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Abstract

Background: Mathematical and computational models are widely used to study the transmission, pathogenicity,
and propagation of infectious diseases. Unfortunately, complex mathematical models are difficult to define, reuse and
reproduce because they are composed of several concerns that are intertwined. The problem is even worse for
computational models because the epidemiological concerns are also intertwined with low-level implementation
details that are not easily accessible to non-computing scientists. Our goal is to make compartmental epidemiological
models easier to define, reuse and reproduce by facilitating implementation of different simulation approaches with
only very little programming knowledge.

Results: We achieve our goal through the definition of a domain-specific language (DSL), Kendrick, that relies on a
very general mathematical definition of epidemiological concerns as stochastic automata that are combined using
tensor-algebra operators. A very large class of epidemiological concerns, including multi-species, spatial concerns,
control policies, sex or age structures, are supported and can be defined independently of each other and combined
into models to be simulated by different methods. Implementing models does not require sophisticated
programming skills any more. The various concerns involved within a model can be changed independently of the
others as well as reused within other models. They are not plagued by low-level implementation details.

Conclusions: Kendrick is one of the few DSLs for epidemiological modelling that does not burden its users with
implementation details or required sophisticated programming skills. It is also currently the only language for
epidemiology modelling that supports modularity through clear separation of concerns hence fostering
reproducibility and reuse of models and simulations. Future work includes extending Kendrick to support
non-compartmental models and improving its interoperability with existing complementary tools.

Keywords: Domain-specific language, Modularity, Mathematical modelling, Epidemiological modelling,
Compartmental models

Background
The complexity of new infections, relying on many inter-
connected factors [1–3] such as biodiversity decline [4],
antibiotics resistance [5] or intensification of worldwide
trade [6], makes the anticipation of their propagation and
their evolution a challenge. Epidemiological models could
help address this challenge. Indeed, mathematical and
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computational models have become widely used for inves-
tigating the mechanisms of infectious disease propagation
[7, 8], exploring their evolutionary dynamics [9, 10], or
informing control strategies [11, 12]. They largely rely on
the so-called SIR framework [7, 13] where the host pop-
ulation is divided into compartments corresponding to
the epidemiological status of individuals: those Suscepti-
ble to the pathogen (state S) can become Infectious (state
I), allowing them to transmit the pathogen and eventu-
ally become Recovered (state R), i.e. immunised against
the pathogen. Such models aim to characterise the tran-
sition between these categories and the consequences on
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the dynamics of each category, especially the ‘Infectious’
one that contains diseased individuals. Obviously, other
categories can be added ad libitum in order to take into
account different concerns (factors) such as the aforemen-
tioned ones.
Epidemiological models are sometimes analytically

tractable and can more generally be implemented and
simulated in different ways. The first approach is often
to express the life cycle as a system of ordinary differen-
tial equations to be deterministically simulated through
numerical methods, such as Runge-Kutta algorithms [14].
While this approach is especially useful to understand the
average dynamics without chance, shifting to a stochas-
tic approach (e.g., through Gillespie algorithms [15]) is
known to be more realistic compared to real epidemi-
ological data [7], which allows to analyze the impact of
random events on the simulated dynamics of infectious
diseases (such as their seasonality [7]). Finally, an agent-
based implementation is sometimes required to reach a
level of details that would not be tractable with other
approaches because of combinatorial explosion [16].
Unfortunately, complex mathematical models are diffi-

cult to define, reuse and reproduce because their various
concerns are intertwined. Secondly, implementing them
requires various degrees of programming skills that span
from rudimentary for the deterministic implementations
to very sophisticated for agent-based models. Thirdly,
implementation choices can be very heterogeneous with
non-negligible impacts on the disease dynamics. For
instance, despite their simplicity, deterministic models
can show very different dynamics according to the algo-
rithm being used [7]. Finally, implementation details are
intertwined with the epidemiological concerns making it
even harder to define, reuse or reproduce models.
We address these issues through the definition of a

