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DILATION SURFACES AND THEIR VEECH GROUPS.

EDUARD DURYEV, CHARLES FOUGERON, AND SELIM GHAZOUANI

To the memory of William Veech

Abstract. We introduce a class of objects which we call ’dilation surfaces’.
These provide families of foliations on surfaces whose dynamics we are inter-
ested in. We present and analyze a couple of examples, and we define concepts
related to these in order to motivate several questions and open problems. In
particular we generalize the notion of Veech group to dilation surfaces, and we
prove a structure result about these Veech groups.

Notations

• D = {z ∈ C | |z| < 1} is the open unit disk;
• H = {z ∈ C | Im z > 0} is the upper-half plane;
• GL+

2 (R) is a group of 2 by 2 matrices with positive determinant;
• SL2(R) is a group of 2 by 2 matrices with determinant 1;
• Aff(C) is a group of complex affine transformations of a plane: {z 7→
az + b | a ∈ C∗, b ∈ C};
• AffR+(C) ⊂ Aff(C) is a group of dilations: {z 7→ az + b | a ∈ R+, b ∈ C}.

1. Introduction.

A translation structure on a surface is a geometric structure modelled on the
complex plane C with structural group the set of translations. A large part of the
interest that these structures have drawn lies in the directional foliations inherited
from the standard directional foliations of C (the latter being invariant under the
action of translations). Examples of such structures are polygons whose sides are
glued along parallel sides of same length, see Figure 1 below.

Figure 1. A translation surface of genus 2.
1
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The directional foliation, say in the horizontal direction, can be drawn very
explicitly: a leaf is a horizontal line until it meets a side, and continues as the
horizontal line starting from the point on the other side to which it is identified.
These foliations have been more than extensively studied over the past forty years.
They are very closely linked to one dimensional dynamical systems called interval
exchange transformations, and most of the basic features of these objects (as well
as less basic ones!) have long been well understood, see [Zor06] for a broad and
clear survey on the subject.

The starting point of this article is the following remark: to define the horizontal
foliation discussed in the example above, there is no need to ask the identified sides
to be of the same length, but only to be parallel, in which case we can glue using
certain affine identifications. In terms of geometric structures, it means that we
extend the structural group to all the transformations of the form z 7→ az + b
with a ∈ R+ and b ∈ C. Formally, these corresponds to (branched) complex
affine structures whose holonomy group lies in the subgroup of complex affine
transformations Aff(C), whose linear parts are real positive. A simple example of
such a ’dilation surface’ is given by the gluing below:

Figure 2. A ’dilation surface’ of genus 2 and a leaf of its hori-
zontal foliation.

A notable feature of these dilation surfaces is that they present dynamical
behaviors of hyperbolic type: the directional foliations sometimes have a closed
leaf which ’attracts’ all the nearby leaves. This is the case of the closed leave
drawn in black on Figure 3 below. This situation is in sharp contrast with the
case of translation surfaces and promises a very different picture in the affine case.

Figure 3. A ’hyperbolic’ closed leaf.

It is somewhat surprising to find no systematic study of these ’dilation surfaces’
in the literature. However, related objects and concepts have kept popping up
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every now and then, both of geometric and dynamical nature. To our knowledge,
their earliest appearance is in the work of Prym on holomorphic 1-forms with
values in a flat bundle, see [Pry69]. These provide an algebro-geometric inter-
pretation of the dilation surfaces, see also Mandelbaum ([Man72, Man73]) and
Gunning ([Gun81]). We would also like to mention Veech’s remarkable papers
[Vee93] and [Vee97] where he investigates the moduli spaces of complex affine
surfaces with singularities as well as the Delaunay partitions for such surfaces.
On the dynamical side, the first reference to related questions can be found in
Levitt’s paper on foliations on surfaces [Lev82], where he builds an affine interval
exchange (AIET) with a wandering interval (these AIETs must be thought of as
the one-dimensional reduction of the foliations we are going to consider). It is
followed by a series of works initiated by Camelier and Gutierrez [CG97] and pur-
sued by Bressaud, Hubert and Maass [BHM10], and Marmi, Moussa, and Yoccoz
[MMY10]. They generalize a well known construction of Denjoy to build out of
a standard IET an AIET having a wandering interval, behavior which is (conjec-
turally) highly non-generic. Very striking is that the question of the behavior of a
typical AIET has been very little investigated. In this direction, we mention the
nice article of Liousse [Lio95] where the author deals with the topological generic
behavior of transversely affine foliations on surfaces.

Contents of the paper and results. After introducing formal definitions as
well as a couple of interesting examples of ’dilation surfaces’, we prove a structure
result about Veech groups of dilation surfaces.

The Veech group of a dilation surface Σ is the straightforward generalization
of its translation analogue: it is the subgroup of SL2(R) made of linear parts
of locally affine transformations of Σ. It is a well-known fact that the Veech
group of a translation surface is always discrete. This fails to be true in the more
general case of dilation surface, although the examples of surfaces whose Veech
group is not discrete are fairly distinguishable. We completely describe the class
of surfaces whose Veech group is not discrete. Roughly, those are the surface
obtained starting from a ribbon graph and gluing to its edges a finite number of
’dilation cylinders’. We call such surfaces Hopf surfaces, because they must be
thought of as higher genus analogues of Hopf tori, that are quotients C∗/(z∼λz)
with λ a positive constant different from 1. Precisely we prove

Theorem 1. Let Σ be a dilation surface of genus ≥ 2. There are two possible
cases :

(1) V (Σ) is the subgroup of upper triangular elements of SL2(R) and Σ is a
Hopf surface.

(2) V (Σ) is discrete.

We also prove the following theorem on the existence of closed geodesics in
genus 2 :

Theorem 3. Any dilation surface of genus 2 has a closed regular geodesic.
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The proof is elementary and relies on combinatoric arguments. Nonetheless
it is a good motivation for a list of open problems we address in Section 7. We
end the article with a short appendix reviewing Veech’s results on the geometry
of affine surfaces contained in the article [Vee97] and the unpublished material
[Vee08] that W. Veech kindly shared.

About Bill Veech’s contribution. Bill Veech’s sudden passing away encour-
aged us to account for his important contribution to the genesis of the present
article. About twenty years ago, he published a very nice paper called Delaunay
partitions in the journal Topology (see [Vee97]), in which he investigated the
geometry of complex affine surfaces (of which our ’dilation surfaces’ are particu-
lar cases). A remarkable result contained in it is that dilation surfaces all have
geodesic triangulations in the same way flat surfaces have. We used it exten-
sively when we first started working on dilation surfaces, overlooking the details
of [Vee97]. But at some point, we discovered a family of dilation surfaces that
seemed to be a counter-example to Veech’s result and which provides an obstruc-
tion for dilation surfaces to have a geodesic triangulation. We then decided to
contact Bill Veech, who replied to us almost instantly with the most certain kind-
ness. He told us that he realized the existence of the mistake long ago, but since
the journal Topology no longer existed and that the paper did not draw a lot of
attention, he did not bother to write an erratum. However, he shared with us
courses notes from 2008 in which he ’fixed the mistake’. It was a pleasure for us
to discover that in these long notes (more than 100p) he completely character-
izes the obstruction for the slightly flawed theorem of Delaunay partitions to be
valid, overcoming serious technical difficulties. We extracted from the notes the
Proposition 3 which is somewhat the technical cornerstone of this paper.

A few weeks before his passing away, Bill Veech allowed us to reproduce some
of the content of his notes in an appendix to this article. It is a pity he did not live
to give his opinion and modify accordingly to his wishes this part of the paper.

Acknowledgements. We are very grateful to Vincent Delecroix, Bertrand Deroin,
Pascal Hubert, Erwan Lanneau, Leonid Monin and William Veech for interesting
discussions. The third author is grateful to Luc Pirio for introducing him to the
paper [Vee97]. The third author acknowledges partial support of ANR Lambda
(ANR-13-BS01-0002).

2. Dilation surfaces.

We give in this section formal definitions of dilation surfaces and several con-
cepts linked to both their geometry and dynamics.

