEF1: In Exam-
ple 2, any allocation with M; = {1,2} and My = {3,4,5}
maximizes the Nash type-welfare but is not TEFI since
V1 (Ml) = 4 whereas ’Ul(MQ\{3}) = V1 (Mg\{4}) = 5,
v (Ma\{5}) = 8.

4 Assignment Under TEF1 Constraints

We first study the problem of finding a TEF1 allocation .4
that maximizes the sum of weights of the induced matching:

Usw(X4) 2 Z Z xfj‘u(z,]) = Z UP(MI;A).

iEN jeM pE[k]

This is equivalent to the assignment problem [Munkres,
1957] under TEF1 constraints specified in Definition 6. We
define the decision version of the problem as follows:

Definition 8 (ASSIGNTEF1). An instance of the Assignment
under TEFI constraints (ASSIGNTEF1) problem is given by
parameters (i) to (iii) of Section 2 as well as a value U € R ;
it is a ‘yes’-instance iff it admits a TEF1 allocation A with a
utilitarian social welfare at least U.

A TEF1 allocation always exists under our Definition 2
(see Section 5 for further details) but we prove next that it
is hard to compute one with the maximum USW for more than
2 types. The hardness question for 2 types is open.



Theorem 3. The AssignTEF1 problem is NP-complete, even
with only 3 types.

Proof. The problem is in NP: given an allocation .4, we need
to evaluate k type-value functions, solving the polynomial-
time unconstrained assignment problem (see e.g. Kuhn
[1955]) each time, and can hence verify that A satisfies all
requirements in polynomial time.

We will now describe a polynomial-time reduction to As-
SIGNTEF1 from the NP-complete partition problem [Garey
and Johnson, 1979]. An instance of the latter is given by a
set S = {s;};ep of [ positive integers that sum to o it is
a ‘yes’-instance iff S can be partitioned into two subsets 57
and Sy such that both sum to o/2. Given an instance of the
partition problem, we construct an ASSIGNTEF1 instance as
follows. We have a set of [ + 2 items M = [ + 2] and a set of
20+4 agents N partitioned into k = 3 types N1 ={a; }ie[1+1],
Nz = {b; }ic[i41], and N3 = {c1, co}. The utilities are given
by u(ay, j) =u(b;, j)=s;, Vj € [l]; u(ait1, j) =w(bi+1, j) =
o/2,Vje{l+ 1,1+ 2}; uler,l + 1) =u(eq,l + 2) = & for
an arbitrarily large constant x> o; u(4, j) =0 for every other
(4, 7)-pair. Finally, let U =2k + o.

First, we prove that, for any ‘yes’-instance of the partition
problem, so is the corresponding ASSIGNTEF1 instance we
constructed. Given the two parts S7 and Sy of S as above,
consider the bundles My = {j € M :s; € S1}, My ={j €
M : s;j € So}, and M3 = {l + 1,1 + 2} allocated to Ny,
N, and N3 respectively, with no withheld items; evidently,
assigning item j to agent a; (resp. b;) for every s; in Sy
(resp. S2), I + 1to c1, and [ 4 2 to co constitutes the unique
optimal matching between each type and its allocated bundle,
inducing an allocation A (Definition 2). We want to prove
that A is TEF1. Note that for the above utilities, v3(M3) =
2k > 0 = v3(M,) for all ¢ € {1,2}; v1(M;1) = vo(M;1) =
Zsjesl Sj :0'/2 and also 'UQ(MQ):'Ul(MQ):ZSjESZ S;=
o /2 from the definition of a ‘yes’-instance of the partition
problem; vy (M3\{j}) =vo(Ms3\{j}) =0/2 for all j € Ms5.
Hence, each type envies any other type up to at most one item
under A. Finally, USW( X =0/2+0/2+2k=2k +0o=U.

Now let us prove that, assuming our constructed ASSIGN-
TEF1 instance to be a ‘yes’-instance, so is the partition in-
stance. Let A be an allocation verifying all desiderata. Since
k> o and the maximum sum of realized utilities that can be
achieved from items j € [I] is o, the only way for USW(X*)
to be at least U =2k + o is to have {I + 1,1+ 2} C Ms* with
c1 (resp. co) assigned to [ + 1 (resp. [ + 2). Moreover, since
the other items must contribute a sum of realized utilities at
least o, it is also clear from the utility structure that each j € [{]
must be assigned to either a; or b;; hence, Ms={l+1,1+2},
there are no withheld items, and vy (M7') + vg(MQAX =o.
Now consider the sets S; = {s; € S : j € My} and
Sy = {s; € S :j € Ms'}: It is evident that they form a
partition of S such that the sum of the values in Sp (resp. S2)
equals v1 (MiY) (resp. vo(Ms')). Since A is TEF1, we must
have v1 (Mi') > vy (Ms\{j}) for some j € M3"; but, from
our utility structure, vy (M35'\{j}) =0/2 for all j € Ms* and
so the inequality v1(M;') > /2 holds. Arguing similarly,
vo(M35Y) > /2. But since v (M) + vo (M) = o, then

28_7651 Sj :Ul(MiA) :ZSJ'ESQ Sj :UQ(MQA) 20/2 D

Since vy, (+) is a particular submodular function, Theorem 3
implies the following result for the traditional indivisible item
allocation setting where each agent receives a bundle.