domain-specific language (DSL), Kendrick, that relies
on a very general mathematical definition of epidemi-
ological concerns. Domain-Specific Languages (DSLs)
separate modelling and specification concerns (concep-
tual model) from implementation aspects (computational
model). Contrary to General-purpose Programming Lan-
guages (GPLs), DSLs are higher-level languages that pro-
vide abstractions and notations that are directly-related to
the concepts of the studied domain [17–19].
A DSL itself, however, does not separate the domain

concerns from each other. In epidemiology, this repre-
sents a significant challenge because the various concerns
cannot be completely independent of each other. For
instance, if a spatial concern is added to a model it is
precisely because it is expected that the rate of infection
is not uniformly distributed across space. Therefore, the
key issue is to provide a way to express the various con-
cerns as independently as possible despite their inevitable
interactions.

We solve this problem thanks to a set of mathemati-
cal definitions that are general enough to capture a large
variety of epidemiological concerns and that support a
three-step approach in which models are:

1 defined abstractly and independently of each other
(using the KendrickModel keyword),

2 combined in any possible order (using the
Composition keyword),

3 instantiated and correlated to each other (using the
Scenario keyword).

The interactions between models only occur in the third
step so that model definitions can be defined and reused
independently of each other.
To illustrate the practical usage of our modelling lan-

guage, we present in this paper two case studies on
measles and mosquito-borne diseases. Our approach
is carefully validated through statistical comparisons
between our simulation results and well-established plat-
form simulations in order to guarantee the link with the
mathematical epidemiology literature. While parts of the
underlying mathematical models and of the syntax of
Kendrick have been presented elsewhere [20, 21], this is
the first time the software itself is presented, through a
step by step coverage of its implementation and usage.

Implementation
This section sheds light on the mathematical model on
which Kendrick relies, on the Kendrick language itself as
well as on its implementation (for installation and experi-
mentation details see the Results & Discussion section).

Overview of the underlying mathematical model
We have adopted a stochastic viewpoint in which models
are Continuous-Time Markov Chains (CTMCs). Mod-
els that are defined deterministically from differential
equations can be interpreted from a stochastic viewpoint
provided some assumptions about the probability distri-
bution which is often assumed to be Poisson. Conversely,
the stochastic models that we consider can be abstracted
back to the deterministic ones.
Studying the literature on CTMCs lead us to define

models and their concerns as stochastic automata [22].
We have then looked for an operator to combine con-
cerns as freely as possible. The concept of Stochastic
Automata Network (SAN) [23] seemed general enough to
be reused. The automata of a SAN are combined by a ten-
sor sum operator when the underlying Markov processes
are CTMCs as in our case.
There are two ways in which stochastic automata may

interact [23]:

• The rate at which a transition occurs may be a
function of the state of a set of automata. These
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transitions are called functional transitions and their
rates functional rates.

• A transition in one automaton may force one to
occur in one or several other automata. The latter are
called triggered transitions.

In epidemiological models, it is crucial to support func-
tional rates while we have not met examples that required
triggered transitions. We have focused on functional rates
because they allow the description of the heterogeneities
that, as it was mentioned previously, motivate the use of
different concerns in the first place. It is crucial to be able
to express, for instance, that the force of infection depends
on the region where individuals live. The point is that this
information is deferred, in Kendrick models, to a special
phase (introduced by the Scenario keyword) that is sep-
arated from the definition of concerns. These definitions
can then be more easily reused.
With our plattform, any given model can be run as a

deterministic or stochastic simulation. The default deter-
ministic solver is RK4 [14]. Gillespie’s direct and tau-leap
methods are both available for stochastic simulations.
Stochastic individual-based simulations can also be run by
triggering events at the level of individuals [16].