2.1. Basics. An affine structure on a complex manifold M of dimension n is an
atlas of charts (Ui, ϕi) with values in Cn such that the transition maps belong
to a group of complex affine transformations Affn(C) = GLn(C) n Cn, which
we will shortly call affine maps. It is well known that the only compact surface
(thought of as a 2-dimensional real manifold) carrying an affine structure is torus.
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In order to include interesting examples mentioned in the introduction, we make
the definition of an affine structure less rigid by allowing a finite number of points
where the structure is singular:

Definition 1. Let M be a closed orientable topological surface.
(1) An affine surface Σ on M is an affine structure on M \ S, where S is a

finite set {s1, . . . , sn} ⊂M , that extends to an Euclidean cone structure of
angle a multiple of 2π at the si’s. Affine surfaces Σ1 and Σ2 are isomorphic
if there exist a homeomorphism h : M →M , whose induced action on the
charts of the atlases defining Σ1 and Σ2 is a complex affine map.

(2) A dilation surface Σ is an affine surface whose transition maps belong
to the group of dilations AffR+(C) = {z 7→ az + b | a ∈ R+, b ∈ C}.
Dilation surfaces Σ1 and Σ2 are isomorphic if there exist a homeomorphism
h : M → M , whose induced action on the charts of the atlases defining
Σ1 and Σ2 is a dilation.

We have to mention that in general one can allow singular points to look like
affine cones of arbitrary angles. However, we prefer to restrict to the flat singu-
larities of angles, which are multiples of 2π. A first important remark is that an
affine surface satisfy a discrete Gauss-Bonnet equality. If S = {s1, . . . , sn} is the
set of singular points of an affine surface Σ, where si has cone angle 2kiπ for some
integer ki ≥ 2, then:

n∑
i=1

(1− ki) = χ(Σ) = 2− 2g.

Geometric structures. We will use extensively the language and formalism of geo-
metric structure. The reader can refer to [Gol88] or [Thu97] for an introduction
to the topic. For self-completeness, we give here a definition of the holonomy and
developing maps.

Let γ : [0, 1] → Σ be a path in Σ, covered by a finite number of charts φi :
Ui → C, i = 1, . . . , k such that Ui ∩ Ui+1 6= ∅ and the transition functions
ψi+1,i : Ui+1 → Ui ∈ AffR+(C). Assume ψi+1,i = aiz + bi, the holonomy of γ is a
composition:

hol(γ) = ψ2,1 ◦ . . . ◦ ψk,k−1,

and the linear holonomy is:
lhol(γ) = a1 · . . . · ak−1.

Observe that by definition, an affine surface has trivial holonomy around its sin-
gularities, since they are modeled out of an Euclidian cone.

The developing map can be thought of as the result of analytical continuation
of a some chart along all possible paths in Σ. Let Σ̃ be the universal cover of Σ,
i.e. the set of homotopy classes of the paths in Σ starting at a base point x0. Fix
a chart φ1 at x0. The developing map dev : Σ̃ → C is defined by sending a class
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of paths γ ∈ Σ̃ to hol(γ) ◦ φk(γ(1)), where φi are as above. The holonomy and
the developing map only depend on the choice of the charts and transitions up to
a map in AffR+(C). Changing φ1 post-composes the developing map dev with a
corresponding element of AffR+(C).

A general principle with geometric structures is that any object that is defined
on the model and is invariant under the transformation group is well defined on the
manifolds carrying such a structure. In our case the model is C with structure
group AffR+(C). Among others, angles and straight lines are well defined on
dilation surfaces. In fact, the direction of a line is well defined, and to each angle
θ ∈ S1 we can associate a foliation in direction θ denoted by Fθ, whose leaves
are exactly the directed lines with direction θ. In particular, Fθ+π and Fθ define
foliations in opposite directions.

Finally note that although the speed of a path is only defined up to a fixed
constant, it makes sense to say that a path has a constant speed (speed which is
not itself well defined), as well as to say that a path has finite or infinite length.

Vocabulary. We will use the following terms:
• a geodesic is an affine immersion of a segment ]a, b[ (a or b can be ±∞);
• a saddle connection is a geodesic joining two singular points;
• a leaf of a directional foliation is a maximal geodesic in the direction of
the foliation;
• a closed geodesic (or closed leaf if the direction of the foliation is
unambiguous) is an affine embedding of R/Z;
• the first return on a little segment (−ε, ε) around a point x on a closed
geodesic orthogonal to it is a map of the form x 7→ λx with λ ∈ R+. We
say it is flat if λ = 1 and that it is hyperbolic otherwise.

2.2. Hopf torus. These definitions being set, we introduce the first fundamental
example, a Hopf torus. Consider a real number λ 6= 1 and identify every two
points on C∗ which differ by scalar multiplication by λ. The quotient surface
C∗/(z ∼ λz) is a called a Hopf torus and we call λ its dilation factor.

This provides a real 1-parameter family of dilation structures on the torus.
These surfaces have a very specific kind of dynamics. For any θ ∈ S1 the direc-
tional foliation Fθ has two closed leaves. They can be obtained the intersections
of the annulus (a fundamental domain for z 7→ λz action) and a ray starting at 0
with angle θ (the attractive leaf) and θ+π (the repulsive leaf). One can check that
any other leaf in a direction θ accumulates to the attractive leaf in the forward
direction and to the repulsive leaf in the backward direction.

Based on Hopf torus, we introduce a slit construction. It is a set of higher genus
examples obtained by gluing two of these tori along a slit in the same direction
(see Figure 5). Consider an embedded segment along a directional foliation in a
fixed direction on one Hopf torus, and another one in the same direction on the
second Hopf torus. We cut the two surfaces along these segments and identify
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Figure 4. A Hopf torus and the basis of its homology.

the upper part of one with the lower part of the other and vice versa by the
corresponding dilation transformation.

Figure 5. The franco-russian slit construction

Another construction based on Hopf torus is given by considering a finite cover.
Denote by a the closed curve of the Hopf torus in direction of the dilation and b
the closed curve turning around zero once in the complex plane as in Figure 4.
Take the k index subgroup of π1(T 2) generated by a and bk and consider the
associated cover with the induced affine structure. It is also a torus, which makes
k turns around zero. We call it a k-Hopf torus. Similarly, an ∞-Hopf cylinder is
given by the cover associated to the subgroup generated by a.
Remark. We can also construct these dilation structures as slit constructions
along horizontal closed leaves of k ≤ ∞ different Hopf tori.
2.3. Dilation cylinders. A k-Hopf torus has a remarkable property of being a
disjoint union of uncountably many closed geodesics in different directions. Each
of these geodesics is an attractive leaf of the foliation in a suitable direction. Note
that the angular sectors of these tori embedded in a dilation surface enjoy the
same property. This is the motivation for the following definition:
Definition 2. Consider a dilation surface Σ. Let Cθ1,θ2 be an open angular
domain of a ∞-Hopf cylinder between angles θ1 ∈ R+ and θ1 < θ2 such that
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θ2 − θ1 = θ. A dilation cylinder of angle θ is the image of a maximal affine
embedding of some Cθ1,θ2 in Σ. Two dilation cylinders are called isomorphic if
there is a homeomorphism between them which acts by an affine map in the
defining charts.
We call λ the dilation factor of the dilation cylinder and θ its angle.

Note that the isomorphism class of a dilation cylinder is determined by the two
numbers θ and λ.

On a translation surface the boundary of any maximal flat cylinder is a union
of saddle connections. We show that the same holds for dilation surfaces and
dilation (or flat) cylinders:

Proposition 1. Let Σ be a dilation surface of genus ≥ 2. Then the boundary of
a maximal cylinder embedded in Σ is a union of saddle connections.

Proof. Assume C0,θ is affinely embedded in a dilation surface Σ. If θ = ∞ we
would have a half-infinite cylinder in the surface. But this half-cylinder would
have an accumulation point at ∞ in Σ which contradicts its being embedded.

When θ <∞, there are two reasons why C0,θ′ cannot be embedded for θ′ > θ:
(1) The embedding C0,θ → Σ extends continuously to the boundary of the

cylinder in direction θ. If the surface is not a k-Hopf torus the image
contains a singular point. The image of the boundary is closed, and it is
an union of saddle connections.

