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Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations

We simulate streaming potentials for 2D networks with different pore size distributions • The pore size distribution has a very restricted influence on electrokinetic coupling coefficients • A recent effective excess charge density model accounts for all the pore size distributions

Introduction

Self-Potential (SP) is one of the oldest geophysical methods [START_REF] Fox | On the electromagnetic properties of metalliferous veins in the mines of cornwall[END_REF] and consists in measuring the naturally occurring electrical field at the surface of or within geological media. The SP signal results from the superposition of multiple sources coming from contributions of two main processes: the electrokinetic (EK) contribution (i.e., related to water flux) and the electrochemical contributions (i.e., related to ionic concentration, thermal gradient, or redox gradient). In this work we focus on SP signals generated by electrokinetic phenomena: the so-called streaming potential. Details on the possible contributions to the SP signal can be found in [START_REF] Revil | The Self-Potential Method: Theory and Applications in Environmental Geosciences[END_REF] or [START_REF] Jouniaux | Review of selfpotential methods in hydrogeophysics[END_REF], among other references.

The streaming potential has been the subject of numerous scientific studies over the last two centuries [since [START_REF] Quincke | Ueber eine neue art elektrischer ströme[END_REF] and involved in many applications: from oil and gas reservoir exploration to more recent critical zone studies [e.g., Revil et al., 1999a;[START_REF] Jougnot | Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, voulund, denmark[END_REF]. In geological media, minerals and organic matter exhibit a charged surface (usually negative) that is compensated by an excess of charges in the pore water distributed in the so-called electrical double layer (EDL) surrounding these grains [e.g. [START_REF] Hunter | Zeta Potential in Colloid Science: Principles and Applications[END_REF]. These charges can be dragged by a water flow, generating a charge separation that in turn generates an electrical current and a resulting electrical potential distribution. Given the difficulty of directly measuring the water flow in geological media, relating this measurable electrical potential distribution to the water flux is therefore of interest for many reservoir or environmental applications [e.g., [START_REF] Jouniaux | Review of selfpotential methods in hydrogeophysics[END_REF][START_REF] Revil | The Self-Potential Method: Theory and Applications in Environmental Geosciences[END_REF].

For more than a century, the classical approach to quantitatively relate the electrical potential field to the water flux (or to a hydraulic pressure field) has been achieved by the use of the EK coupling coefficient, C E K (V Pa -1 ),

C E K = ∂V ∂P J= - → 0 , (1) 
where V is the electrical potential (V) and is P the water pressure (Pa), in the assumptions that the system is under a quasi-static equilibrium and that no external current J is injected into the medium. [START_REF] Helmholtz | Studien über electrische grenzschichten[END_REF] and von Smoluchowski [1903] proposed the so-called Helmholtz-Smoluchowski (HS) equation to determine C E K from a limited amount of parameters:

C H S E K = ε w ζ η w σ w , (2) 
where ε w , σ w , and η w are the dielectric permittivity (F m -1 ), the electrical conductivity (S m -1 ), and the dynamic viscosity (Pa s) of the pore water, respectively. The ζ-potential, ζ (V), corresponds to the electrical potential at the shear plane in the EDL, which is the plane separating mobile and immobile water molecules [e.g. [START_REF] Hunter | Zeta Potential in Colloid Science: Principles and Applications[END_REF][START_REF] Leroy | A double layer model of the gas bubble/water interface[END_REF]Li et al., 2016, Fig. 1]. The HS equation has been successfully used to predict streaming potential measurements in geological media [e.g., Jouniaux and Pozzi, 1995a;[START_REF] Pengra | Determination of rock properties by lowfrequency ac electrokinetics[END_REF]. It is interesting to note that the HS equation seems completely independent from the pore space geometry of the medium. However, there is a strong assumption in this model: the surface conductivity of the grains, σ s (S m -1 ), must be negligible compared to the pore water conductivity, that is σ s σ w . When this is not the case, alterna-tive formulas have been proposed by several researchers [e.g., [START_REF] Morgan | Streaming potential properties of westerly granite with applications[END_REF]Revil et al., 1999b;[START_REF] Glover | Streaming potential coupling coefficient of quartz glass bead packs: Dependence on grain diameter, pore size, and pore throat radius[END_REF], taking into account surface conductivity and making some assumptions on the pore space geometry.

More recently, an alternative approach to quantify the streaming potential generation has been proposed, focusing on the excess charge effectively dragged by the water flow.

To the best of the authors knowledge, the first occurrence of this approach in the literature in english is in [START_REF] Kormiltsev | Three-dimensional modeling of electric and magnetic fields induced by the fluid flow movement in porous media[END_REF] and was later independently found by Revil and Leroy [2004]. This parameter is an alternative to the coupling coefficient and can easily be related to it by re-writing the water flow and electrical current equations [see [START_REF] Kormiltsev | Three-dimensional modeling of electric and magnetic fields induced by the fluid flow movement in porous media[END_REF], for the first derivation]

C E K = - Qv k ση w , (3) 
where σ and k are the electrical conductivity (S m -1 ) and permeability (m 2 ) of the medium, respectively. Following the formalism of Revil and co-authors, we call Qv the effective excess charge density (C m -3 ). Note that it is called α in [START_REF] Kormiltsev | Three-dimensional modeling of electric and magnetic fields induced by the fluid flow movement in porous media[END_REF].

Several studies have shown empirical evidence to prove that the effective excess charge density depends on the permeability of the porous media [START_REF] Titov | Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling[END_REF][START_REF] Jardani | Tomography of the darcy velocity from self-potential measurements[END_REF][START_REF] Bolève | Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: Self-potential 'abacus' diagram for hydraulic permeability estimation and uncertainty computation[END_REF], indicating that this parameter is strongly influenced by the petrophysical properties of the considered geological medium. It has been shown

that the pore water chemistry, both the composition and the ionic concentration, also have a significant effect on Qv [e.g., [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF][START_REF] Jougnot | Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, voulund, denmark[END_REF][START_REF] Cherubini | Streaming potential coupling coefficient and transport properties of unsaturated carbonate rocks[END_REF].

Recently, [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] proposed an analytical model directly relating Qv to the permeability, porosity, pore water chemistry (through the ionic concentration), and the ζ-potential. This closed-form equation was derived with the assumptions of a simple binary symmetric pore water electrolyte and pore radii much larger than the diffuse layer thickness. In order to achieve the derivation of this analytical solution, the authors based their approach on the use of tortuous capillaries and a fractal pore size distribution. Interestingly, the pore size distribution does not directly appear in the closed-form equation. [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF]'s model performs very well with different SP datasets from laboratory measurements [START_REF] Pengra | Determination of rock properties by lowfrequency ac electrokinetics[END_REF][START_REF] Glover | Streaming potential coupling coefficient of quartz glass bead packs: Dependence on grain diameter, pore size, and pore throat radius[END_REF]. Note that [START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF] propose an extension of this model to partially saturated conditions.

Pore network simulations can be used as a numerical tool to predict the electrokinetic coupling coefficient, and consequently the effective excess charge density, for dif-ferent pore size distributions. [START_REF] Bernabé | Streaming potential in heterogeneous networks[END_REF] proposed a pioneer work to model streaming potential in heterogeneous media. Based on this work, further investigations on coupling effects in charged media in 2 or 3D have been performed [e.g., [START_REF] Brovelli | Sensitivity of intrinsic permeability to electrokinetic coupling in shaly and clayey porous media[END_REF][START_REF] Obliger | Pore network model of electrokinetic transport through charged porous media[END_REF][START_REF] Zhang | Analysis of electrokinetic coupling of fluid flow in porous media using a 3-d pore network[END_REF], mainly to evaluate the impact of the electrokinetic coupling on the permeability in microporous media.