The Kendrick DSL
The goal of the DSL is threefold: a) provide an easy-to-
use concise and readable syntax, b) hide implementation
details as much as possible, and c) provide a way to keep
the concerns separated (i.e. avoid textual dependencies
between them).
With these goals in mind, our DSL defines the following

linguistic (syntactical and semantic) entities: Epidemio-
logical Models, Compositions, Scenarios, Simulations and
Visualizations, which are exemplified in Table 1. Each of
these entities can be defined as a separate component
(with its own file if necessary) and reused several times in
multiple projects by simply referring to its name. More-
over, all of the aforementioned entities can be extended
(i.e. specialized). It is possible to introduce new proper-
ties (see the SEIR model in case study I below), as well as
overriding some of them.
First, Models are defined as independently as possible

from each other. They are characterized by epidemic con-
cerns (such as SIR or similar schema, spatial aspects, age
or sex structure ...). These models can then be combined
(through the Composition entity). Scenarios describe the
initial conditions of experiments and can themselves be
combined in different ways to provide inputs to Simula-
tion entities. These entities define algorithmic properties
for experiments, such as solvers and timing constraints.
Finally, the Visualization entities define the desired visual
outputs (such as epidemiological figures and maps) of the
experimental results.

Table 1 Kendrick DSL entities (Two species influenza SIR
example)

The text color is due to Smalltalk syntax

Functional rates that define the heterogeneities of the
various concerns, and thus bind some of them, are
introduced in the Scenario entities only. This is crucial to
be able to define concerns as independently as possible.
Note that the Kendrick syntax was very carefully designed
to make it very convenient to name compartments of
any size while the typical Matlab implementations heav-
ily rely on low-level matrix operations. This notation is
quite convenient to initialize parameters and especially
functional rates whose initial values may depend on sev-
eral concerns. See for instance the initialization of themu
and rho parameters in the Mosquito-borne disease case
study further in this document. In this case, mu and rho
are functional rates because their value depends on the
species. More complex functional rates involving several



BUI T. et al. BMC Bioinformatics          (2019) 20:312 Page 4 of 13

concerns can also be easily initialized by assigning values
to compartments of various sizes.

Implementation details
Kendrick is implemented on top of the Pharo [24] pro-
gramming environment using the Moose meta-modelling
platform [25]. The numerical analysis back-end is based
on the PolyMath framework [26] while the visualisation
sub-system relies on Roassal [27, 28] and the UI com-
ponents on GT Tools and the Moldable Inspector [29].
In addition to that, the DSL extensively relies on Pharo’s
reflective sub-system [30], with extensions based on the
PetitParser [31] framework and on the Helvetia parsing
workbench [32].
Kendrick supports all major desktop platforms

(Gnu/Linux, MacOS and MS Windows) and adopts an
open continuous integration process (based on github1
and Travis CI2). It has been extensively tested using
the SUnit [33] framework, readily available through
a dedicated website3 and well documented through a
collaborative wiki4.

Results
In this section, we first provide practical information on
how to install and start using Kendrick. Then we illus-
trate in detail how to simulate the evolution of twomodels
of infectious diseases. The first one is measles, a child-
hood disease that has been extensively studied through
epidemiological modelling while the second model is a
vector-borne disease, which allows us to illustrate the use
of a multi-host concern.

Installing & running Kendrick
The easiest way to install Kendrick is to download a pre-
compiled bundle for your platform from Github5. After
unzipping the corresponding compressed archive file,
simply run one of the Kendrick launchers (KendrickUI
for Mac and Linux, or KendrickWinLauncher for
Windows).
Alternatively, a very straight-forward method to com-

pile Kendrick from sources is provided on all systems
with a bash command-line (including Linux, Mac and
Windows with Cygwin and/or the Windows 10 Bash sub-
system), by issuing the following command:

wget −O− h t t p s : / / goo . g l /WUQxmp | bash

This command will automatically retrieve all the
required dependencies, compile Kendrick from sources
and set up all the execution scripts for normal or
development use.
Kendrick can be used in three different modes. First, the

UI mode relies on a specific IDE to edit and run Kendrick
models. This UI follows the Cascading Lists6 pattern
of navigation: each selection reveals a new column of

actionable information (on the right), with a horizontal
bar on the bottom that controls the position and size
of the viewport. This mode is launched by invoking the
following command.
. / KendrickUI