(2) The embedding does not extend to the boundary at a point z0 on the θ
boundary of C0,θ. Pick a small geodesic γ : [0, ε)→ C0,θ starting close to
the boundary and ending at z0 orthogonally to the boundary of C0,θ. Then
the embedding of γ to Σ has no limit in Σ as it approaches ε. Consider an
open disk in C0,θ tangent to the boundary at z0 and centered at a point
c0. Then Corollary 3 from the Appendix implies that the embedding of
γ([c0, z0)) in Σ is a closed hyperbolic geodesic in Σ. This cannot happen,
since γ is embedded in Σ.

�

Again a cylinder will be a union of closed leaves. The dynamics of a geodesic
entering such a cylinder is clear. If the cylinder is of angle less than π and the
direction of the flow is not between θ1 and θ2 modulo 2π, then it will leave the
cylinder in finite time. Otherwise it will be attracted to a closed leaf corresponding
to its direction, and be trapped in the cylinder.

As to enter a cylinder we have to cross its border, we see that for cylinder of
angle larger than π every geodesic entering the cylinder is also trapped. These
’trap’ cylinders can be ignored when studying dynamics. We can study instead
the surface with boundaries where we remove all these cylinders. We will see
in the following section that these cylinders are also responsible for degenerate
behavior when trying to triangulate the surface.
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Remark. A degenerate case of a dilation cylinder is a flat cylinder. It is an
embedding of the dilation surface Ca

b
=
{
z ∈ C | 0 < Im(z) < a

}
/(z ∼ z + b), for

any a, b ∈ R+. The ratio a
b is called the modulus of the cylinder.

2.4. Triangulations. An efficient way to build dilation surfaces is to glue the
parallel sides of a (pseudo-)polygon. A surface obtained this way enjoys the
property to have a geodesic triangulation. It is a triangulation whose edges are
geodesic segments and whose set of vertices is exactly the set of singular points.
It is natural to wonder if any dilation surface has such triangulation from which
we could easily deduce a polygonal presentation. The question only makes sense
for surfaces of genus g ≥ 2, for in genus 1 there are no singular points.

Unfortunately, a simple example shows that it is not to be expected in general.
The double Hopf torus constructed above cannot have a geodesic triangulation:
any geodesic issued from the singular point accumulates on a closed regular ge-
odesic, except for those coming from the slit. This obstruction can be extended
to any dilation surface containing a dilation cylinder of angle ≥ π: any geodesic
entering such a cylinder never exits it which is incompatible with the fact that a
triangulated surface deprived of its 1-skeleton is a union of triangles. A remarkable
theorem of Veech proves that this obstruction is the only one:

Theorem (Veech, [Vee97, Vee08]). Let Σ be a dilation surface which does not
contain any dilation cylinder of angle at least π. Then Σ admits a geodesic trian-
gulation.

The exact theorem generalizes a classical construction known as Delaunay par-
titions to a more general class of affine surfaces. We review this construction and
more of the material contained in [Vee97, Vee08] in Appendix A.

3. Examples.

3.1. The double-chamber surface. By gluing the sides of the same color of
Figure 6 below, we get a genus 2 dilation surface with a unique singular point of
angle 6π. Note that every leaf that goes from one chamber to another stays in
the latter chamber. We call it a double-chamber surface and denote it with 2CH.

Figure 6. The double-chamber surface.
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Let Fθ be the directional foliation in direction θ on the double-chamber surface.
Below we give some examples of directions with various dynamical behaviours.

If θ = ±π
2 , then Fθ is completely periodic: the surface decomposes into two flat

cylinders, each of which is a disjoint union of closed leaves of Fθ.
If θ = arctan(n) or arctan(n + 1

2) for n ∈ Z, the leaves of Fθ accumulate on a
closed saddle connection.

If 0 < θ < arctan(1
2), the surface has two dilation cylinders (see Figure 7) and

every leaf of Fθ and F−θ accumulates to a closed curve inside one of the cylinders.
We call the two latter behaviors hyperbolic.

Figure 7. Dilation cylinders of the double-chamber surface.

It turns out that the behaviors above are not the only ones that can be observed.
A complete classification of dynamical behaviors of directional foliations of the
double-chamber surface is given in [BS18]. In particular, it is shown that there
exist “Cantor-like” directions, in which the leaves accumulate to a set that is
transversally a Cantor set.

3.2. The disco surface. Choose two positive real numbers a, b. Consider an
2(a + b) × 1 rectangle, and consider the identifications as on Figure 8a. This
defines a dilation surface with two singularities of angles 4π and genus 2. We call
it the disco surface and denote it by Da,b. Notice that the surface contains several
dilation cylinders. We represent some of them on Figure 8b. These cylinders can
overlap, and some zones can a priori be without cylinder coverage.

(a) Suspension construction (b) Cylinders

Figure 8. The disco surface Da,b.

We give an alternative representation of the surface which makes a vertical flat
cylinder decomposition appear. To do so we cut out the left part of the surface
of width a along a vertical line. We now rescale it by a factor b

a and reglue it on
the top b interval. Reproduce the same surgery with the right part of the surface
and the new surface is the one drawn on Figure 9.
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Figure 9. An alternative representation of the disco surface

These two representations will be useful later to describe elements of the surface
Veech group.

3.3. Affine interval exchange transformations. The disco surface is a spe-
cial example of suspension of the affine interval exchange transformation. In this
subsection we describe this construction of Camelier and Gutierrez ([CG97]), im-
proved by Bressaud, Hubert and Maas ([BHM10]), and generalized by Marmi,
Moussa and Yoccoz ([MMY10]).

An affine interval exchange transformation (AIET) is a piecewise affine bijective
map from [0, 1] to itself. It can be thought of as a generalization of either interval
exchange transformation or of piecewise affine homeomorphism of the circle. To
any AIET one can associate a dilation surface obtained as a suspension: [0, 1] ×
[0, 1

2 ] rectangle with two vertical parallel sides identified by a parallel translation,
and two horizontal sides identified according to the AIET. Note that the disco
surface is a suspension of the AIET associated to the permutation (1, 2)(3, 4) with
the intervals of length a, b, b, a (see Figure 8a).

The dynamics of the vertical foliation of such a dilation surface is exactly the
same as the dynamics of the affine interval transformation we started from. More
precisely, the orbits of the latter are in correspondence with the non-singular
leaves of the vertical foliation, while the singular leaves correspond to the orbits
of discontinuity points (endpoints of the intervals) of the AIET.

The result of Marmi, Moussa and Yoccoz ([MMY10]) about AIET implies an
existence of a surprising dynamical behavior of a directional flow on a dilation
surface:

Theorem (Marmi-Moussa-Yoccoz, [MMY10]). For all combinatorics of genus at
least 2, there exists a uniquely ergodic affine interval exchange whose invariant
measure is supported by a Cantor set in [0, 1].

Corollary 1. For g ≥ 2 there exists a dilation surface of genus g whose leaves
of the vertical foliation accumulate to a union of leaves, which intersects every
transverse curve along a Cantor set.

We will call such behavior Cantor-like. It is in sharp contrast with both stan-
dard interval exchanges and piecewise affine homeomorphisms of the circle. The
construction is quite involved and we will not give details here. Nonetheless, the
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Cantor-like behavior is analyzed in [BFG18] on the Disco surface D1,2 and in
[BS18] on the double-chamber surface 2CH.

4. Veech groups: definitions and examples.

Given a matrixM ∈ GL+
2 (R) and an dilation structureA on Σ, there is a way to

create a new dilation structure by replacing the atlas (Ui, ϕi)i∈I by (Ui,M.ϕi)i∈I .
This new dilation structure is denoted by M · A. A way to put our hands on this
operation is to describe it when A is given by gluing sides of a polygon p. If one
sees P embedded in the complex plane C ' R2, M · A is the structure one gets
after gluing sides of the polygon M · P along the same pattern.