In this work, we use a pore network numerical code based on the works of Bernabé [1998] and [START_REF] Maineult | Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: a study on a correlated random tube network[END_REF]. It allows for the prediction of the coupling coefficient, permeability, and formation factor of a 2D pore network with well-controlled pore size distributions, and therefore the effective excess charge density from Eq. 3. After presenting the theoretical framework for the electrokinetic phenomena and the numerical method that we implemented, we will (1) study the effect of the pore size distribution on the streaming potential generation and (2) check for the applicability of the Guarracino and Jougnot [2018] analytical model for the prediction of the effective excess charge density obtained for different pore size distributions.

Theory of streaming current generation

Governing equations

Streaming current generation in geological media can be described by the following macroscopic governing equations [e.g., [START_REF] Sill | Self-potential modeling from primary flows[END_REF]:

J = σE + J s , (4) 
∇ • J = 0, ( 5 
)
where J is the total current density (A m -2 ), E = -∇V is the electrical field (V m -1 ), and J s is the source current density (A m -2 ). In the absence of external current, that is when no current is injected into the medium, combining Eqs. ( 4) and ( 5) yields,

∇ • (σ∇V ) = ∇ • J s . (6) 
When considering only EK processes in the SP signals, the source current density (i.e., streaming current density) can then be expressed as,

J s = σC E K ∇ (P -ρ w gz) , (7) 
where ρ w is the water density (kg m -3 ), g is the gravitational acceleration (m s -2 ), and z is the elevation (m). We call Eq. ( 7) the coupling coefficient approach.

As described in [START_REF] Kormiltsev | Three-dimensional modeling of electric and magnetic fields induced by the fluid flow movement in porous media[END_REF], combining Eq. 3 and Darcy's equation [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: exposition et application[END_REF], we obtain the Darcy velocity:

u = - k η w ∇ (P -ρ w gz) . (8) 
Including Eq. 8 in Eq. 7, one can obtain the streaming current density from the effective excess charge approach,

J s = Qv u. (9) 
Combining Eqs. 6 and 9 allows relating the streaming potential distribution to the Darcy velocity, a variable of uttermost interest in hydrology or reservoir studies, through the medium conductivity and effective excess charge density:

∇ • (σ∇V ) = ∇ • Qv u . ( 10 
)

Electrochemical properties

Most geological materials have a solid matrix made of components with charged surfaces (mostly minerals but also organic matter) in contact with water due to the hydroxilation of the surface sites and ion substitutions in the crystal [START_REF] Hiemstra | On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides[END_REF][START_REF] Leroy | Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles[END_REF][START_REF] Leroy | The electrophoretic mobility of montmorillonite. zeta potential and surface conductivity effects[END_REF][START_REF] Li | Influence of surface conductivity on the apparent zeta potential of calcite[END_REF]]. An EDL is formed at the pore surface to compensate the surface charge as the system "solid matrix plus pore water" must satisfy the electroneutrality principle [e.g., [START_REF] Hunter | Zeta Potential in Colloid Science: Principles and Applications[END_REF][START_REF] Leroy | A triple-layer model of the surface electrochemical properties of clay minerals[END_REF]. As shown in Fig. 1, the surface charge Q 0 (C m -2 ) is counterbalanced by charges in the EDL of the pore water: (1) by charges adsorbed in the compact Stern layer Q β (often considered to have a negligible thickness, therefore expressed in C m -2 ) and ( 2) by a distribution of charges in the diffuse layer Qv (C m -3 ). This yields

S sw V w Q 0 + Q β + Qv = 0, (11) 
where S sw is the surface of the solid in contact with water (m 2 ) and V w is the pore water volume (m 3 ). The term Qv is called the excess charge density in the diffuse layer. We call co-ions and counter-ions the ions with the same and the opposite sign of the surface charge density, respectively. In typical silica rocks, under typical environmental conditions, surfaces are usually negatively charged; the co-ions and counter-ions are therefore anions and cations, respectively [e.g., [START_REF] Sverjensky | Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions[END_REF].

The distribution of ions in the diffuse layer depends on the distribution of the microscopic (or local) electrical potential in the pores, ψ (V), which follows the Poisson equa- tion:

∇ 2 ψ = - Qv ε w (12)
where ε w is the dielectric permittivity of the pore water (F m -1 ). We consider that the bulk pore water (i.e., the part of the electrolyte free from the effects of the charged surfaces) is an electrolyte composed of M ionic species i with a bulk concentration C w i (mol m -3 ). The excess charge density in the diffuse layer is supposed to follow a Boltzmann distribution yielding:

Qv (r) = N A M i=1 q i C w i exp - q i ψ(r) k B T ( 13 
)
where r is the distance from the shear plane (m) (that is the pore wall as we neglect the Stern layer thickness), N A = 6.022 × 10 23 mol -1 is the Avogadro's number, k B = 1.381 × 10 -23 J K -1 is the Boltzmann constant, T is the absolute temperature (K), and q i = ±z i e 0 is the ion charge (C) which depends on its valency, z i , and the elementary charge, e 0 = 1.602 × 10 -19 C. Note that the extension of the diffuse layer corresponding to the fraction of the pore space in which the excess charge density is not negligible, can be approximated by a thickness equal to 4l D (Fig. 1).

The excess charge density which is effectively displaced by the water flow is called effective or dynamic excess charge, depending on the authors, and symbolized as Qv or

Qef f v (C m -3
). It has to be distinguished from the other excess charge densities contained in the pore space [see the discussion in [START_REF] Revil | Comment on dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone by f.i. zyserman, l.b. monachesi and l. jouniaux[END_REF]. The total excess charge density Q v (C m -3 ), which includes all the charges of the EDL, is given by:

Q v = S sw V w Q β + Qv = ρ s 1 -φ φ e 0 N A CEC, ( 14 
)
where CEC is the cationic exchange capacity (meq kg -1 ), φ is the porosity, and ρ s is the solid grain density (kg m -3 ). Note that the CEC of hydroxide minerals such as quartz strongly depends on the pH and salinity [START_REF] Leroy | Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles[END_REF]. As discussed in Jougnot et al.

[2012], the excess charge density of the diffuse layer Qv (Fig. 1) is usually considerably smaller than the total excess charge density Q v and larger than the effective excess charge density Qv :

Qv Qv Q v . ( 15 
)
This is due to the fact that the effective excess charge density is weighted by the pore water velocity distribution through the pore (Fig. 10a). This concept is described in detail in [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF] and called "flux-averaging" in opposition to the "volume-averaging" up-scaling technique described in [START_REF] Revil | Electrokinetic coupling in unsaturated porous media[END_REF].

Electrokinetic coupling at the pore scale

Following the capillary-based approaches proposed by [START_REF] Jackson | Characterization of multiphase electrokinetic coupling using a bundle of capillary tubes model[END_REF][START_REF] Jackson | Multiphase electrokinetic coupling: Insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model[END_REF] and [START_REF] Linde | Comment on "characterization of multiphase electrokinetic coupling using a bundle of capillary tubes model" by mathew d. jackson[END_REF], [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF] consider the porous medium as a bundle of capillaries to develop the flux-averaging up-scaling procedure. The effective excess charge density QR v dragged by the water flow in a single tube of radius R (m) is defined by:

QR v = R r=0 Qv (r)v(r)dr R r=0 v(r)dr , (16) 
where v(r) is the pore water velocity across the capillary (m s -1 ).