Second, Kendrick can be used from the command-line.
Kendrick models are edited using any source code edi-
tor and stored in the Sources directory of the Kendrick
installation, along with all the other models. A model is
run using the following command and the results are then
stored in the Output directory.
. / Kendrick myModel . kendr i ck

Third, an advanced UImode is available where Kendrick
is run with the full development environment (allowing to
use both the DSL and the Pharo API of Kendrick). This
mode is run this way:
. / KendrickDevUI

Case study I: Measles
We consider the transmission of measles through a SEIR
model with demography [34]. Individuals are born in
the Susceptible (S) status with a birth rate μ, then may
become Exposed (E) (i.e. infected but not yet infectious)
with transmission rate βI. After an average latent period
of 1/σ , they may become Infectious (I) and transmit the
pathogen. Finally, they may move to the Recovered (R)
class after an average infectious period of 1/γ .
The model, shown below, is available from the Kendrick

UI by navigating either to Scripts/Measles.kendrick (as a
single file script, see Fig. 1) or to Projects/Measles.

1KendrickModel SEIR
2attribute : # ( status −> S E I R ) ;
3parameters : # ( beta lambda gamma sigma mu ) ;
4transitions : # (
5S −− lambda −−> E .
6E −− sigma −−> I .
7I −− gamma −−> R .
8status −− mu −−> Empty .
9Empty −− mu −−> S .
10) .
11

12Composition Measles
13model : ’ SEIR ’ .
14

15Scenario MeaslesParameters
16on : ’ Meas les ’ ;
17beta : 0 . 0000214 ;
18gamma : 0 . 143 ;
19mu : 0 . 0000351 ;
20sigma : 0 . 125 ;
21lambda : # ( beta∗I ) .
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Fig. 1 Kendrick UI: Running the Measles script

22Scenario MeaslesPopulation
23on : ’ Meas les ’ ;
24populationSize : 100000 ;
25S : 99999 ;
26I : 1 ;
27others : 0 .

Lines 1 to 9 define the core epidemiological con-
cern, SEIR, including the transition parameters. Complete
models (such as Measles) are produced by a Composition
which computes a tensor sum of one or several modelling
concerns (lines 12-13). In this simple example, theMeasles
model includes a single concern: SEIR.
Finally, from lines 15 to 28, two Scenarios are declared

separately to foster reuse even though both are required
to run the Measles model. The first one assigns a value to
each parameter of the model while the second one sets the
initial value of each compartment of the core concerns (S,
E, I, and R).
This version of the Measles model relies on the tran-

sition syntax of Kendrick, but ODEs (Ordinary Differ-
ential Equations) can also be used to express the same
model:

1attribute : # ( status −> S E I R ) ;
2parameters : # ( beta sigma gamma mu ) ;
3equations : # (
4S : t=mu∗N − beta∗S∗I − mu∗S .
5E : t=beta∗S∗I − sigma∗E − mu∗E .
6I : t=sigma∗E − gamma∗I − mu∗I .
7R : t=gamma∗I − mu∗R .
8) .

A core epidemiological concern (e.g., SIR, SEIR etc.)
is required in all epidemiological models. Defining them
as separated entities fosters their reuse in different mod-
els. The most frequently used entities are gathered in the
standard Kendrick library (available through our editor by
navigating to Library/KendrickModel.
The initial size of the population is 100,000 individu-

als. The value of the other parameters are taken from the
related literature [7, 34]. Figure 2 shows the result of the
deterministic simulation (using the RK4 solver) produced
by the Simulation andVisualization entities shown below:

1scenarios : # (MeaslesParameters
2MeaslesPopulation ) ;
3from : 0 . 0 ;
4to : 150 ;
5step : 1 .
6

7Visualization MeaslesDiagramViz diagram
8for : ’ MeaslesRKSim ’ ;
9xLabel : ’ Time ( days ) ’ ;
10exportToPng .