We have defined this way an action of GL+
2 (R) on the set of dilation surfaces

which factors through SL2(R), since the action of the diagonal subgroup is obvi-
ously trivial. If A is a dilation structure on Σ, we introduce its Veech group V(A),
which is the stabilizer in SL2(R) of A, namely

V(A) = {M ∈ SL2(R) | M · A = A}
The Veech group is the set of real affine symmetries of the considered dilation

surface. It is the direct generalization of the Veech group in the case of translation
surfaces (see [HS06] for a nice introduction to the subject). For example, if T is a
Hopf torus, V(T ) = SL2(R). It is a consequence of the fact that T = C∗/(z ∼ λz)
for a certain λ > 1, and that the action of SL2(R) commutes with z 7→ λz. This
fact is in sharp contrast with the case of translation surfaces where the Veech
group is known to always be discrete.
Precisely, let Aff+(Σ) denote the group of orientation-preserving affine automor-
phisms, i.e. homeomorphism f : Σ→ Σ whose action on charts of Σ is affine. The
derivative of f is a matrix in GL+

2 (R) defined up to a scalar multiplication. Its
projection to SL2(R) gives an element of the Veech group V (Σ) ⊂ SL2(R). More
precisely, there is an exact sequence:

(1) 0→ Aut(Σ)→ Aff+(Σ)→ V (Σ)→ 0,

where Aut(Σ) is the group of dilation automorphisms; in particular it is a subgroup
of automorphisms of the underlying complex structure and is therefore finite.
In the remaining part of this section we go over several examples of the Veech
groups of dilation surfaces.

4.1. The double-chamber surface. We will use different types of the dynami-
cal behavior of directional foliations of the double-chamber surface to describe its
Veech group completely:

Proposition 2. The Veech group of the double-chamber surface is the group gen-
erated by the two following matrices:(

−1 0
0 −1

)
and

(
1 0
1 1

)
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Proof. First notice that for any non-vertical direction there is a leaf that leaves
one chamber and stays in the other. Therefore there is no completely periodic
directions except for the vertical directions. Any element of the Veech group must
preserve the set of completely periodic directions. Hence for the double-chamber
surface it must lie in the set of lower triangular matrices.

The moduli of the flat cylinders get multiplied by λ2 under the action of the
matrix (

λ 0
∗ λ−1

)
.

Since there are only two identical flat cylinders their moduli must be preserved
and therefore λ = 1.

Clearly the rotation of angle π belongs to the Veech group since both the poly-
gon that defines the double-chamber surface and the identifications are invariant
under this rotation.

The matrix
(

1 0
1 1

)
is also in the Veech group. A simple cut-and-paste opera-

tion proves this fact, see Figure 10 below.

Figure 10. Cut-and-paste operation applied to the image of the

double-chamber surface under the matrix
(

1 0
1 1

)
.

As the flat cylinders are sent to themselves, the only matrices of the form ( 1 0
t 1 )

that belong to the Veech group of Σ are for t ∈ Z. �

4.2. The disco surface. Let us describe some elements of the Veech group of
the disco surface. First note that when we act by the matrix:(

1 t
0 1

)
on a vertical cylinder of height 1 and width t, we can cut-and-paste the surface
and end up back with the same cylinder as we saw previously in Figure 10. It
is exactly a Dehn twist on its core curve. This works also for any cylinder of
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modulus t. Hence if we have a surface which we can decompose into horizontal
cylinders of the same modulus t, the matrix above is in its Veech group.

As we noted when introducing the disco surface Da,b, they decompose into one
cylinder of modulus 2(a + b) in horizontal direction (Figure 8b) and into two
cylinders of modulus 1+b/a

b = 1
a + 1

b in vertical direction (Figure 9).
As a consequence,〈(

1 2(a+ b)
0 1

)
,

( 1 0
1
a + 1

b 1

)〉
⊂ V(Da,b)

Note that these two matrices never generate a lattice in SL2(R), since it would
imply that 2(a+ b)( 1

a + 1
b ) ≤ 4, which never happens.

Remark. These elements of the Veech group enable us to find a lot of dilation
cylinders, since starting with one, we can construct new ones by taking its orbit.

4.3. Hopf surfaces. We present in this subsection a general construction of di-
lation surfaces whose Veech groups are conjugate to:{(

λ t
0 λ−1

)
| t ∈ R and λ ∈ R∗+

}
,

and we prove that these are the only surfaces whose Veech groups are not dis-
crete. In particular this construction includes the Hopf torus and their derivatives
introduced in Section 2.2.

Definition 3 (Hopf surface). A Hopf surface is a dilation surface for which there
exists a finite union of closed geodesics and saddle connections such that the
complement is a disjoint union of dilation cylinders of angle π.

Note that all closed geodesics and saddle connections in such union are parallel
and that all saddle connection must be in this one direction. Also remark that the
franco-russian slit construction from Section 2.2 is a Hopf surface if and only if the
slits are radial. Hopf surface give examples of dilation surface with non-discrete
Veech groups, more precisely:

Proposition 3. For every Hopf surface of genus larger or equal to 2, the Veech
group is conjugate to: {(λ t

0 λ−1

)
| t ∈ R and λ ∈ R∗+

}
Proof. As the genus is larger or equal to 2 there exists at least one saddle connec-
tion in the surface, and all saddle connections are in the same direction. Elements
of SL2(R) that fix this direction are in the Veech group, since they do not change
the slits and preserve each of the cylinders. On the other hand any element of the
Veech group has to fix this distinguished direction. �

We will see in the next subsection that Hopf surfaces of genus larger or equal
to 2 are exactly the dilation surfaces whose Veech group is not discrete and is
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not SL2(R). Before we explain this property, we would like to present a general
construction of Hopf surfaces.

Definition 4. A ribbon graph is a finite graph with a cyclic ordering of its semi-
edges at its vertices.

We can think of a ribbon graph as an embedding of a given graph in a surface,
the manifold structure giving the ordering at the vertices. The structure of a
tubular neighbourhood of the embedding of the graph completely determines the
ribbon graph.

Given a ribbon graph, we can make the following construction: along the
boundary components of the infinitesimal thickening of the ribbon graph, we
can glue cylinders of angle kπ respecting the orientation of the foliation to get a
dilation surface. We have to make sure that the factors of the cylinders produce
Euclidean singular points; we give an example from which it will be easy to deduce
the general pattern.

Figure 11. A ribbon graph with two vertices.

Consider a ribbon graph as on Figure 11 with two vertices and four edges. We
turn it into a genus two surface by gluing three angle kπ dilation cylinders Di to
the boundary components each joining Ci to C ′i for i = 1, 2, 3 as in Figure 12.

Let λi be the dilation factor of Di. For the angular points to be Euclidean, it
is necessary that the product of the factors of the cylinders adjacent at a singular
point is trivial. In our case, for an appropriate choice of orientation, we obtain:

λ1 = λ2λ3.

This constraint is the only obstruction to complete the general construction of
Hopf surfaces.

4.4. Dilation torus. But first we will deal with the case of genus 1 showing the
following proposition:

Proposition 4. A non-flat dilation torus is the exponential of some flat torus
C/αZ⊕ (β + 2ikπ)Z,
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Figure 12. A cylinder decomposition of the surface of genus 2.

where α, β ∈ R and k ∈ N. Moreover its Veech group is SL2(R).

Proof. Consider a dilation torus. Its developing map (see section 2.1 for defini-
tions) goes from C to C and its holonomy is commutative. Hence its holonomy is
generated either by two translations or two affine transformations with the same
fixed point (which we assume to be zero). The former case is to be excluded since
we are only considering a non-flat surface.

In the second case, we can choose a developing map f which avoids zero, and
associate to it the 1-form d log f = df

f . As the surface has no singularity, the
derivative of f is never zero, and the 1-form is invariant with respect to the
holonomy. Thus d log f is an a priori meromorphic form on the torus. It has no
zeroes and by the residue formula no poles, therefore it is holomorphic.

In conclusion, d log f gives a flat structure on the torus that is isomorphic to
C/αZ⊕τZ with α, τ ∈ C∗ . The exponential of this flat structure d exp(log f) = df
is the initial dilation structure. This implies eα, eτ ∈ R+ and hence Im(α) and
Im(τ) are integer multiples of 2π. Therefore the basis of the lattice generated by
α and τ can be chosen to be of the form τ = β + 2ikπ, α, β ∈ R and k ∈ N.