In order to propose an analytical solution for Eq. ( 16), [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] consider the Debye-Hückel approximation, an usual way to derive analytically the distribution of the local electrical potential [e.g., [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF][START_REF] Jougnot | Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, voulund, denmark[END_REF][START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF][START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF]. This approximation is an accurate solution of the Poisson-Boltzmann equation (Eq. 12) for low local electrical potentials, i.e., |ζ | << (k B T )/|q i | 25 mV (for T= 298 K) and monovalent ions. The microscopic electrical potential distribution in the diffuse layer of a NaCl pore water solution can then be expressed as,

ψ(r) = ζ exp - r l D , (17) 
where l D is the Debye length (m) defined as,

l D = ε w k B T 2e 2 0 C w N A . ( 18 
)
Note that this is a solution obtained for a flat surface [e.g., [START_REF] Hunter | Zeta Potential in Colloid Science: Principles and Applications[END_REF]. Nevertheless, it can be used for large pores, that is for a small curvature compared to the diffuse layer thickness [see discussion in Jougnot et al., 2012;[START_REF] Thanh | Effective excess charge density in water saturated porous media[END_REF]. For a NaCl solution, Eq.

(13) becomes,

Qv (r) = N A e 0 C w N aCl e - e 0 ψ (r ) k B T -e e 0 ψ (r ) k B T . ( 19 
)
Then the exponential terms of Eq. ( 19) are approximated by a four-term Taylor series:

e ± e 0 ψ (r ) k B T = 1 ± e 0 ψ(r) k B T + 1 2 e 0 ψ(r) k B T 2 ± 1 6 e 0 ψ(r) k B T 3 . ( 20 
)
Substituting Eq. ( 20) in Eq. ( 19) and solving (16) considering a Poiseuille flow, it yields:

QR v = - 8N A e 2 0 C w N aC l ζ k B T (R/l D ) 4 6 -e -R l D R l D 3 + 3 R l D 2 + 6 R l D + 6 + 24N A e 2 0 C w N aC l ζ k B T (R/l D ) 3 2 -e -R l D R l D 2 + 2 R l D + 2 - 16N A e 2 0 C w N aC l ζ k B T (R/l D ) 2 1 -e -R l D R l D + 1 - 4N A e 4 0 C w N aC l ζ 3 3(k B T ) 3 (3R/l D ) 4 6 -e -3R l D 3R l D 3 + 3 3R l D 2 + 6 3R l D + 6 + 4N A e 4 0 C w N aC l ζ 3 (k B T ) 3 (3R/l D ) 3 2 -e -3R l D 3R l D 2 + 2 3R l D + 2 - 8N A e 4 0 C w N aC l ζ 3 3(k B T ) 3 (3R/l D ) 2 1 -e -3R l D 3R l D + 1 . (21) 
Considering the thin double layer assumption l D R, [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] simplify Eq. 21 to obtain the following analytical solution to predict the effective excess charge in a single capillary with a radius R,

QR v = 8N A e 0 C w N aCl (R/l D ) 2       -2 e 0 ζ k B T - e 0 ζ 3k B T 3      . ( 22 
)
This solution is considered valid for R > 5l D , see discussion in [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] (their Fig. 2) and in [START_REF] Thanh | Effective excess charge density in water saturated porous media[END_REF]. Note that the rather simple Eq. ( 22) is influenced both by geometry (R), interface (ζ, l D ), and chemical properties (C w N aCl ).

Electrokinetic coupling at the REV scale

In order to study the streaming potential generation in natural geological media, a second upscaling procedure has to be performed to go from QR v to the effective excess charge density at the Representative Elementary Volume (REV) scale, QREV v . The fluxaveraging approach proposed by [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF] yields,

QREV v = R ma x R mi n QR v v R f D dR R ma x R mi n v R f D dR , ( 23 
)
where v R is the average pore water velocity (m s -1 ) in capillaries having a radius R, and f D is the capillary size distribution. Eq. 23 holds for any capillary size distribution. [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF] propose to determine f D from the hydrodynamic curves of the considered porous medium. This can be accomplished by two approaches: one based on the water retention curve f W R D , the other based on the relative permeability curve f RP D . Both approaches require numerical simulation.

Guarracino and Jougnot [2018] recently proposed an analytical approach to determine QREV v at the REV scale considering a fractal pore size distribution under water saturated conditions. They solve Eq. 23 with QR v from Eq. 22. Their analytical developments, based on the Debye-Hückel approximation, yield the following rather simple formula,

QREV v = N A e 0 C w l 2 D       -2 e 0 ζ k B T - e 0 ζ 3k B T 3      1 τ 2 φ k . ( 24 
)
where τ is the dimensionless hydraulic tortuosity of the medium. The above equation predicts the effective excess charge density in terms of both macroscopic hydraulic parameters (porosity, permeability, and tortuosity) and parameters of chemical or interfacial nature (ionic concentration, ζ-potential and Debye length). One can see that the fractal pore size distribution does not explicitely appear in Eq. 24, as it is included in the porosity and permeability terms. Indeed, when developping the analytical solution presented above (Eq.

24), all the information related to the pore space geometry (e.g., the fractal pore size distribution) was included in the definition of porosity and permeability [see [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF], for more details on the model development]. This model has been recently extended to partially saturated conditions by [START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF]. Note that [START_REF] Thanh | Effective excess charge density in water saturated porous media[END_REF] proposed an expression similar to Eq. 24 but only valid for a single capillary radius instead of a distribution of radii.

While the [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] analytical solution proposes an explicit link between Qv and the medium's permeability, numerous previous studies have shown an empirical relationship between these two parameters before [e.g., [START_REF] Titov | Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling[END_REF][START_REF] Jardani | Tomography of the darcy velocity from self-potential measurements[END_REF][START_REF] Bolève | Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: Self-potential 'abacus' diagram for hydraulic permeability estimation and uncertainty computation[END_REF][START_REF] Cherubini | Streaming potential coupling coefficient and transport properties of unsaturated carbonate rocks[END_REF]. Among these works, [START_REF] Jardani | Tomography of the darcy velocity from self-potential measurements[END_REF] propose the following empirical relationship

log 10 ( QREV v ) = A 1 + A 2 log 10 (k), (25) 
where A 1 = -9.2349 and A 2 = -0.8219 are constant values obtained by fitting Eq. 25 to a large set of experimental data that includes various lithologies and ionic concentrations. It has been widely used for SP [e.g. [START_REF] Jardani | Stochastic joint inversion of temperature and selfpotential data[END_REF][START_REF] Linde | Self-potential investigations of a gravel bar in a restored river corridor[END_REF][START_REF] Soueid Ahmed | Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data[END_REF][START_REF] Roubinet | Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures[END_REF] and seismoelectrics [e.g. [START_REF] Jougnot | Seismoelectric effects due to mesoscopic heterogeneities[END_REF][START_REF] Revil | The Seismoelectric Method: Theory and Application[END_REF][START_REF] Monachesi | An analytical study of seismoelectric signals produced by 1-d mesoscopic heterogeneities[END_REF] applications.