The Simulation entity (from lines 1 to 5) uses both
the scenarios that were previously defined, and specifies
which algorithm to use (here Runge-Kutta) and the timing
characteristics (time step and duration of the simulation).
Finally, the Visualization entity specifies the desired out-
put for a specific Simulation and by default plots the
dynamics of the infected compartment.
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Fig. 2 Deterministic simulation of the measles model. S = 99999, E = 0, I = 1, R = 0,β = 0.0000214, 1/γ = 7 days, 1/σ = 8 days,
μ = 1/(78 ∗ 365) in day−1,N = 100000. The graph shows the infectious deterministic dynamics of the measles model using the KENDRICK language

Case study II: A mosquito-borne disease with three host
species
Our second example is an SIR model with demogra-
phy of a mosquito-borne disease with three host species.
These species are a vector (mosquito) and two potential
hosts: reservoir1 and reservoir2. So the population that
is always partitioned using at least the status attribute is
here also partitioned using the species one leading to 3x3
compartments.
All the species have the same six transitions: birth,

deaths (for each one of the three status compartments),
infection and recovery. Given a transition, the transi-
tion function is the same for all states. Only 4 generic
transitions need to be defined with Kendrick, which will
then automatically generate the remaining ones for each
species of the model.
As previously, the model is available through the

Kendrick distribution by navigating through our editor
either to Scripts/Mosquitos.kendrick (single file script,
seen in Fig. 3) or to Projects/Mosquito.
The script of the model is shown below.

9attribute : # ( status −> S I R ) ;
10parameters : # ( beta lambda gamma mu ) ;
11transitions : # (
12S −− lambda −−> I .
13I −− gamma −−> R .
14status −− mu −−> Empty .

15Empty −− mu −−> S .
16) .
17

18KendrickModel MultiSpecies
19attribute : # ( species −> mosquito reservoir1
20reservoir2 ) .
21

22Composition Mosquito
23model : ’ SIR ’ ;
24model : ’ Mu l t i Spe c i e s ’ .
25

26Scenario MosquitoPopulation
27on : ’ Mosquito ’ ;
28populationSize : 13000 ;
29S_species : # ( 9999 1000 2000 ) ;
30I_species : # ( 1 0 0 ) .
31

32Scenario MosquitoParameters
33on : ’ Mosquito ’ ;
34gamma : 52 ;
35mu_species : # ( 12 . 17 0 . 05 0 . 05 ) ;
36beta_species : # (
37# ( 0 0 . 02 0 . 02 )
38# ( 0 . 02 0 0 )
39# ( 0 . 02 0 0 )
40) ;
41N : # ( species ) ;
42lambda : # ( beta∗I sum ) .
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Fig. 3 Kendrick UI: Running the mosquitos script

43Simulation MosquitoGillepsie gillespie
44scenarios : # (MosquitoPopulation
45MosquitoParameters ) ;
46from : 0 . 0 ;
47to : 0 . 5 ;
48step : 0 . 0027 .
49

50Visualization MosquitoDiagramViz diagram
51for : ’ Mosqu i t oG i l l e p s i e ’ ;
52data : # (I sqrt ) ;
53xLabel : ’ Time ( days ) ’ ;
54exportToPng .

The SIR concern is defined (from lines 1 to 9) includ-
ing transitions and parameters. The multi-species con-
cern (lines 11-12) includes the three aforementioned
species and has no transitions since individuals do
not change their species. The Mosquito model com-
bines the epidemiological and multi-species concerns
(lines 14 to 16).
The Mosquito model is then complemented by two sce-

narios. The (MosquitoPopulation) scenario (lines 18 to 22)
sets the initial value of the compartments while the sec-
ond scenario (MosquitoParameters) sets the value of the
parameters (lines 24 to 34). When the initial size of a com-
partment depends on the species a compound name is
used such as "mu_species" or "beta_species" and a vector
is then provided with a value for each species rather than a
single value for all the species. R is not mentioned because
its value is the default one (zero).