Any matrix of SL2(R) commutes with the scalar multiplications, thus the Veech
group of such a surface is the whole SL2(R). �

One can think geometrically of such dilation torus in the following way. For
k = 1, consider a region of C bounded by the intervals I1 = [1, eα], I2 = [eβ, eα+β]
and the spirals S1 starting at 1 and ending at eβ and S2 starting at eα and ending
at eα+β, that both wind around 0. Identifying I1 to I2 by z 7→ eβz and S1 to S2 by
z 7→ eαz we obtain the required dilation torus. The case of general k is obtained
by slitting along I1 ∪ I2 and gluing a (k − 1)-Hopf torus of the dilation factor eα



DILATION SURFACES AND THEIR VEECH GROUPS. 17

Figure 13. A dilation torus, which is not a Hopf torus.

via identity on one boundary and z 7→ eβz on the other. This construction is
represented in Figure 13.

5. Veech group dichotomy.

In this section we will show that for dilation surfaces of genus g ≥ 2 there are
only two types of Veech groups. More precisely, we will show that dilation surface
is either a Hopf surface (see Section 4.3) or its Veech group is discrete:

Theorem 1. Let Σ be a dilation surface of genus ≥ 2. There are two possible
cases:

(1) Σ is a Hopf surface and V (Σ) is conjugate to the subgroup of upper tri-

angular matrices of SL2(R):
{(

λ ∗
0 λ−1

)
| λ ∈ R∗

}
; or

(2) V (Σ) is discrete.

We will also show that the Veech group of a dilation surface is ‘probably’ not
a lattice:

Theorem 2. If Σ is a dilation surface with a dilation cylinder then V (Σ) is not
a lattice.

We say ‘probably’, because it seems highly plausible that every dilation surface
has a dilation cylinder, however we do not have a proof of this fact.

To prove Theorem 1 we will distinguish between dilation surfaces having saddle
connections in at least two non-parallel directions and those which do not. We
will show that the Veech group of the former is discrete generalizing a classical
argument in the case of translation surfaces (see Section 3.1 of [HS06] and [Vor96]).
The latter will turn out to be a Hopf surfaces introduced in Section 4.3. We begin
with the following observation:

Lemma 1. For every singular point of a dilation surface and angle θ there exists
at least one saddle connection in a direction in the interval [θ, θ + π].

Proof. Without loss of generality we assume that θ = 0. By the assumption
singularities of dilation surfaces are conical points modeled on Euclidian cones of
angles multiple of 2π. Thus there exists affine charts around these points in a
finite cover of the pointed plane R2 \ {0}.
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In such an affine chart around the singular point p, consider the exponential
map centered at 0 and let ∆r be an open half-disk of radius r and center at 0
bounded by two horizontal half-lines emanating from 0. Let r > 0 be the largest
radius such that ∆r immerses in Σ by means of the exponential map.

If r = ∞, we would have a maximal affine immersion of H. By Lemma 4 this
immersion factors through an embedding of a dilation cylinder of angle π whose
boundary would project to two closed leaves. Note that one of them contains p,
since this immersion extends to 0. Therefore there is a saddle connection passing
through p.

If r < ∞, we distinguish two obstructions of why ∆r′ does not immerse for
r′ > r:

(1) the immersion ϕ : ∆r −→ Σ extends continuously to the semi-circle on
the boundary of ∆r and the image of this extension contains a singular
point p′;

(2) the immersion ϕ : ∆r −→ Σ does not extend continuously to the semi-
circle on the boundary of ∆r.

In the first case, there is a saddle connection that connects p to p′. Assume we
are in the second case, then similarly to Lemma 5, there exist a point z0 on the
semi-circle of the boundary of ∆r such that limz→z0 ϕ(z) does not exists. Consider
a small disk Dε ⊂ ∆r that is tangent to ∆r at z0. The segment starting at p and
ending at z0 is eventually contained in Dε. According to Corollary 3 this last part
of the segment, and hence the whole segment, projects to a closed geodesic in Σ
containing p. Therefore there is a closed saddle connection through p. �

Using Lemma 1 together with Gauss-Bonnet formula we obtain a useful crite-
rion of when a dilation surface is a Hopf surface:

Proposition 5. A dilation surface Σ is a Hopf surface if and only if all saddle
connections of Σ are in the same direction.

Proof. Let Σ be a Hopf surface. A Hopf surface by definition is a dilation surface
that decomposes into dilation cylinders of angle π with boundaries being closed
curves and saddle connections. All saddle connections on these boundaries are
parallel. Moreover, there are no other saddle connections of Σ. Indeed, any
separatrix that does not follow a boundary enters a dilation cylinder of angle π
and never leaves it. Therefore all saddle connections of Σ are in the same direction.

For the converse, assume without loss of generality that all saddle connections
of Σ are horizontal. Consider a union of all horizontal closed curves and saddle
connections. A complement of such union is a disjoint union of subsurfaces with
boundaries. Due to Lemma 1 each such subsurface enjoys two properties: there
are no singularities in the interior and each singularity on the boundary has total
angle π around it. Therefore, by Gauss-Bonnet such subsurface is topologically a
cylinder. It cannot be a flat cylinder, otherwise we would have a non-horizontal
saddle connection. Then the cylinder is affine and has angle π since its boundaries
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are parallel and we also cut along all horizontal closed curves. This implies that
Σ is a Hopf surface. �

Next we will show that if not all saddle connections are in the same direction,
the Veech group is discrete. The classical proof of the discreteness of the Veech
group for translation surfaces (Section 3.1 of [HS06] and [Vor96]) relies on the fact
that the set of holonomy vectors that encodes the direction and length of saddle
connections in a translation surface is discrete in R2.

In the case of dilation surface, we can define the image through the developing
map of saddle connections emanating from a singularity with a given image by
the developing map. This set is defined as a subset of R2 up to scalar, therefore
it still makes sense to talk about its discreteness. However, the next proposition
shows that it is not necessarily discrete in the case of dilation surfaces:

Proposition 6. There exists a dilation surface, whose images of saddle connec-
tions starting from a fixed singularity through the developing map is not discrete.

Proof. Consider a slit sum of a Hopf torus and a flat square torus as on Figure 14
so that the ration of the lengths of the saddle connection b and c is equal to the
ration of the length of b and l. These ratios are well defined since the saddle
connections intersect in a vertex, so we can compute their lengths in a common
chart. We fix a developing map and consider the image in the plane of the saddle
connections emanating from the singularity s to the right of b. Note that the
image of the set of saddle connections emanating from this singularity to one of
the singularities of the slit a accumulates to the image of s translated by the
vector l, i.e. the limit image of the center of the Hopf torus. Moreover the image
of the saddle connection c is precisely l in the plane, by assumption on the ratio
of lengths. Therefore the set of holonomy vectors of saddle connections starting
from s is not discrete. �

We deal with this obstruction by introducing R2
k, a cyclic k-cover of R2 fully

ramified at 0. Let p be a conical singularity of total angle 2πk. By definition
of the cone singularity, there exists a Euclidean chart φ : U → R2

k on an open
neighborhood U around p, which is an affine embedding on U \p and sends p to 0.
We define S a subset of R2

k of the endpoints of the paths obtained by developing
all saddle connections that start at p into R2

k using this map. Note that as the map
φ changes the set S changes by a multiplication by scalar, therefore discreteness
of S does not depend on the choice of φ.

Proposition 7. Let Σ be a dilation surface and p a singularity of angle 2πk.
The set S, obtained by developing all saddle connections starting at p into R2

k, is
discrete.

Proof. Let U be an open neighborhood of p and let φ : U → R2
k be a Euclidean

chart. Consider a saddle connection s that starts at p and let sφ be a path
obtained by developing s into R2

k using φ. We will show that the endpoint vs ∈ S
of sφ is an isolated point of S.
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a

a

b

b

c cl

Figure 14. A dilation surface with a non-discrete set of holonomy
vectors of saddle connections starting at the black point.

By compactness of s there exists an open neighborhood V ⊂ Σ of the path
s that contains no other singularities apart from the two endpoints of s. Then
φ gives rise to a continuous map of V into R2

k. Denote the image of this map
by Vφ. Note that Vφ is an open subset of R2

k that contains the endpoint vs of
sφ. It suffices to show that Vφ contains no other elements of S apart from the
endpoint of sφ. There are two cases how a straight line segment γ starting at 0
and contained in Vφ can be obtained:

• by developing a unique separatrix contained in V that starts at p, if sφ 6⊂ γ;
or
• by developing a union of the saddle connection s and a separatrix starting
at the second endpoint of s that is contained in V , if sφ ⊂ γ.