Streaming potential modeling in a 2D pore network

The present section describes the pore network model that we developed and used to simulate the streaming potential generation in synthetic porous media. We first describe the electrokinetic coupling at the capillary scale and then how the up-scaling is performed in 2D pore networks with different pore size distributions. Note that the simulations are based on the classical coupling coefficient approach (Eq. 7) and that the effective excess charge density is obtained from the numerical simulation results and Eq. 3.

Coupled transport equations in a single capillary

The pore network simulations consider the electrokinetic coupling occuring in capillaries (i.e., pores). Our numerical simulations are based on the numerical framework of [START_REF] Bernabé | Streaming potential in heterogeneous networks[END_REF], where the magnitudes of the hydraulic, Q (m 3 s -1 ), and electrical, J (A s -1 ), fluxes in a single capillary of radius R (m) and length l (m) are given by the following equations:

                       Q = - πR 4 8η w (P u -P d ) l + π w R 2 ζ η w 1 - 2 R 2 ζ R 0 rψ(r)dr (V u -V d ) l J = π w R 2 ζ η w 1 - 2 R 2 ζ R 0 rψ(r)dr (P u -P d ) l - 2π 2 w η w R 0 r dψ(r ) dr 2 dr + 2πσ w R 0 r cosh zeψ(r ) k B T dr (V u -V d ) l , ( 26 
)
where P is the hydraulic pressure, V is the electrical potential and where the subscripts u and d are for the up and down water pressure and electrical potential values, respectively.

This set of equations is a fully coupled system taking into account the classical Poiseuille flow, Ohm's law, and both the electrofiltration (i.e., a water displacement generating an electrical field) and the electroosmotic (i.e., an electrical field generating a water displacement) couplings [e.g., [START_REF] Nourbehecht | Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems[END_REF]. Eq. 26 can be condensed into,

         Ql = -γ h (P u -P d ) + γ c (V u -V d ) Jl = γ c (P u -P d ) + γ e (V u -V d ) , ( 27 
)
where γ h is the modified hydraulic conductance (in m 4 Pa -1 s -1 ), γ e is the modified electrical conductance (in S m), and γ c is the modified coupling conductance (in m 4 V -1 s -1 ).

Note that the capillaries are submitted to a gradient of water pressure in steady-state conditions and that generates, in turn, an electrical potential gradient.

Given the importance of the local electrical potential, ψ, in the above equations, we use the code proposed by [START_REF] Leroy | Exploring the electrical potential inside cylinders beyond the debye-hückel approximation: a computer code to solve the poisson-boltzmann equation for multivalent electrolytes[END_REF] to solve the general Poisson-Boltzmann equation in each cylindrical pore at a given ionic concentration.

In the simulations, the ζ-potential depends on the ionic concentration in the bulk pore water and is determined by the following relationship [START_REF] Pride | Electrokinetic dissipation induced by seismic waves[END_REF]:

ζ (C w ) = a + blog 10 (C w ), (28) 
where a and b are fitting parameters. For this study we use the parameter values obtained by [START_REF] Jaafar | Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity nacl brine[END_REF] for NaCl brine: a=-6.43 mV and b=20.85 mV for silicate materials.

Note that [START_REF] Cherubini | Streaming potential coupling coefficient and transport properties of unsaturated carbonate rocks[END_REF] propose different values of a and b for carbonates based on experimental streaming potential measurements.

The electrical conductivity of the water also depends on the ionic concentration. In our simulation, we consider the [START_REF] Sen | Influence of temperature on electrical conductivity on shaly sands[END_REF] empirical model:

σ w (C w , T ) = a 1 + a 2 T + a 3 T 2 C w - a 4 + a 5 T 1 -a 6 √ C w , ( 29 
) with a 1 = 5.6 S L m -1 mol -1 , a 2 = 0.27 S L m -1 mol -1 • C -1 , a 3 = -1.51 × 10 -4 S L m -1 mol -1 • C -2 , a 4 = 2.36 (S L m -1 mol -1 ) 3/2 , a 5 = 0.099 (S L m -1 mol -1 • C -1 ) 3/2 , a 6 = 0.214 (mol -1 ) -1/2
, and in which the ionic concentration and the temperature are expressed in mol L -1 and • C, respectively.

2D pore network and related equation system

We consider a 2D pore network as shown in Fig. 2. At each node (i, j) of the grid, we applied Kirchhoff [1845]'s law for the conservation of the mass and of the electrical charge, which yields:

                                                           -γ h i-1, j→i, j (P i, j -P i-1, j ) + γ c i-1, j→i, j (V i, j -V i-1, j ) -γ h i+1, j→i, j (P i, j -P i+1, j ) + γ c i+1, j→i, j (V i, j -V i+1, j ) -γ h i, j-1→i, j (P i, j -P i, j-1 ) + γ c i, j-1→i, j (V i, j -V i, j-1 ) -γ h i, j+1→i, j (P i, j -P i, j+1 ) + γ c i, j+1→i, j (V i, j -V i, j+1 ) = 0 γ c i-1, j→i, j (P i, j -P i-1, j ) -γ e i-1, j→i, j (V i, j -V i-1, j ) γ h i+1, j→i, j (P i, j -P i+1, j ) -γ e i+1, j→i, j (V i, j -V i+1, j ) γ h i, j-1→i, j (P i, j -P i, j-1 ) -γ e i, j-1→i, j (V i, j -V i, j-1 ) γ h i, j+1→i, j (P i, j -P i, j+1 ) -γ e i, j+1→i, j (V i, j -V i, j+1 ) = 0 (30)
where γ x→y is the modified conductance of the tube linking node x to node y. With the appropriate boundary conditions (i.e., no fluxes over the lateral boundaries, no inflowing electrical flux at the upstream boundary and no outflowing electrical flux at the downstream boundary), we obtain a linear system whose unknowns are the N i × N j hydraulic pressure values at the nodes, the N i × N j electrical potential values at the nodes, the value of the electrical potential V u in the upstream reservoir, and the value of the electrical potential V d in the downstream reservoir. Note that all the tubes connecting two nodes have the same length l. See Appendix A for the full derivation of the system. Note that all tubes have the same length l.

Pore size distribution

In this work, we investigate the effect of four different pore size distributions on streaming current generation: fractal, exponential symmetric, lognormal and double lognormal (i.e., bimodal). Note that we first built the networks for a pore size range between 1 and 100 µm (Fig. 3), then we shifted this range towards smaller pores in order to obtain smaller permeabilities while keeping constant the ratio α = R max /R min . Hence, we obtained five different permeabilities for each pore size distribution.

Fractal distribution

We start with a fractal pore size distribution (Fig. 3a) as many geological porous media exhibit frequency distribution skewed towards smaller pore radii [START_REF] Dullien | Porous media: fluid transport and pore structure[END_REF]. It is also the pore size distribution used by [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] to develop their analytical model (i.e., Eq. 24).

The cumulative size distribution of pores whose radii are greater than or equal to R (m) is assumed to obey the following fractal law [START_REF] Tyler | Fractal processes in soil water retention[END_REF][START_REF] Yu | Permeabilities of unsaturated fractal porous media[END_REF][START_REF] Guarracino | A fractal model to describe the evolution of multiphase flow properties during mineral dissolution[END_REF]:

N (R) = R REV R D , ( 31 
)
where D is the fractal dimension of pore size with 1 < D < 2 and 0 < R min ≤ R ≤ R max < R REV . Differentiating (31) with respect to R we obtain the number of pores whose radii are in the infinitesimal range R to R + dR:

dN = -DR D REV R -D-1 dR, (32) 
where the negative sign implies that the number of pores decreases with the increase of pore radius R. In fact, the resulting distribution is a decreasing exponential in a semilogarithmic space.