Corollary 1. For monotone submodular agent valuation
functions over bundles, it is N P-hard to compute the EF1
allocation that maximizes the sum of valuations.

One might conjecture that the maximum-USW TEF1 alloca-
tion is non-wasteful. But the following surprising result belies
this intuition, and raises the question: Does a non-wasteful,
TEF]1 allocation always exist?

Proposition 1. The TEF1 allocation that maximizes the util-
itarian social welfare may waste items, even in a problem
instance that admits a non-wasteful TEF1 allocation.

Proof. In Example 2, any allocation with bundles M; =
{1,2} and My = {3,4}, and no other allocation, maxi-
mizes USW under TEFI constraints with USW = 20. But,
such an allocation is wasteful since item 5 is withheld al-
though Ay(Mo;5) = 1. However, any allocation with bun-
dles M{ = {1,3} and M} = {2,4,5} is non-wasteful and
TEF]1 but has USW = 15. O

5 TEF1 Allocation With Reduced Waste

In our quest for a TEF1 allocation with no (or, at least, low)
waste, we note that it is possible to obtain a type-complete
TEF]1 allocation in polynomial time by a natural extension
(called L hereafter) of the algorithm due to Lipton et al.
[2004]: Tterate over the items j € M, giving item j to a
type, say p, that is currently not envied by any other type for
its bundle M,,; compute an optimal matching with the aug-
mented bundle M, U {j}; construct the envy graph where
there is a directed edge from a type ¢ to a type r whenever ¢
envies r; eliminate any cycle in this graph by transferring the
bundle of every envied type to its envying type on this cycle
(to ensure that there is an unenvied type in each iteration),
followed by re-matching within each such type. Although no
item is withheld, it is possible for the final allocation to be
wasteful: An item may be allocated to a type which has zero
marginal utility for it or may become unassigned after a bun-
dle is transferred between types.

One heuristic that could reduce waste is to allocate the item
to the unenvied type that has the maximum marginal utility
for it, breaking further ties uniformly at random, rather than
to an arbitrary unenvied type — we call L, augmented with
this heuristic, H. Unfortunately, Example 1 shows that, H
can be wasteful in general. Consider the order 1,2,--- ,6
over items: 1 and 2 are obviously allocated to N; while, de-
pending on how ties are broken, 3, 4, 5 can all be given to Na.
With this allocation of item 5, envy appears for the first time
and NV, is the only unenvied type. Hence, 6 must go to /Vy, al-
though A, ({1,2};6) = 0, and is wasted. Notice further that
if 6 were allocated to N, it would increase N»’s own type-
value but make Ny envy N3 up to 2 items although N; does
not want 6 in conjunction with its current bundle! This is
especially disappointing since Example 1 admits three non-
wasteful TEF1 allocations, which are also typewise Pareto



optimal and maximize USW, with bundles M; = {1,2,3},
{1,2,5}, or {1,2,3,5}, and My = M\M; (each resulting
in a unique optimal matching for each type).

Nevertheless, to see how the marginal utility maximization
heuristic performs in practice, we experimentally compared
procedures L and H using the percentage of items wasted as
our performance metric. We simulated two sets of problem
instances with n = 100 agents partitioned into k = 3 types:

UNEQUAL: |Ny| =74, |No| = 13, |N3| = 13. 2
EQUAL: |N,| ~ n/k for all types p € [k].

For each, we used m € {50,100} items; for each agent, we
sampled m numbers uniformly at random from [0, 1] and nor-
malized them to generate utilities for all m items. We report
results averaged over 100 runs each.

For the UNEQUAL set, 39% (resp. 13%) of the items are
wasted on average for m = 100 (resp. m = 50) by L whereas
no item is wasted by H; for the EQUAL set, L. wastes only
0.005% of the items with m = 100 and no item with m = 50,
and again no item is wasted by H for either value of m. Thus,
we can conclude that the performance of the natural extension
of [Lipton et al., 2004] strongly depends on parameters such
as type proportions and the number of items, whereas aug-
menting it with the heuristic under consideration gives sur-
prisingly good results over a variety of input instances.