As mentioned earlier, when the value of a parameter not
only depends on the state of its own automaton (i.e. con-
cern) but on the state of another one it is expressed as a
functional rate which is the case for mu and beta (lines
27-32). Both parameters are defined by the SIR concern
but depend on the species. Compound names are used
in this case too to specify vectors or even matrices. Mu
is initialized by a mere vector because In order to spec-
ify functional rates, parameters are followed by attribute
keys to denote how their values vary with such attributes,
i.e. line 27 means that the value of parameter mu varies
with species, the first value representsmu ofmosquito, the
second one is of reservoir1 and the last one is of reservoir2.
The simulation (lines 36 to 40) runs the Gillespie algo-

rithm for the given time-frame and step using both the
aforementioned scenarios. The visualization (lines 42 to
46) plots the dynamics of the infectious (I) compartment
(Fig. 4).

More example models are available
The first case-study focused on a basic model with a single
(core) concern: SEIR. The second case-study included a
core concern (SIR) and amulti-species one.More example
models combining more concerns (such as spatial, con-
trol policies, sex or age structures, multi-strain, etc.) are
available in the Kendrick distribution and on the wiki7.
For example, the Influenza6 model (see Scripts/In-

fluenza6.kendrick in the distribution or8 on the wiki)
includes SEIRS, a multi-species concern, a quarantine
concern, and a spatial concern of 5 countries of Southeast
Asia. More complex spatial graphs can be constructed by
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Fig. 4 Stochastic simulation of the mosquito-borne disease. The multi-host model with three species: mosquito, reservoir1, reservoir2.
S1 = 9999 (mosquito), S2 = 1000 (reservoir 1), S3 = 2000 (reservoir 2); I1 = 1, I2,3 = 0, R1,2,3 = 0,N1 = 10000,N2 = 1000,N3 = 2000; σ = 52,
μ1 = 365/30,μ2,3 = 1/20,β12 = β13 = 0.02,βothers = 0.0

importing data from external sources (e.g., GIS data, flight
connections etc.).
The diversity of these examples suggest that Kendrick

can support the most common epidemiological concerns.

Batch analysis & integration with external tools
In order to support batch exploration of epidemiological
models (for sensitivity analysis for example), epidemiolog-
ical experiments can be defined with different parameter
values to explore a grid of the parameter space.
These experiments can be defined using either (a) the

dedicated Experiment entity in Kendrick Projects (as
shown in the code-snippet below and in Fig. 5) or (b)
command-line arguments.
In both cases, the results of the experiments can be anal-

ysed by third-party software. In the case of the command-
line experiments, the set-up allows Kendrick to be driven
by and integrated with platforms such as R9 or Open-
Mole10 for further analysis.

1on : ’ Meas les ’ ;
2output : ’ MeaslesDiagramViz ’ ;
3populationSize : [ 100000 , 150000

] @ 50000 ;
4I : [ 1 , 21 ] @ 10 ;
5beta : [ 0 . 0000150 , 0 . 0000250 ] @

60 . 0000050 ;
7gamma : [ 0 . 150 , 0 . 250 ] @ 0 . 050 ;
8run

An experiment, PopRateAnalysis is defined on the
Measles model using the MeaslesDiagramViz visualiza-
tion as an output template (lines 1-3). A series of parame-
ter intervals of the form [min, max] @ step are then intro-
duced (lines 4-7). populationSize will thus get 2 values:
100000 and 150000, while the initial infected population
as well as γ and β will get 3 values each. Finally, line 8 runs
the experiment.
Kendrick runs a simulation for each of the 54 (2x3x3x3)

combinations. The results can then be explored and anal-
ysed as seen Fig. 5. The results are also exported automati-
cally in theOutput folder of the project for further analysis
with external tools.
Model fitting to observed data is possible by running

a Kendrick model from the command line. An example
is given on our development website11 where a complete
Kendrick model is built in Matlab/Octave12. The space of
the possible parameter values is then explored, driven by
a minimization function written in Octave. More direct
support by Kendrick is planned to minimize the need of
external tools.



