New Expectation from DNP-Enhanced SS-NMR to figure out the Role of the Organic-Silica Interfaces: the Case of Diatom Frustules and Marine Siliceous Sponge Spicules

Sylvie Masse, Guillaume Laurent, Thibaud Coradin, Andrzej Pisera

To cite this version:
Sylvie Masse, Guillaume Laurent, Thibaud Coradin, Andrzej Pisera. New Expectation from DNP-Enhanced SS-NMR to figure out the Role of the Organic-Silica Interfaces: the Case of Diatom Frustules and Marine Siliceous Sponge Spicules. Magnetism and Magnetic Resonance: Magnetic Resonance, Understanding, Measurements and Modeling, Jun 2019, Strasbourg, France. hal-02156116

HAL Id: hal-02156116
https://hal.sorbonne-universite.fr/hal-02156116
Submitted on 18 Jun 2019
New Expectation from DNP-Enhanced SS-NMR to figure out the Role of the Organic-Silica Interfaces: the Case of Diatom Frustules and Marine Siliceous Sponge Spicules

Sylvie MASSE 1, Guillaume LAURENT 1, Thibaud CORADIN 1 and Andrzej PISERA 2
1: Lab. Chimie de la Matière Condensée de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
2: Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland

Microalgal culture at ISOMER: in collaboration with Dr Veronique Martin-Jezéquel and Dr Benoît Tesson Faculté des Sciences et Techniques, Nantes, France

MNR Facility-Sorbonne Université
Campus P. et M. Curie - T 32-33 SB

Living sponge collection: Pr. A. PISERA on board of the IRD ship for an expedition in New Caledonia (Financially supported by National Science Centre, Grant No. 2016/21/B/ST1/02332)

Conclusions

While a lot of work is needed to figure out the organic-silica interfaces in natural materials such as diatom frustules or marine siliceous sponge spicules, Solid-State NMR appears to be a powerful toolbox with several nuclei and methods to carry out. Nevertheless, natural abundance in 13C as well as a too poor C-content in the clean specimen does not allow nor 2D correlations neither well-resolved 1D spectra, that are necessary to go further on species proximity and connectivity assessment. Conjugating DNP to SS-NMR appears to be a promising solution to enhance the signal.

References

1. Tessson B., Masse S., Laurent G., Maquet J., Livage J., Martin P., Thibaud CORADIN – 1H MAS and 29Si HPDEC-MAS NMR spectra of the Whole-cell, SDS-treated and H$_2$O$_2$-treated diatom frustule samples isopolitically enriched in 29Si, 13C, 31P and 28Si, resp. (Ref.1). A signal broadening and a loss in intensity are observed after chemical treatment. While SDS/EDTA is used first to clean the frustule, further H$_2$O$_2$ treatment seems to be much more aggressive, probably leading to partial dissolution-recrystallization.

Variability in 13C CP-MAS NMR response depending on species and history: nature of the taxon, aging, conservation, chemical treatment... (Ref.2).

Conclusion

While a lot of work is needed to figure out the organic-silica interfaces in natural materials such as diatom frustules or marine siliceous sponge spicules, Solid-State NMR appears to be a powerful toolbox with several nuclei and methods to carry out. Nevertheless, natural abundance in 13C as well as a too poor C-content in the clean specimen does not allow nor 2D correlations neither well-resolved 1D spectra, that are necessary to go further on species proximity and connectivity assessment. Conjugating DNP to SS-NMR appears to be a promising solution to enhance the signal.

References

Magnetic Resonance, Understanding, Measurements and Modeling – June 2-6, 2019, Strasbourg, France

3rd Thematic School: Magnetism and Magnetic Resonance