Both of the above are contained in V , therefore they do not end in a singularity
of Σ. This implies that γ∩S = ∅ and hence vs is an isolated point of S. Therefore
S is discrete. �

We now have, using notation from Section ??,

Proposition 8. Let Σ be a dilation surface with two saddle connections in dif-
ferent directions. Then Aff+(Σ) is a discrete group, and the Veech group V (Σ)
is a discrete subgroup of SL2(R).

Proof. Consider Aff+
0 (Σ) the subgroup of Aff+(Σ) fixing pointwise the set of sin-

gular points of Σ. The subgroup Aff+
0 (Σ) has finite index in Aff+(Σ) and its

discreteness implies the discreteness of Aff+(Σ). Since V (Σ) is a quotient of
Aff+(Σ) by the finite group Aut(Σ), its discreteness is also implied by the dis-
creteness of Aff+

0 (Σ). We will consider two cases:
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(1) First, assume there are two saddle connections s1 and s2 in different di-
rections from the same singularity p of conical angle 2πk. Consider the set S,
obtained by developing all saddle connections starting at p into R2

k. This set is
discrete due to Proposition 7 and Aff+

0 (Σ) acts on it. Denote by v1, v2 ∈ S ⊂ R2
k

the elements obtained by developing the saddle connections s1, s2 respectively.
Suppose that Aff+

0 (Σ) is not discrete, then there exist a sequence of distinct
elements fn ∈ Aff+

0 (Σ) converging to identity. Since S is discrete one obtains:
fn(v1) = v1, fn(v2) = v2 for n >> 1.

The derivatives of fn are matrices in GL+
2 (R) defined up to scalar. There is a

natural projection R2
k → R2 and the images of v1 and v2 under this projection

are non-collinear vectors. Therefore the derivatives of fn project to identity in
V (Σ) ⊂ SL2(R) for n >> 1. Since an affine automorphism is defined up to a
finite choice by its derivative (see (1)), this implies that Aff+

0 (Σ) and therefore
Aff+(Σ) and V (Σ) are discrete.

(2) Second, assume there are no saddle connections in different directions start-
ing at the same point. Then there are at most finitely many saddle connections.
Each saddle connection defines a direction θ ∈ [0, 2π). The set of all such direc-
tions is finite, hence discrete, and contains at least two elements θ1 and θ2. The
group Aff+(Σ) acts on this set, because parallel saddle connections remain paral-
lel under the action of Aff+(Σ). Therefore Aff+(Σ) and hence V (Σ) are discrete
due to an arguement used in the first case. �

This criterion can be effectively used to check discreteness of a given dilation
surface:

Corollary 2. The double-chamber surface and the disco surfaces have discrete
Veech groups.

We are now ready to proof Theorem 1:

Proof of Theorem 1. By Lemma 1 the set of saddle connections is not empty. We
distinguish two cases: when all saddle connections are parallel and when there
are two saddle connections in different directions. In the first case, Proposition 5
implies that Σ is a Hopf surface and from Proposition 3 we obtain that V (Σ) is
conjugate to: {(λ t

0 λ−1

)
| t ∈ R and λ ∈ R∗+

}
.

In the second case, Proposition 8 implies that V (Σ) is discrete. �

5.1. The Veech group of a dilation surface is probably not a lattice. As
we saw in Section 2.2 dilation cylinders trap the linear flow in a corresponding
angular sector. We will show that this behavior restricts the potential directions
for saddle connections around a singularity in the boundary of cylinders and pre-
vents Veech groups from being lattices.
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Figure 15. An angular section in which all leaves are hyperbolic.

Consider Σ a dilation surface endowed with a dilation cylinder, take any sin-
gular point at the boundary of this cylinder and consider a straight line heading
inside the cylinder whose angular direction falls just in between the two extreme
angles of the cylinders. Such line will be trapped inside the cylinder and will ac-
cumulate to a closed geodesic (Figure 15). As a consequence none of such straight
lines will meet a singular point. Therefore there are no saddle connections starting
from the chosen singular point in the angular sector defined by the cylinder.

Proof of Theorem 2. By the assumption there is a dilation cylinder in Σ and ac-
cording to Proposition 1 there is a singularity in the boundary of the cylinder.
From the above observation it follows that there is a small angular sector in which
any separatrix starting from this singularity will accumulate to a closed leaf (see
Figure 15).

Assume that the Veech group of Σ is a lattice. We will show that the set of
directions in which every separatrix is a saddle connection is dense, which will
end the proof since it contradicts the above remark.

Recall that Aff+
0 (Σ) is the subgroup of Aff+(Σ) fixing pointwise the set of

singular points of Σ. The image of Aff+
0 (Σ) in SL2(R) is a finite index subgroup

of V (Σ) and therefore is also a lattice. Hence it contains a parabolic element and
its limit set is all of the boundary of H. By conjugating a parabolic element we
construct a dense set of directions in which there is a parabolic element. It remains
to show that in a parabolic direction any separatrix meets eventually a singularity
and thus every separatrix in a parabolic direction is a saddle connection. Indeed,
if this did not hold for a separatrix s, then s would accumulate to a point x and a
neighborhood of x would be crossed infinitely many times by s. But the parabolic
element fixes s pointwise, hence it fixes x and the whole neighborhood of x, which
brings us to a contradiction since parabolic elements do not act by identity. �

6. Cylinders on genus 2 surfaces.

The purpose of this section is to show the following result:

Theorem 3. Any dilation surface of genus 2 has a cylinder.
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First, note that Veech’s theorem on Delaunay triangulation (see Veech’s theo-
rem in 2.4) tells us that if a dilation surface does not have a triangulation, it must
contain a dilation cylinder (of angle at least π). We can therefore forget about
this case and assume that all the surfaces we are considering have a geodesic tri-
angulation. As the surface has genus 2, there are two cases concerning the angles
of its singular points: there can be two singularities of angle 4π each or one of
angle 6π. We will show that the existence of a geodesic triangulation implies the
existence of a cylinder in both cases using some combinatorial and topological
restrictions.

We start by dealing with the first case. If the surface has two singular points of
angle 4π, a triangle of a geodesic triangulation of the surface has at least two of
its vertices that are equal to the same singular point. The side corresponding to
these two vertices is a simple closed curve, it must cut the angle of the associated
singular point into two angular sectors of respective angle 3π and π. Then this
closed curve bounds a cylinder on the side of angle π.

We now discuss the second case where Σ has a unique singular point of angle
6π denoted by p. A geodesic triangulation of Σ must have exactly 9 edges and 6
triangles due to Euler characteristic. Here the triangulation has a unique vertex
and each edge defines a saddle connection cutting each conical singularity into
two angular sectors. Since the foliation is oriented, such an edge must cut the
angle 6π into two angles of respective values either 5π and π or 3π and 3π. The
lemma below proves that any such geodesic triangulation has at least one edge
cutting the singular point into two angles 5π and π. As in the previous case, this
implies existence of a cylinder.

Lemma 2. A geodesic triangulation of Σ cannot have its 9 edges cutting p into
two sectors of angles 3π.

Proof. Assume that every edge of the triangulation cuts the neighborhood U of
the singularity p into two angular sectors of angle 3π each. Note that each edge
starts and ends at the same singularity p, therefore locally around p we see each
edge twice. Label the edges with elements {a, b, c, d, e, f, g, h, i}. Reading the
labels of the edges in U that we meet turning around p in a clockwise direction,
we first encounter each letter once and then all the letters appear second time in
the same order (see Figure 16). Indeed, due to the assumption that each edge
cuts U into two angular sectors of angle 3π, the neighborhood of the triangulation
around p has a 3π rotation symmetry, which shifts all the labels by 9 steps. In
other words, there is a well-defined cyclic order on those 9 labels, in which they
appear in the neighborhood of p.

Now consider a triangle of the triangulation. Without loss of generality assume
that its edges are a, b, c as on Figure 16. Moving clockwise around the vertices of
the triangle we see that in the order defined above b follows a, c follows b and a
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Figure 16. Topological setting of the triangulation

follows c. However this cannot happen since the cyclic order above is defined on
9 elements. This leads us to a contradiction. �

7. Open problems.

In this last section we would like to present several possible directions for further
research on dilation surfaces. We will also formulate some open problems.
Dynamics of vertical foliation. The first direction has to do with better un-
derstanding the classification of the dynamical behavior of the vertical flow on
dilation surfaces. We have already observed several dynamical behaviors:

• minimal, when every non-singular leaf is dense on a surface;
• completely periodic, when every non-singular leaf is closed;
• hyperbolic, when every non-singular leaf is attracted to a finite union of
hyperbolic closed leaves and saddle connections;
• Cantor-like, when every non-singular leaf accumulates to a union of
leaves which is transversely a Cantor set. The result of Camelier-Gutierrez
discussed in Section 3.3 proves the existence of such directional foliations.