BUI T. et al. BMC Bioinformatics          (2019) 20:312 Page 9 of 13

Fig. 5 Declaring an epidemiological experiment for the Measles model and exploring the results within the Kendrick platform

Validating the implementation
To validate the core functionalities of Kendrick as a
modelling and simulation platform, the output of deter-
ministic Kendrick models have been compared to a ref-
erence implementation of the same models on Scilab
[35]. The simulation results (see Fig. 2) suggest that for
deterministic models, Kendrick results are identical to
those of the reference implementation.
The dynamics of deterministic simulations have also

been compared to those of Gillespie and individual-based
simulations (Fig. 6).
The results for the measles model can be seen in the

upper part of Fig. 6, with the lower part displaying the
results of the mosquito-borne model for each individual
host species. The deterministic dynamics can be super-
imposed on the stochastic and individual-based ones,
validating our implementation of the simulation logic.
Finally, outputs of individual-based and stochastic

simulations using the same configuration have been
cross-examined. Key properties of the epidemiologi-
cal dynamics, such as the duration and the peak of
the epidemic, have been extracted from the results of
200 executions of each individual-based and stochas-
tic model. A Kolmogorov-Smirnov test on each pair of
samples has showed no statistical difference between
the individual-based simulations and the stochastic
ones. The results can be seen in Table 2, where all
P − values are greater than 0.05, validating that the
resulting distributions are statistically indistinguishable.
This suggests that our individual-based and stochas-
tic algorithms are correctly implemented and provide
compatible results.

Discussion
Although DSLs have been used before in the con-
text of bioinformatics [36–38], only a small number of
them focused on epidemiological modelling [39, 40].
For example, Ronald [39] is a DSL for studying
the interactions between malaria infections and drug
treatments, but has unfortunately been discontinued.
Schneider and al. [40] have also proposed a DSL for
epidemics, but their solution only support agent-based
models. Mathematical modelling languages (MMLs) such
as Scilab [35], Modelica [41], Matlab [42] or JSim [43]
do allow easier definition of mathematical models as
sets of ODEs, but are too broad in scope to properly
cover the domain-specific needs of epidemiology. On
the other hand, individual libraries targeting epidemio-
logical modelling, such as Epipy - a visualisation data
tool for epidemiology written in Python [44], or Gille-
spieSSA - an R package for generating stochastic simula-
tion using Gillespie’s algorithms [45], cover only specific
epidemiological needs.
Closer to our approach are computational modelling

tools for epidemiology such as FluTe [46], GLEAMviz
[47], STEM [48] and FRED [49]. These solutions use ded-
icated approaches to model the transmission of infectious
disease and provide a graphical user interface (GUI) to
specify and visualise an epidemiological model. The main
features of these tools are summarised in Table 3 and
compared to Kendrick.
Contrary to solutions that only focus on stochastic

simulations (such as GLEAMviz [47] and STEM [48])
our platform can provide more modelling options thanks
to the availability of individual-based simulation. The
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Fig. 6 Comparison between the dynamics of deterministic, stochastic and individual-based model. We show the simulation results of two models in
three formalisms: deterministic (green line), stochastic (blue lines) and individuals-based (red lines). The first row shows the results of the measles
model. The second row shows the results of the mosquito-borne model with three host species

large-scale epidemic simulations that can be carried out
with GLEAMviz [47], STEM [48] or FRED [49] can also
be considered with Kendrick since it provides all the nec-
essary building blocks (disease spread, air-flight graph
linking the airports) but it has not been attempted yet.
A case study of meta-population model can be found in
the Additional file 1 provided with this publication. This
particular case is also an example of spatial visualisation
integrated within the platform.
Given the above comparison, Kendrick can be con-

sidered as a higher-level disciplined solution that aims
to cover as many specificities of epidemiological mod-
elling as possible. The fact that Kendrick chooses the
right level of abstraction for each case is also expected
to help modellers focus on what is essential and avoid

Table 2 P-values of Kolmogorov-Smirnov test on two models
over some disease global properties