Exponential symmetric distribution

To generate the exponential symmetric distribution (Fig. 3b), we contracted the fractal distribution over one decade, we shifted it to the range 10-100 µm, then we added the symmetric part over the range 1-10 µm to obtain the exponentially increasing part, and finally we normalized the distribution to get a cumulative distribution comprised between 0 and 1.

Lognormal distribution

The lognormal distribution (Fig. 3c) is so that the decimal logarithm of the radius is normally distributed, as done in [START_REF] Maineult | Upscaling of spectral induced polarization response using random tube networks[END_REF]. The probability P that log 10 (R) is less than X is given by:

P(log 10 (R) ≤ X ) = 1 2 + 1 2 er f X -log 10 (R peak ) s √ 2 , ( 33 
)
where R peak is the value of the radius associated to the peak of the distribution, and s is the standard deviation.

Double lognormal distribution

The double lognormal distribution (Fig. 3d) is the sum of two lognormal distributions with the same standard deviation s, and writes :

P(log 10 (R) ≤ X ) = 1 2 + 1 4 er f X -log 10 (R peak,1
)

s 1 √ 2 + 1 4 er f X -log 10 (R peak,2 ) s 2 √ 2 , ( 34 
)
where the bimodal distribution is obtained through the choice of the two peaks for the distribution R peak,1 and R peak,2 . 

Petrophysical parameters computation

In our numerical simulations, we impose a hydraulic pressure gradient and obtain the resulting voltage values V u and V d . It is then trivial to compute the corresponding electrokinetic coupling coefficient using,

C E K = ∆V ∆P = V d -V u P i, N j -P i,1 = V d -V u 2 -1 = V d -V u . (35) 
Then, the effective excess charge density is obtained by modifying Eq. 3:

Qv = - η w σC E K k . ( 36 
)
where the permeability is deduced from the pore network simulation. As we neglect the surface electrical conductivity, Eq. 36 can then be expressed by,

Qv = - η w σ w C E K k F . ( 37 
)
where F is the formation factor, also deduced from the pore network simulation. Note that, as we neglect the surface conductivity of the medium, the formation factor is the ratio between the pore network and the pore water electrical conductivities: F = σ w /σ. The computation of k/φ and Fφ are described in Appendix B.

Numerical results

The simulations were run once for each given distribution (5 pore size distributions for each of the 4 types) and concentration (9 different concentrations) by solving the linear system described in the previous section; that is results for 180 pore networks with a size of 100 × 100. The results obtained from these simulations can be found in Appendix C.

In our simulations, the temperature is fixed to 20 • C. This section presents the simulation results on the effect of the pore size distributions on the two electrokinetic coupling parameters, C E K and Qv , for a large range of permeabilities (from 10 -16 to 10 -10 m 2 ) and ionic concentrations (from 10 -4 to 1 mol L -1 ).

Influence of the pore size distribution on the permeability

The pore size distribution has a major impact on the pore network effective permeability. As one can see on Figs. 3 and4, for a given range of capillary radius (i.e., from 1 to 100 µm), the fractal distribution contains a much higher number of thin capillaries than the exponential symmetric and the lognormal distributions. This yields a smaller effective permeability of the 2D pore network with fractal pore size distribution. By its bimodal nature, double lognormal networks (Figs. 3d) contain both larger and smaller pores than the exponential symmetric and lognormal networks (Figs. 3b andc). However, Fig. 4d shows that their random distribution yields that larger pores are isolated from each other by smaller pores, hence yielding a smaller effective permeability of the double lognormal networks.

Given the important similarity between the exponential symmetric and lognormal pore size distribution (Figs. 3b andc), it is not surprising that both networks have similar permeabilities. The Johnson's length [START_REF] Schwartz | Influence of rough surfaces on electrolytic conduction in porous media[END_REF], Λ (m), is a petrophysical parameter that has been shown to be representative of a medium permeability. Revil and Cathles [1999] proposes a simple model to predict the medium permeability:

k = Λ 2 8F . ( 38 
)
Figures 5a andb compare the permeability resulting from the pore network simulations and the ones predicted by the model of Revil and Cathles [1999] (Eq. 38) using the hydraulic (Λ h ) and electrical (Λ e ) Johnson's lengths deduced from the pore network sim-ulations [see Bernabé and Revil, 1995, and Appendix B], respectively. One can see that the model from Revil and Cathles [1999] tends to overpredict the effective permeabilities of the networks, except for the double lognormal network permeabilities predicted by Λ h .

Nevertheless, both predictions are rather good (within half an order of magnitude), showing the interest of Eq. ( 38) to characterize a porous medium [see also the discussions in [START_REF] Maineult | Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: a study on a correlated random tube network[END_REF]. 

Evolution of the coupling parameters with the ionic concentration and permeability

Figure 6a presents the evolution of the coupling coefficient as a function of the pore water ionic concentration. The simulation results clearly indicate that the NaCl ionic concentration drives the amplitude of the coupling coefficient, while the influence of pore size distribution is rather small (from less than 1% for 1 mol L -1 up to 66% for 10 -4 mol L -1 ). This is consistent with the Helmholtz-Smoluchowski equation (Eq. 2) that contains two parameters which are concentration dependent, the ζ-potential (Eq. 28) and the pore water electrical conductivity (Eq. 29), but none related to the medium geometrical properties. In the (b) subplot, the solid lines in colors correspond to the model predictions of Guarracino and Jougnot

[2018] (Eq. 24). [START_REF] Linde | Estimation of the water table throughout a catchment using self-potential and piezometric data in a bayesian framework[END_REF] proposed an empirical model depending only on the pore water ionic concentation (through its electrical conductivity) based on a large data set of coupling coefficients:

log

|C E K | = b 1 + b 2 log(σ w ) + b 3 log(σ w ) 2 , ( 39 
)
where b 1 = -0.895, b 2 = -1.319, and b 3 = -0.1227. Fig. 6a shows that this empirical model matches rather well for ionic concentrations between 10 -4 to 10 -2 mol L -1 , clearly confirming that ionic concentration is the main driver.

Figures 7a andb show that the variation of C E K as a function of the network permeability (hence of the network pore size distribution, see previous subsection) strongly depends on the ionic concentration. Indeed, C E K diminishes importantly when permeability increases at low salinity (C w N aCl = 10 -4 mol L -1 in Fig. 7a), but it barely varies for higher salinity (C w N aCl = 1 mol L -1 in Fig. 7b). As for the permeabilities, C E K for the exponential symmetric and lognormal networks are very similar, while the fractal distribution has a very different behaviour, probably related to the larger number of smaller pores. Contrarily to the electrokinetic coupling coefficient, the effective excess charge density computed from Eq. ( 37) strongly depends both on ionic concentration and network permeability. Figures 6b and7c show that the permeability is the most important parameter controlling the magnitude of Qv : a decrease of 4 orders of magnitude in permeability yields an increase of 4 orders of magnitude for Qv . This behaviour is consistent with experimental data and models from the literature [e.g., [START_REF] Titov | Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling[END_REF][START_REF] Jardani | Tomography of the darcy velocity from self-potential measurements[END_REF][START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF]. The influence of the ionic concentration on the effective excess charge density is also consistent with experimental data from the litterature: an increase of 4 orders of magnitude in the ionic concentration yields a decrease of around 1 order of magnitude for Qv [e.g., [START_REF] Pengra | Determination of rock properties by lowfrequency ac electrokinetics[END_REF][START_REF] Jougnot | Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, voulund, denmark[END_REF][START_REF] Cherubini | Streaming potential coupling coefficient and transport properties of unsaturated carbonate rocks[END_REF].