6 Binary Utilities: Non-Wasteful TEF1
Allocation

In this section, we fill focus on the binary utility model:
u(i,j) € {0,1}, Vi € N,Vj € M. This captures scenarios
where each agent either approves or disapproves of an item
but does not distinguish among its approved items. There
exists prior work on fair allocation algorithms producing al-
locations with binary item utilities [Barman e al., 2018b] but
most assume additive bundle valuations.

Theorem 4. For any problem instance with a binary utility
model, there exists a non-wasteful TEF1 allocation that can
be computed in polynomial time.

Our proof is constructive: We provide and analyze an allo-
cation algorithm for the problem (Algorithm 1). Like Lipton
et al. [2004], we iterate over the items; however, we augment
a type’s bundle with an item not based on (the absence of)
envy towards it but on the marginal utility of the type for the
item. Let us call any algorithm that starts with empty bundles
and follows the principle of augmenting the current bundle
M, of a type p with an item j only if p has positive marginal
utility (i.e. A,(M,,;5)>0) a PMU algorithm.

Proposition 2. Under the binary utility model, we have
vp(S) < min{|N,|,|S|}, Vp € [k], VS C M. In particu-
lar, any type’s value for its allocated bundle at any stage of a
PMU algorithm is equal to the cardinality of the bundle, i.e.
vp(Mp) = [My|, Vp € [K].

>These numbers roughly follow the proportions of Chinese,
Malay, and Indian/Other residents of Singapore according to the
2010 census report [Department of Statistics, Singapore, 2010].

Algorithm 1: PMURR({ N, } pe (i), M, (u(i, 5))ien,jem)

Withheld set My + M;
Temporary set Mr < 0;
Allocated bundles M, < 0 Vp € [k].
repeat
for j € M, do
if A,(M,;7) = 0Vp € [k] then
‘l My + MQ\{]}, My +— Mp U {]}
else

Find a type p such that A, (M,; j) > 0.
My + M()\{]}, M, + M, U {]}
if some type envies p up to more than 1 item
then
/*Revocation and reallocation*/
repeat
Find types ¢, r such that r envies q
up to more than 1 item.
Find item j' € M, such that
A(M,;5) =1
M, <+~ MN\{j'}s M, < M, U {j'}.
until no type envies another up to more
than 1 item.

end
M() < MT; MT — @
until My = 0 or A, (Mp;5) = 0Vj € Mo, Vp € [k].

Proof. The first part follows directly from the fact that, for
binary utilities, any item can contribute either 1 or O to the
type-value of a bundle, i.e. A,(S;7) € {0,1} forany p € [k],
S C M, and j ¢ S. For the second part, note that each type
starts with an empty bundle (hence zero type-value) and in-
creases its type-value by 1 every time it acquires an item un-
der a PMU algorithm; moreover, since all positive utilities are
equal, the only way for an item j to improve the type-value of
p is to ensure that every item is assigned to an agent in every
(Np, M, U{j})-matching — hence, if an item is revoked, both
the bundle-size and type-value diminish by 1. [

Corollary 2. A type p € [k] with | M,| = |N,| under a PMU
algorithm cannot envy any bundle S C M since v, (S) <|N|.

If after receiving a new item, a type is still envied by all
other types up to at most 1 item, no further action is neces-
sary in that iteration. But a PMU approach by itself cannot
ensure that no type will start envying the recipient up to more
than 1 item if the latter was already envied up to 1 item. If
envy does exceed the acceptable limit, we execute a special
revocation and reallocation (RR) subroutine repeatedly until
we restore the TEF1 property — hence, we call our algorithm
PMURR. The functioning of the RR subroutine depends on
the following result:

Proposition 3. At any stage of a PMU algorithm, if type p
envies type q up to v or more items, then | M| > |M,| + v.

Proof. 1t follows from the definition of envy up to v (or more)
items: For any subset C C M, with |C| = v — 1, v,(M,,) <
vp(M,\C). But, from Proposition 2 (and since C' C M), we
have v,(M\C) < [M\C| = |[My| — |C| = [My| —v + 1.



Combining these with Proposition 2 (v, (M,) = |M,|), we
get [M,| < |My| —v+1,ie. | Mpy| < |M,| —v. O

Corollary 3. Type p can envy another type q only if q has an
allocated bundle of a larger size than p which, in turn, implies
that there can be no cycles in the envy graph among types for
binary utilities under a PMU algorithm.

Next, we prove that the existence of envy is sufficient for
having an item that can be revoked and reallocated.

Lemma 2. At any stage of a PMU algorithm, if type p envies
type q, then there exists an item j in the bundle M, which has
a positive marginal utility for p, i.e. A,(My;7) = 1.