Model Global properties of diseases

Peak of epidemic Epidemic duration

Measles 0.1777 0.3275

Mosquito-borne disease

Species 1 0.7920 0.7112

Species 2 0.6272 0.8643

Species 3 0.7920 0.2202

irrelevant or inconsistent definitions. This allows easier
cross-examination of different modelling simulation
schemes (such as deterministic, demographic-stochastic
and individual-based). In particular, letting modellers
directly manipulate epidemiological concepts, such as
compartments, is expected to reduce the burden of
having to deal with implementation details that typ-
ically involve programming-language-dependent matrix
manipulations.
Currently, our platform has nevertheless several lim-

itations. At the moment, we only support determinis-
tic, stochastic and individual-based simulations. More
high-resolution models like agent-based simulation where
agents can have complex behaviours or contact-networks
will be defined in the future. Spatial-based models based
on partial differential equations (PDE) are also beyond the
scope of this paper.
Furthermore, there is also an inherent trade-off in our

pervasive use of a DSL, especially regarding simulations.
While we do allow for the configuration of basic sim-
ulation parameters, there is currently no way to adapt
simulations in more elaborate ways, without getting back
to development in the host language (Pharo in our case).
This is an acceptable limitation for a DSL in general,
which aims to be user-friendly and re-usable, forfeiting the
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Table 3 Modelling and simulation tools for epidemiology

Criteria KENDRICK FluTe GLEAMviz STEM FRED

Modelling
approach

Deterministic + - - + -

Stochastic + - + + -

Individuals-based + + - - +

Population
Multi-species + - - + -

Heterogeneous + + - - +

Spatial Structure

Patch model + + + + -

Network of contact + - - - +

Mobility pattern + + + + +

Intervention Strategies + - + + +

Simulation at global scale - - + + +

ability to control every little detail of the implementation
by its end-users.

Conclusion
This paper has introduced Kendrick, a language and a
tool to make it easier to define, reuse and reproduce com-
partmental epidemiological models. Kendrick relies on a
very general mathematical definition of epidemiological
concerns as stochastic automata that are combined using
tensor-algebra operators. A large class of epidemiologi-
cal concerns can be defined this way, including multi-
species, spatial concerns, control policies and sex or age
structures. Concerns can be defined independently of
each other, and combined into models that are simu-
lated by different methods with very little programming
knowledge.
Kendrick features have been highlighted using two clas-

sic examples of epidemiological models. The results pro-
duced using Kendrick are equivalent to well-established
but harder-to-use, programming platforms. Kendrick
supports batch-analysis and experimentation, allow-
ing its combination with external tools for statistical
analysis.
We hope that Kendrick will be further adopted and

extended to support even more facets of epidemiology.
It is available as open source software under the MIT
Licence: http://ummisco.github.io/kendrick/.

Availability and requirements
Project name: KENDRICK
Project home page: http://ummisco.github.io/kendrick/
Operating System: multi-platform (Linux/MacOS/Win-
dows)
Programming environment: Pharo 6.1: http://www.
pharo.org/
Programming language: Smalltalk
Requirements: All the required tools for the installation
of KENDRICK are described on the project home page

License:MIT License
Any restrictions to use by non-academics: no restric-
tions

Endnotes
1 https://github.com/UMMISCO/kendrick
2 https://travis-ci.org/UMMISCO/kendrick
3 http://ummisco.github.io/kendrick/
4 https://github.com/UMMISCO/kendrick/wiki
5 https://github.com/UMMISCO/kendrick
6 http://designinginterfaces.com/firstedition/index.

php?page=Cascading_Lists
7 https://github.com/UMMISCO/kendrick/wiki
8 https://github.com/UMMISCO/kendrick/wiki/

Example-4.5:-Model-5---SEIRS-Multi-species-Multi-
strains-Spatial-model

9 https://www.r-project.org/
10 https://openmole.org/
11 https://github.com/UMMISCO/kendrick/wiki/Fit-a-

Kendrick-model-to-data
12 https://www.gnu.org/software/octave/

Additional file

Additional file 1: A spatial SIR model specified with Kendrick. (PDF 348 kb)
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