It is possible that a dilation surface decomposes into subsurfaces with different
dynamical behaviors of the vertical flow listed above. The first question is whether
there are any other possibilities for it:

(1) Does every dilation surface decompose into subsurfaces on each of which
the vertical flow is either minimal, periodic, hyperbolic or Cantor-like?

It would be interesting to investigate the behavior of the vertical flow on the
specific examples of the Disco surfaces Da,b (see Section 3.2) and the double-
chamber surface DC (see Section 3.1). These examples are simple and explicit,
however even in these cases the dynamical questions are not straightforward:

(2) Does there exist a minimal direction on Da,b or DC?
(3) Does there exist a Cantor-like direction on Da,b or DC?
(4) Is the set of hyperbolic directions on Da,b or DC dense? Does it have a

full Lebesgue measure?
These questions have been recently answered for D1,2 in [BFG18]. The hyper-

bolic directions on DC are investigated in [BS18].
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Some numerical experiments indicate that the hyperbolic dynamical behaviour
is generic and that brings us to the following questions:

(5) Does every dilation surface have a hyperbolic closed leaf in some direction?
(6) Is the set of hyperbolic directions dense for every dilation surface? Does

it have a full Lebesgue measure?
(7) Does there exists a dilation surface with infinitely many Cantor-like direc-

tions?
We conjecture that the answers to these four questions are positive, with a

greater reserve about the full measure one.
Geometry of dilation surfaces. Another natural direction is to investigate the
geometrical properties of dilation surfaces:

(8) Does every dilation surface have a regular closed geodesic?
(9) Which dilation surfaces have only finitely many saddle connections?

Conjecture: A dilation surface has finitely many saddle connection if and
only if it is a Hopf surface.

(10) Does every point on a dilation surface admit a closed geodesic or a saddle
connection passing through it?
Remark: This is the case for the double-chamber surface.

(11) What does the set of holonomy vectors of saddle connections on a given
dilation surface look like? When is it non-discrete (see Proposition 6)?

Veech groups. Note that the positive answer to the question (8) together with
Theorem 2 would imply that the Veech group of a dilation surface is never a lattice.
Nonetheless, it seems to be an interesting invariant of these dilation surfaces.

(12) What kind of Fuchsian groups can appear as Veech groups?
Moduli spaces. Similar questions could be asked about a “generic” dilation
surface. It is possible that in this setting some of the above questions are easier to
answer and that specific surfaces have a very different behavior from the “generic”
ones.

To make meaning of the word “generic” one needs to define the moduli spaces
of dilation surfaces. This brings us to a new series of questions about the moduli
spaces of dilation surfaces:

(13) What is a natural definition of the moduli space of dilation surfaces? How
one defines its topology, analytic structure and measure on it?

(14) Are there analogues of period coordinates of dilation surfaces?
(15) Is the moduli space of dilation surfaces connected? Irreducible?
(16) What are the connected components of the strata of the moduli space of

dilation surfaces?
A construction of a moduli space of dilation surfaces of genus g was recently

given in [DM18]. It was also shown that it is irreducible. However the question of
its naturalness is still open. One way to verify it would be to construct a “period
map” and show that it is a homeomorphism in a topology defined by the moduli
space.



26 EDUARD DURYEV, CHARLES FOUGERON, AND SELIM GHAZOUANI

Finally, we present several other questions related to the loci of surfaces with
interesting properties in the moduli spaces of dilation surfaces:

(17) Is the set of dilation surfaces with a minimal direction dense? Does it
have a full measure?

(18) Is the set of dilation surfaces having no minimal direction dense? Does it
have a full measure?

Appendix A. Veech’s results on the geometry of dilation surfaces.

We review in this appendix the results of Veech on the geometry of affine
surfaces appearing in [Vee97] and [Vee08]. Note that Veech works in a more
general context of affine (not necessarily dilation) surfaces with (not necessarily
Euclidean) singularities.

For the sake of clarity, we will restrict his results to the case under scrutiny in
this paper, namely branched affine structures with real positive linear holonomy.
The notes [Vee08] remain unpublished and Veech kindly allowed us to reproduce
here the proofs that are contained in these notes.

A.1. The property V. In this section we will give a proof of the following the-
orem:
Theorem 4 (Veech, [Vee08]). Let Σ be a dilation surface. The following three
properties are equivalent:

(1) There is no affine immersion of H in Σ.
(2) Every affine immersion of D in Σ extends continuously to a map D→ Σ.
(3) The dilation surface Σ has no dilation cylinder of angle larger than π.

We say such dilation surface Σ has property V.
We begin with the proof of a few lemmas.

Lemma 3. Let U be an open subset of C and Γ ⊂ AffR+(C) that acts on U . If an
affine immersion Φ : U −→ Σ factors through U/Γ→ Σ then Γ is either generated
by z 7→ λz + c for some λ 6= 1 ∈ R+ and c ∈ C or by translations.
Proof. Note that for any z ∈ U the orbit Γz ⊂ U has to be discrete and closed
since Φ is an immersion. One can check that two affine maps generate a group
which acts properly discontinuously on U if and only if they are both translations
or they both belong to a cyclic subgroup generated by a dilation. This finishes
the proof. �

Lemma 4. Any affine immersion ϕ : H −→ Σ can be extended to an affine
immersion ϕ′ : H′ −→ Σ that factors through an affine embedding of a dilation
cylinder of angle π in Σ. Where H′ ⊂ C is a half-plane containing H.
Proof. We first show that the immersion ϕ cannot be one-to-one. Note that the
image of ϕ does not contain singular points, as it is not possible to extend an
immersion beyond singularities. Consider the geodesic

γ : t ∈ (0, i∞) 7→ ϕ(t) ∈ Σ.
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The geodesic γ(t) cannot have a limit point in Σ as t goes to infinity. Indeed,
the length of a geodesic in a dilation surface is defined up to a choice of an affine
chart, hence the finiteness of the length is a well-defined property of a geodesic.
The immersion ϕ produces charts, in which γ has an infinite length. If there was
a limit point then in a chart around that limit point, the length of γ would be
finite.

Therefore γ is a non-compact subset of Σ, hence it has an accumulation point
x ∈ Σ. Fix an affine chart f : U ⊂ Σ 7→ C around x such that f(U) is a disk.
Then γ enters and leave U infinitely many times. In particular it must cross U
twice along parallel segments. Now we can find a horizontal path η in U that
connects those two parallel segments at points x1, x2 ∈ Σ. Take t1 6= t2 ∈ (0, i∞)
such that γ(ti) = xi. Lift η starting at t1 and let v ∈ H be the second endpoint
of this lift. Then ϕ(v) = ϕ(t2) and v 6∈ (0, i∞) hence v 6= t2. This shows that ϕ
is not one-to-one.

For any v 6= w ∈ H such that ϕ(v) = ϕ(w). As the immersion ϕ is affine,
there exists a dilation map γvw : C → C, such that in the neighborhoods of v,
ϕ(z) = ϕ(γvw(z)). Two affine maps that coincide on the neighborhood coincide
on the whole domains of definition, therefore the same holds for any z ∈ H as
long as γvw(z) ∈ H. Define a group:

Γ = {γvw | v, w ∈ H such that ϕ(v) = ϕ(w)} ⊂ AffR+(C).
and an open subset:

U =
⋃
g∈Γ

gH ⊂ C.