Testing the model of Guarracino and Jougnot [2018]

The dependence of the effective excess charge on both the permeability and the pore water ionic concentration is discussed in details in [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] and taken into account in their model (Eq. 24). Figures 6b and7c show the very good agreement between the Qv obtained from the network simulations and the one predicted by the 

Limitation of the model Guarracino and Jougnot [2018] in small pores at low ionic concentration

In this subsection, we investigate why the largest misfits are obtained for the highest values of effective excess charge, that is, for the lowest ionic concentrations (i.e., thickest diffuse layers) and for the lowest permeabilities (i.e., smallest pore sizes). In Fig. 8, one can see that it is especially the case for the fractal distribution, where the amount of small pores is larger than in the other distributions (see Fig. 3).

Therefore, we consider the smallest investigated capillaries (R = 0.1µm) filled by a pore water containing the lowest ionic concentration of NaCl, C w N aCl = 10 -4 mol L -1 by comparing its results to the Poisson-Boltzmann numerical resolution using [START_REF] Leroy | Exploring the electrical potential inside cylinders beyond the debye-hückel approximation: a computer code to solve the poisson-boltzmann equation for multivalent electrolytes[END_REF].

Figure 9a compares the local electrical potential calculated with the Debye-Hückel approximation (Eq. 17) and the general Poisson-Boltzmann (Eq. 12), while Figure 9b displays the corresponding residual potential. Given that R < 4l D , one can see that ψ 0 mV in the middle of the pore, this implies that the EDL overlap [e.g., [START_REF] Gonçalvès | Introducing interacting diffuse layers in tlm calculations: A reappraisal of the influence of the pore size on the swelling pressure and the osmotic efficiency of compacted bentonites[END_REF]. The effect on the local electrical potential is substantial: the residual is close to 50% at the center of the pore. This has a significant effect on the distribution of the ions as shown in Figs. 9c andd. For R = 0.1µm and C w N aCl = 10 -4 mol L -1 , one can see that there is no free electrolyte, therefore the local ionic concentrations are different from the bulk water concentrations C N a C w N a and C Cl C w Cl in the entire capillary. Consequently, the distribution of the excess charge density Qv calculated from Eq. 19 in a small capillary for low concentrations is strongly affected by the Debye-Hückel approximation (Fig. 10b andc). This example on the most extreme case used in the previous simulation clearly demonstrates why the model of [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] cannot correctly predict the effective excess charge density in pores such as R < 5l D , that is when the thin double layer assumption is not respected.

Discussion and conclusion

In the present paper, we present numerical simulations of streaming current generation in water saturated 2D pore networks with different pore size distributions, hence different permeabilities (from 10 -16 to 10 -10 m 2 ). We performed the simulations to obtain the electrokinetic coupling coefficients for pore water having a NaCl concentrations ranging from 10 -4 to 1 mol L -1 . From these simulations we deduced the effective excess charge density from the corresponding coupling coefficient and performed a detailed analysis of the behaviour of these two electrokinetic coupling parameters.

Our first finding is that the pore size distribution has a primary influence on the medium's permeability (Fig. 5) as expected from the literature, but almost no influence on the electrokinetic coupling coefficient (Figs. 6a and7b). This is consistent with the widely used model of Helmholtz-Smoluchowski (Eq. 2) which does not include any information nor parameters about the medium's texture and has been proven to be useful in a large range of natural geological media (as long as the surface conductivity can be ne- glected). It is therefore clear that the pore water chemistry is the main driver for the C E K as proposed by the empirical model of [START_REF] Linde | Estimation of the water table throughout a catchment using self-potential and piezometric data in a bayesian framework[END_REF].

On the contrary, the pore size distribution has a strong influence on the effective excess charge density through the permeability, as it was expected from both empirical [e.g., [START_REF] Titov | Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling[END_REF][START_REF] Jardani | Tomography of the darcy velocity from self-potential measurements[END_REF][START_REF] Cherubini | Streaming potential coupling coefficient and transport properties of unsaturated carbonate rocks[END_REF] and theoretical evidence [e.g., [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF][START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF]. When considering Eq. 3 and

Eq. 24 [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF], it is clear that the permeability simplifies out in the electrokinetic coupling coefficient C E K . One can also note that the analytical model of [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF], originally defined for fractal media, performs well for any kind of pore size distribution (even double porosity ones) given that this information is included in the model through the medium's permeability and porosity that appear explicitely. Nevertheless, the observations from the previous paragraphs are not valid for very small pores filled by pore water with a low ionic concentration, that is C w < 10 -3 mol L -1 (Figs. 6a and7a). Indeed, when the salinity decreases and if the medium has small pores (Fig. 7a), C E K becomes highly dependent on the permeability. This behaviour is consistent with the previous work of Bernabé [1998] on pore networks, but also with the experimental results of Jouniaux and Pozzi [1995b] (using a very resistive water). This effect is directly related to the EDL in the pore space: when l D becomes important in comparison to the pore radius (R < 4l D ), the diffuse layers from both sides of the capillary start to overlap, yielding a strong effect on the amount of excess charge that can be dragged by the water flow (e.g. Figs. 9 and 10). Such effect also impacts the performance of the model of [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] to reproduce the simulated effective excess charge densities (Fig. 8).

In geological media and under most environmental conditions (i.e. groundwater for human consumption or subsurface reservoirs), 10 -4 mol L -1 represents an extreme case scenario [e.g., McCleskey, 2011]. Indeed, ionic strengths (i.e., a proxy for ionic concentration) in potable water typically vary between 10 -3 and 10 -2 mol L -1 , while reservoirs can be saturated with brines having much higher ionic concentrations depending on the formation. Therefore, the assumption of R 4l D can be considered valid in most natural systems, which allows the use of the model recently proposed by [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] (valid for R > 5l D ).

In addition to the intrinsic limitation of the model proposed by [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF], the fact that we neglect the surface conductivity in Eq. 37 even for the lowest ionic concentration and smaller pores can also contribute to the misfit. Further developments of the present 2D pore network code should also include an explicit calculation of the surface conductivity for the determination of the effective excess charge density. This would open the possibility of studying the behaviour of micro-porous media such as clay rocks. Additional improvements on our pore network modeling approach could also allow further studies, among which: relating pore lengths to pore sizes to mimic more natural observations (e.g., small pore sizes are usually related to small pore length), considering connectivities higher than 4 for each nodes. Nevertheless, despite all these limitations, the two approaches that we consider here converge towards similar predictions, and this is remarkable, since they are totally independent. Further works will require the overcoming of these limitations, and also to implement 3D network, in order to produce synthetic media closer to real ones. A more advance approach would be extracting pore networks that replicates the pore space obtain from rock sample imagery [e.g., [START_REF] Bryant | Prediction of relative permeability in simple porous media[END_REF] to solve for the electrokinetic coupling.

We believe that the present study will help to better understand the theoretical links between the electrokinetic coupling coefficient and the effective excess charge approaches, providing a mechanistic study of the streaming potential generation under water saturated conditions. In the future, we will try to extend this approach and the corresponding study for partially saturated conditions [see [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF][START_REF] Soldi | An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow[END_REF].