Proof. By Proposition 2 and Corollary 2, if N, is the subset
of agents who are assigned items in the current (N, M,,)-
matching, then we must have v,(M,) = |[M,| = |N/}| <
|V, | for p to envy g. Now, if N}l is the subset of agents who
would be assigned items in a (N, M, )-matching, we must
have |[NJ| = v,(M,) > v,(Mp) = |N,|, so that [NJ\N| >
INJ| — [Nyl > 0. Since NJ\N, € N,\N,, each agent in
NJ\N,, is assigned no item under the current matching but
has a positive utility for a distinct item in M. O

A revocation from ¢ (resp. a reallocation to ) decrements
(resp. increments) its type-value, thus reducing the envy of r
towards g; but it is not obvious how it affects all envy rela-
tions (types that already envied  up to 1 or more items, those
that ¢ might start envying up to 1 or more items, etc.) and
whether we could trigger a never-ending chain reaction. Our
final lemma dispels such doubts.

Lemma 3. The revocation and reallocation subroutine pro-
duces a TEF1 allocation in a polynomial number of steps.

Proof. First note that computing a type-value for any bundle
is polynomial-time and so is checking whether r envies ¢ up
to more than 1 item (i.e. v,(M,) < ve(M,\{j}) for some
j € My). Now, for an iteration of the RR subroutine to occur,
we must have a type r envying a type ¢ up to 2 or more items,
so that | M| > |M,.| + 2 by Proposition 3. For any collection
of bundles M = {Mj, ... M5}, define the potential function
(M) & > pek] [Mp[?, and let M = {M!,... M}} be the
collection of bundles after revocation from ¢ and reallocation
to 7. Hence, |M}| = |M,| — 1 and |M]| = |M,| + 1 (by
Proposition 2) but [ M| = | M,| for every other type p. Thus,

/

(M) — D(M) = | My|* — |My[* + [M[* — | M, |*
= 2(1+ |M,| — |M,|), on simplification

i.e. @ strictly decreases with each RR iteration, and obviously
lies between 0 and m? (since Zpe[k] |M,| < m). Hence,

RR terminates after a polynomial number of iterations; by
the stop criterion, the final allocation is TEF1. O

We are now ready to prove the main result of this section.

Proof of Theorem 4. To prove that the final allocation is non-
wasteful, note that by construction, no bundle-augmentation
and revocation-and-reallocation allow an item in an allocated
bundle to remain unassigned; by Corollary 3, no envy cycles
are ever formed in the envy graph among types, hence bundles
are never passed between types (unlike in the decycling pro-
cedure of [Lipton et al., 2004]) and so no item once assigned
can become unassigned (or transferred to the temporary set).
However, within the for loop, the revocation(s) might result
in an agent becoming unassigned who has a positive utility
for a currently withheld item that was put in the temporary
set because it previously had zero marginal utility for each
type (hence this item now becomes a wasted item). This ne-
cessitates the outer repeat loop whose stop criterion ensures
that there are no wasted items in the withheld set at the end
of the algorithm.

Lemma 3 ensures that the allocation is TEF1 after every
iteration of the for loop, hence upon termination.

For proving the polynomial time-complexity, recall that
computing v,(-) and A,(-), verifying envy up to more than
1 item, and finding an item to revoke and reallocate are all
polynomial-time; Lemma 3 ensures that each iteration of the
for loop takes polynomial time. With each iteration of the
outer repeat loop, the size of the withheld set, which starts
at m, strictly decreases (if it does not, it must mean that each
withheld item has zero marginal utility for every type — a stop
criterion), hence we have a linear number of iterations. O

7 Discussion And Future Work

We have introduced and investigated typewise fairness and ef-
ficiency concepts for the allocation of indivisible goods. The
major open question is whether a non-wasteful TEF1 alloca-
tion always exists for arbitrary agent-item utilities. Important
properties (e.g. the equality of bundle size and type-value)
do not carry over from binary to arbitrary utilities, hence ex-
tensions of our PMURR algorithm to general utility models
remain elusive. An alternative would be to have heuristic ap-
proaches such as the one in Section 5 with provable upper
bounds on the amount of waste.

We considered one type-value function v, () (Definition 1)
here; the average utilitarian type-value ,(S) £ v,(S)/|Np|
is equivalent to v, (.S) for all intents and purposes in this pa-
per. More complex functions such as OWA operators [Yager,
1988] or those that address fairness within a type (e.g. [Bou-
veret and Lang, 2011]) merit further analysis.

Other possible directions for future research include non-
envy-based fairness concepts (egalitarian type-welfare, pro-
portionality, maximin share etc.) as well as strategic implica-
tions of typewise fair allocation algorithms.
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