Γ acts on U and, since ϕ is not one-to-one, Γ is not trivial. The immersion ϕ
extends to an affine immersion Φ : U → Σ invariant under Γ. Then by Lemma 3
Γ is either generated by translations or a single dilation and U/Γ embeds into
Σ. Note that since H ⊂ U , if Γ is generated by translations, one obtains an
embedding of a half-infinite cylinder or a torus into Σ. An embedding of a half-
infinite cylinder contradicts the non-injectivity argument above and an embedding
of a torus contradicts Riemann-Hurwitz theorem. Therefore Γ has to be generated
by a dilation. Then U/Γ → Σ is an embedding of a dilation cylinder of angle π
as needed. �

Lemma 5. Let ϕ : D → Σ be an affine immersion of the open unit disk D ⊂ C
into Σ that does not extend continuously to ∂D. Then:

(i) there exists a point z0 ∈ ∂D such that the limit limz→z0 ϕ(z) does not
exists;

(ii) the immersion ϕ extends to the half-plane that contains D and is tangent
to it at z0;

(iii) this extension is invariant under a dilation centered at z0.

Proof. (i) Assume the limits exist in every direction, consider a lift of the map
ϕ : D→ Σ to the universal cover of Σ and compose it with the developing map to
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obtain an affine map ϕ̃ : D→ C. Then this map can be continuously extended to
D. Since the developing map is locally injective and the limits exist this extension
pulls back to Σ, which contradicts the hypothesis. Therefore there exists z0 ∈ ∂D
such that limz→z0 ϕ(z) does not exists. Without loss of generality, we will assume
that z0 = 1.

(ii) Let γ : [0, 1) → Σ be a path t 7→ ϕ(t). Then according to the assumption
above the limit at t = 1 does not exists. By compactness there exists x an
accumulation point of γ. Pick a small neighborhood of x, then γ has to enter and
exit this neighborhood infinitely many times, otherwise it would have a limit. This
implies that accumulation set contains a straight line segment passing through x,
which contains a non-singular point.

Now assume x is non-singular. We will use the notation B(z, r) ⊂ D and
∆(z, r) ⊂ C for open disks of radius r centered at z. Choose an affine chart
f : U → C around x such that f(x) = 0 and f(U) = ∆(0, 1).

We will show that there exists an open neighborhood V of x in Σ and a sequence
tk ∈ [0, 1) converging to 1, such that ϕ(B(tk, 1− tk)) contains V for any k. Note
that we have chosen the disk B(tk, 1 − tk) centered at tk and tangent to the
boundary of D at 1. Let us set the following notation :

• V ⊂ Σ is the preimage of ∆(0, 1/4) under f ;
• tk is an increasing sequence in [0, 1) such that ϕ(tk) converges to x and is
contained in V ;
• Vk ⊂ U is the preimage of ∆ ((f ◦ ϕ)(tk), 1/2) under f ;
• B(tk, rk) is the connected component of ϕ−1(Vk) containing tk.

First note that Vk contains V . Secondly, rk ≤ 1− tk, since ϕ does not extend to
1, hence B(tk, rk) ⊂ B(tk, 1− tk). Therefore V ⊂ Vk = ϕ(B(tk, rk)) ⊂ ϕ(B(tk, 1−
tk)).

In the following we will show that f−1 : ∆(0, 1/4) → V extends to affine
immersions on nested disks ∆k of arbitrary large radius to Σ. Let ψk : B(tk, rk)→
∆((f ◦ϕ)(tk), 1/2) be the restriction of f ◦ϕ. This map is an affine bijection and
it admits a unique affine extension Ψk : D → ∆k for some ∆k ⊂ C. We have the
following diagram,

B(tk, rk) ∆ ((f ◦ ϕ)(tk), 1/2)

D ∆k.

i1

ψk

i2

Ψk

The map Ψk preserves the ratio of the radii of disks, therefore
r(∆k)
1/2 = r(D)

rk
≥ 1

1− tk
→∞.

This implies that r(∆k)→ 0.
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We consider a subsequence ki such that the radii satisfy r(∆ki+1) > 2r(∆ki
).

Since the centers of all balls belong to ∆(0, 1/4) this condition guarantees that
the balls ∆ki

are nested. Taking the inverses of theses extensions of Ψki
and post-

composing them with ϕ we obtain affine immersions of nested disks ∆ki
→ Σ that

coincide with f−1 on ∆(0, 1/4).
Now notice that all ∆ki

are tangent at l0 = limt→1 Ψ1(t). Indeed, there is no
extension of f−1 : ∆(0, 1/4)→ V to l0, since ϕ does not extend to z0. This implies
that l0 6∈ ∆k for all k. Since ∆k are nested, they must be all tangent at l0. The
union of these nested balls with radius going to infinity is the half-plane tangent
to ∆ki

at l0. Therefore we obtain an immersion of the half-plane into Σ, which
extends f−1 : ∆(0, 1/4)→ V . Composing it with the affine transformation, which
extends Ψk1 and sends ∆k1 to D, we obtain an affine extension of ϕ : D → Σ to
the half-plane tangent to D at z0.

(iii) By Lemma 3 the extension can only be invariant under translations or a
single dilation. Similarly to the argument in the proof of Lemma 4 we exclude
translations and therefore our extension is invariant under a dilation. It remains
to show that this dilation is centered at z0 = 1. Note that the only accumulation
point of an orbit of a dilation is the center of the dilation. Now recall that
we constructed a sequence tk ∈ [0, 1) converging to 1, such that ϕ(B(tk, 1 − tk))
contains V , a neighborhood of x, for any k. Taking preimages of x inside B(tk, 1−
tk) we obtain a sequence of points in D accumulating to z0 = 1 and invariant under
dilation. Therefore z0 is the center of the dilation. �

Proof of Theorem 4.
¬(2) =⇒ ¬(1) : follows from Lemma 5.
¬(1) =⇒ ¬(3) : follows from Lemma 4.
¬(3) =⇒ ¬(2) : there exists an affine immersion of upper-half plane H to Σ
equivariant with respect to multiplication by a real positive scalar. The embedding
of the open disk of radius 1 centered at i does not extend to zero. �

We conclude by presenting a corollary of Theorem 4 that relates closed hyper-
bolic geodesics to affine immersions of disks which do not extend to the boundary.
Corollary 3 (Veech, [Vee08]). Let ϕ : D −→ Σ be an affine immersion of the
unit disk such that the path γ : t 7→ ϕ(teiθ) does not have a limit in Σ as t → 1
for some θ ∈ ∂D. Then γ is a hyperbolic closed geodesic in Σ.
A.2. Delaunay decompositions and triangulations. The main results of
[Vee97] and [Vee08] establish the existence of geodesic triangulations for dila-
tion surfaces with property V. These results together with Theorem 4 can be
summarized by the following theorem:
Theorem (Veech). A dilation surface admits a geodesic triangulation if and only
if it satisfies the property V.

This theorem is a corollary of the existence of Delaunay polygonization of di-
lation surfaces that Veech deals with. We give some details on this construction
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below. Let Σ be a dilation surface satisfying the property V and let x ∈ Σ be a
non-singular point. We are going to distinguish points depending on the number
of singular points on the boundary of the maximal immersed disk centered at x.
We denote this number by ν(x). The set

{
x ∈ Σ | ν(x) = 1

}
is an open dense

set in the surface. The special points are those for which ν(x) ≥ 3. They form
a discrete and therefore finite set on the surface. For each such x, consider the
convex hull of the singular points on the boundary of the largest immersed disk
centered at x. The following properties are satisfied :

• the image of such convex hull under the immersion is an embedded
convex polygon in the surface;
• the union of such polygons covers the whole surface;
• such polygons only intersects at their boundary;
• the set of vertices of such polygons coincides with the set of singular points;
• the union of the interior of these polygons coincides with the set

{
x ∈ Σ |

ν(x) = 1
}
;

• the union of the interior of their sides coincides with the set
{
x ∈ Σ |

ν(x) = 2
}
.

This decomposition of the dilation surface Σ into a union of convex polygons is
unique and it is called its Delaunay polygonizations. A further triangulation
of each polygon leads to a geodesic triangulation of the surface.

The key assumption that one needs to make to carry out the construction
above (see [Vee97] for details) is the property V, in particular that maximal affine
embeddings of the disk extend to their boundary.

Remark. The converse of the triangulation theorem is quite easy. An affine
cylinder of angle at least π behaves like a ’trap’: any geodesic entering it never
leaves it. Then no edge of the triangulation intersects the cylinder and therefore
the surface does not admit a geodesic triangulation, otherwise the cell containing
this cylinder would have a non-contractible loop.
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