γ h i-1, j→i, j P i-1, j + γ h i+1, j→i, j P i+1, j -κ h i, j P i, j + γ h i, j-1→i, j P i, j-1 + γ h i, j+1→i, j P i, j+1 -γ c i-1, j→i, j V i-1, j -γ c i+1, j→i, j V i+1, j + κ c i, j V i, j -γ c i, j-1→i, j V i, j-1 -γ c i, j+1→i, j V i, j+1 = 0 -γ c i-1, j→i, j P i-1, j -γ c i+1, j→i, j P i+1, j + κ c i, j P i, j -γ c i, j-1→i, j P i, j-1 -γ c i, j+1→i, j P i, j+1 +γ e i-1, j→i, j V i-1, j + γ e i+1, j→i, j V i+1, j -κ e i, j V i, j + γ e i, j-1→i, j V i, j-1 + γ e i, j+1→i, j V i, j+1 = 0 (41) with,                  κ h i, j = γ h i-1, j→i, j + γ h i+1, j→i, j + γ h i, j-1→i, j + γ h i, j+1→i, j κ c i, j = γ c i-1, j→i, j + γ c i+1, j→i, j + γ c i, j-1→i, j + γ c i, j+1→i, j κ e i, j = γ e i-1, j→i, j + γ e i+1, j→i, j + γ e i, j-1→i, j + γ e i, j+1→i, j (42) 
in i = 1 (no outward current) and j ∈ [2, N j -1], we have

                         γ h 2, j→1, j P 2, j -κ h 1, j P 1, j + γ h 1, j-1→1, j P 1, j-1 + γ h 1, j+1→1, j P 1, j+1 -γ c 2, j→1, j V 2, j + κ c 1, j V 1, j -γ c 1, j-1→1, j V 1, j-1 + γ c 1, j+1→1, j V 1, j+1 = 0 -γ c 2, j→1, j P 2, j + κ c 1, j P 1, j -γ c 1, j-1→1, j P 1, j-1 -γ c 1, j+1→1, j P 1, j+1 +γ e 2, j→1, j V 2, j -κ e 1, j V 1, j -γ e 1, j-1→1, j V 1, j-1 + γ e 1, j+1→1, j V 1, j+1 = 0 (43) with                  κ h 1, j = γ h 2, j→1, j + γ h 1, j-1→1, j + γ h 1, j+1→1, j κ c 1, j = γ c 2, j→1, j + γ c 1, j-1→1, j + γ c 1, j+1→1, j κ e 1, j = γ e 2, j→1, j + γ e 1, j-1→1, j + γ e 1, j+1→1, j (44) 
in i = N i (no outward current) and j ∈ [2, N j -1], we have                          γ h N i -1, j→N i , j P N i -1, j -κ h N i , j P N i , j + γ h N i , j-1→N i , j P N i , j-1 + γ h N i , j+1→N i , j P N i , j+1 -γ c N i -1, j→N i , j V N i -1, j + κ c N i , j V N i , j -γ c N i , j-1→N i , j V N i , j-1 + γ c N i , j+1→N i , j V N i , j+1 = 0 -γ c N i -1, j→N i , j P N i -1, j + κ c N i , j P N i , j -γ c N i , j-1→N i , j P N i , j-1 -γ c N i , j+1→N i , j P N i , j+1 +γ e N i -1, j→N i , j V N i -1, j -κ e N i , j V N i , j -γ e N i , j-1→N i , j V N i , j-1 + γ e N i , j+1→N i , j V N i , j+1 = 0 (45) with                  κ h N i , j = γ h N i -1, j→N i , j + γ h N i , j-1→N i , j + γ h N i , j+1→N i , j κ c N i , j = γ c N i -1, j→N i , j + γ c N i , j-1→N i , j + γ c N i , j+1→N i , j κ e N i , j = γ e N i -1, j→N i , j + γ e N i -1, j-1→N i -1, j + γ e N i -1, j+1→N i -1, j . (46) 
In j = 1, the following conditions are imposed for the hydraulic pressure and electrical potential:

         P i,1 = 2 V i,1 = V u , (47) 
There is no inflowing electrical current, that is:

N i i=1 J i,1→i,2 l = N i i=1 γ c i,1→i,2 P i,2 -P i,1 -γ e i,1→i,2 V i,2 -V i,1 = 0, (48) which yields: 
-

N i i=1 γ c i,1→i,2 P i,1 + N i i=1 γ e i,1→i,2 V u + N i i=1 γ c i,1→i,2 P i,2 - N i i=1 γ e i,1→i,2 V i,2 = 0. (49) 
Finally, in j = N j , the conditions are:

         P i, N j = 1 V i, N j = V d , (50) 
There is no outflowing electrical current, that is:

N i i=1 J i, N j -1→i, N j l = N i i=1 γ c i, N j -1→i, N j P i, N j -P i, N j -1 -γ e i, N j -1→i, N j V i, N j -V i, N j -1 = 0, (51) which yields: 
-

N i i=1 γ c i, N j -1→i, N j P i, N j -1 + N i i=1 γ e i, N j -1→i, N j V i, N j -1 + N i i=1 γ c i, N j -1→i, N j P i, N j - N i i=1 γ e i, N j -1→i, N j V d = 0. ( 52 
)
The set of equations described above (49)(50)52) forms a linear system. The unknowns are the hydraulic pressure, P i, j , and the electrical potential, V i, j , at all nodes and the two boundary electrical potentials V u and V d .

where Q is the hydraulic flux, L the length of the network along the flux direction (i.e., the j-direction), S the transversal section, and the total out-flowing and in-flowing fluxes are given by:

         Φ h out = N i -1 i=1 Φ h i, N j -1→i, N j Φ h in = N i -1 i=1 Φ h i,1→i,2 (60) 
In order to estimate the section and porosity of the network, we extend the 2D network into a virtual 3D one by adding two vertical capillaries of length l/2 at each node, but not contributing to the transport. This yields:

S = (N i -1) l 2 (61) φ = (N i -1) N j + N j -1 N i + N i N j π R 2 l (N i -1) N j -1 l 3 (62)
Extracting l 2 from Eq. 62 and given that | ∆P |= 1, the effective permeability can be determined by:

k φ = η w π R 2 N j -1 2 (N i -1) N j + N j -1 N i + N i N j Φ h out/in . (63) 
Given that the surface conductivity can be neglected, the formation factor F of the network can be computed by:

1 F = σ σ w = 1 σ w J L S | ∆V | = 1 l 2 N j -1 N i -1 Φ e out/in | ∆V | . ( 64 
)
Then, considering that | ∆V |= 1, the formation factor is then defined by:

1 Fφ = 1 π R 2 N j -1 2 (N i -1) N j + N j -1 N i + N i N j Φ e out/in . (65) 
The Johnson's length, Λ (m), is a petrophysical parameter proposed by [START_REF] Schwartz | Influence of rough surfaces on electrolytic conduction in porous media[END_REF] that quantifies a representative length of a porous medium. Following Bernabé and [START_REF] Bernabé | Pore-scale heterogeneity, energy dissipation and the transport properties of rocks[END_REF], we computed two Johnson's lengths for each of our networks:

Λ h = N t i=1 R 2 i |∆P i | 2 N t i=1 R i |∆P i | . ( 66 
)
and

Λ e = N t i=1 R 2 i |∆V i | 2 N t i=1 R i |∆V i | . ( 67 
)
where N t is the total number of nodes and ∆P i (resp. ∆V i ) is the gradient of hydraulic pressure (resp. electrical potential) between the two ends of capillary I (of radius R i ). By definition, the hydraulic and electrical Johnson's lengths are based on the hydraulic (Eq. 66) and the electrical potentials (Eq. 67), respectively. These two lengths are expected to have close values. 
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Figure 1 .

 1 Figure 1. Scheme of the electrical double layer at the surface of silica minerals in contact with water for a given capillary radius R. l D correspond to the Debye length (Eq. 18).

Figure 2 .

 2 Figure 2. Scheme of the pore network organization and the boundary conditions used in our simulations.

Figure 3 .

 3 Figure 3. Pore size distributions used in this work: (a) fractal (D = 1.5), (b) exponential symmetric, (c) lognormal (R peak = 10µm and s = 0.45973), and (d) double lognormal (R peak,1 = 3.166µm, R peak,2 = 31.66µm, and s 1 = s 2 = s/2). Note that the different permeabilities are obtained by shifting the distribution towards smaller pores but keeping constant the ratio α = R max /R min .

Figure 4 .

 4 Figure 4. Examples of the pore networks used in this work: (a) fractal, (b) exponential symmetric, (c) lognormal, and (d) double lognormal (in these examples, the capillary sizes range from 1 to 100 µm). Note that the size of the networks was 100 × 100 nodes. See the corresponding frequency pore size distributions in Fig. 3.

Figure 5 .

 5 Figure 5. Comparison between the simulated permeabilities (normalized by the porosities) with the pore network model and the ones predicted by the model of Revil and Cathles [1999] based on the (a) hydraulic, Λ h , and (b) electrical, Λ e , Johnson's lengths, respectively (see definitions in Appendix B). The solid black line corresponds to the 1:1 line, while the dashed lines correspond to the one order of magnitude range.

Figure 6 .

 6 Figure 6. Simulation results presented as (a) electrokinetic coupling coefficient and (b) effective excess charge density as a function of the ionic concentrations for the different pore size distributions. In the (a) subplot, the dashed black line corresponds to the empirical relationship proposed by Linde et al. [2007] (Eq. 39).

Figure 7 .

 7 Figure 7. Electrokinetic coupling coefficient as a function of the permeability normalized by the porosity for (a) C w = 10 -4 mol L -1 and (b) C w = 1 mol L -1 from our numerical simulation. (c) Effective excess charge density as a function of the permeability normalized by the porosity for the different pore size distri-butions for C w = 10 -4 and 1 mol L -1 . Note that each point corresponds to the simulation result for a given network. On the (c) subplot, the solid and dashed colored lines correspond to the model predictions of Guarracino andJougnot [2018] (Eq. 24) for C w = 10 -4 mol L -1 and C w = 1 mol L -1 , respectively; while the single black solid line is the prediction from[START_REF] Jardani | Tomography of the darcy velocity from self-potential measurements[END_REF] with a fixed porosity φ = 0.4.

  [START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF]'s model as a function of the ionic concentration and permeability, respectively. All the parameters needed for the model (Eq. 24) are either input parameters (C w , thus ζ and l D , from Eqs. 28 and 18, respectively) or calculated outputs from the simulations (k/φ, from Eq. 63). Following the proposition of[START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF], we use the[START_REF] Winsauer | Resistivity of brinesaturated sands in relation to pore geometry[END_REF] model to determine the hydraulic tortuosity from:τ = Fφ. (40)Therefore, none of the parameters were fitted in order to obtain these predictions in very good agreement with the computations from our numerical simulations. Note that the Jardani et al.[2007]'s model corresponds fairly well to an average trend, regardless the network and the ionic concentration.

Figure 8

 8 Figure8represents the same data (i.e., for all networks and ionic concentrations) along a 1:1 line. One can notice that the model slightly overpredicts the numerical effective excess charge for very high Qv , that is for low permeability and low ionic concentration. This can be explained by the model limitation: the capillary radius has to be significantly larger than the Debye length R 5l D .

Figure 8 .

 8 Figure 8. Comparison between the simulated effective excess charge density with the pore network model and the one predicted by the analytical model of Guarracino and Jougnot [2018]. The solid black line corresponds to the 1:1 line.

  (i.e., l D = 3.04 × 10 -8 m, hence R = 3.29l D < 4l D ), i.e., the most extreme case for the present study. Then, we use the numerical code of[START_REF] Leroy | Exploring the electrical potential inside cylinders beyond the debye-hückel approximation: a computer code to solve the poisson-boltzmann equation for multivalent electrolytes[END_REF] to solve for the Poisson-Boltzmann equation in an infinite charged cylinder and the ζ-potential is ζ = -89.8 mV following[START_REF] Jaafar | Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity nacl brine[END_REF] (Eq. 28). Figures 9 and 10 illustrate the limitation of the Debye-Hückel approximation used by[START_REF] Guarracino | A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media[END_REF] 

Figure 9 .

 9 Figure 9. Comparison between the Debye-Hückel approximation and the Poisson-Boltzmann equation to compute (a) the electrical potential distribution and (c) the ionic species relative concentration distribution in a small capillary (R = 10 -7 m) containing a NaCl electrolyte with C w N aCl = 10 -4 mol L -1 (i.e., l D = 3.04 × 10 -8 m). (b) and (d) show the corresponding residual electrical potential and relative ionic concentration, respectively. Note that the x-axis is a modified coordinate r = Rr such as r = 0 m in the middle of the capillary.

Figure 10 .

 10 Figure 10. (a) Distribution of the pore water velocity in a small capillary (R
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Appendix A: Pressure and electrical potential equations in the pore network

Inside the network, that is for the indexes (i, j) ∈ [2, N i -1] × [2, N j -1], Eq. 30 is rewritten as,

Appendix B: Numerical determination of the pore network permeability, formation factor, and Johnson's lengths For a laminar flow, i.e. following Poiseuille's law, the hydraulic flux F x→y through a capillary linking two nodes x and y writes:

The length of the capillary, l, is eliminated by introducing a modified hydraulic flux defined as:

Neglecting the surface electrical conductivity, the electrical flux J x→y corresponds to:

The length of the capillary, l, is eliminated by introducing a modified electrical flux defined as:

At any node in the square network, Kirchhoff [1845]'s law yields

with Z standing for F or J, respectively. Eq. 53 or 55, leads to a i, j-1→i, j X i, j-1 + a i-1, j→i, j X i-1, ja i, j-1→i, j + a i-1, j→i, j + a i+1,i→i, j + a i, j+1→i, j +a i+1, j→i, j X i+1, j + a i, j+1→i, j X i, j+1 = 0.

(

with a = R 4 and X = P or a = R 2 and X = V for the hydraulic or the electrical case, respectively.

For the nodes at the border of the network, Eq. 58 is easily modified to take into account the boundary conditions (i.e., no outward flow for i = 1 and i = N i , P = 1 or V = 1 for j = 1, and P = 0 or V = 0 for j = N j ).

A linear system is obtained; the N i N j unknowns are the hydraulic pressure or electrical potential at the nodes of the network. Once the system is solved, the modified fluxes can be computed using Eqs. 54 or 56.

The effective permeability of the pore network k (m 2 ) is then computed using Darcy's law:

Appendix C: Simulation results

This table regroups all the numerical results from the simulation of the present study for the different types of pore size distributions: fractal (Fract.), exponential symmetric (Exp. Sym.), lognormal (Log.), and double lognormal (Dbl. Log.).

Type R range C w