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Abstract 1	
The warm water volume (WWV), a proxy for the equatorial Pacific heat content, is 2	

the most widely used oceanic precursor of the El Niño Southern Oscillation (ENSO). 3	
The standard interpretation of this lead relation in the context of the recharge oscillator 4	
theory is that anomalous easterlies during, e.g. La Niña, favour a slow recharge of the 5	
equatorial band that will later favour a transition to El Niño. Here we demonstrate that 6	
WWV only works as the best ENSO predictor during boreal spring, i.e. during ENSO 7	
onset, in both observations and CMIP5 models. At longer lead times, the heat content in 8	
the western Pacific (WWVW) is the best ENSO predictor, as initially formulated in the 9	
recharge oscillator theory. Using idealised and realistic experiments with a linear 10	
continuously stratified ocean model, and a comprehensive wave decomposition method, 11	
we demonstrate that spring WWV mostly reflects the fast Kelvin wave response to wind 12	
anomalies early in the year, rather than the longer-term influence of winds during the 13	
previous year. WWV is hence not an adequate index of the slow recharge invoked in the 14	
recharge oscillator. The WWVW evolution before spring is dominated by forced Rossby 15	
waves, with a smaller contribution from the western boundary reflection. WWVW can 16	
be approximated from the integral of equatorial wind stress over the previous ~10 17	
months, thus involving a longer-term time scale than WWV main time scale (~3 18	
months). We hence recommend using WWVW rather than WWV as an index for the 19	
slow recharge before the spring predictability barrier. 20	

 21	
 22	
Keywords: El Niño Southern Oscillation (ENSO); Warm Water Volume (WWV); ENSO 23	
recharge oscillator; equatorial Kelvin and Rossby waves; ENSO precursors; ENSO 24	
conceptual models; CMIP5 climate models.  25	
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1) Introduction 1	
The El Niño–Southern Oscillation (ENSO) is the leading mode of interannual climate 2	

variability on Earth, with tremendous socio-economical and environmental impacts at global scale 3	
(e.g. McPhaden et al. 2006; Clarke 2008). Despite significant progress over the past decades in our 4	
understanding of the ENSO dynamics, ENSO forecasts still remain a challenge, especially at lead 5	
times longer than 10 months (e.g. Barnston et al. 2012). The mechanisms responsible for the growth 6	
and termination of El Niño are now reasonably understood. High frequency atmospheric variations, 7	
known as Westerly Wind Events, often trigger an El Niño by inducing a Sea Surface Temperature 8	
(SST) warming in the central Pacific at the beginning of the year (e.g. Lengaigne et al. 2004a). This 9	
initial SST anomaly (SSTA) grows into an El Niño throughout boreal spring and summer due to the 10	
Bjerknes feedback (Bjerknes 1969). In this positive ocean-atmosphere feedback loop, positive 11	
SSTA induce a wind response (e.g. Gill 1980), whose effect on the ocean induces further warming 12	
(e.g. Vialard et al. 2001). This positive feedback is offset by several negative feedbacks, which 13	
eventually terminate El Niño events during the following winter. These feedbacks include the 14	
instantaneous negative atmospheric feedbacks (e.g. Lloyd et al. 2010; Lengaigne et al. 2006) as well 15	
as the delayed negative oceanic feedbacks, at the heart of the oscillatory nature of ENSO. 16	

These delayed negative oceanic feedbacks include (1) a rapid (~6 months) delayed feedback 17	
through equatorial Kelvin and first meridional-mode Rossby waves reflections (e.g. Boulanger et al. 18	
2004) and (2) a slower delayed feedback associated with wind-driven equatorial oceanic heat 19	
content variations (e.g. Bosc and Delcroix 2008; Zhu et al. 2017). These two oceanic negative 20	
feedbacks are encapsulated in the main theoretical frameworks developed to explain the cyclic 21	
nature of ENSO. The delayed oscillator (Schopf and Suarez 1988; Battisti and Hirst 1989) and the 22	
advective-reflective oscillator (Picaut et al. 1997) both emphasize the role of equatorial wave 23	
reflection but stress on different mechanisms. The delayed oscillator highlights the western 24	
boundary reflection and the thermocline feedback in the eastern Pacific, while advective-reflective 25	
oscillator underscores the eastern boundary reflection and the zonal advection in the central Pacific. 26	
While this fast ~6 months oceanic feedback through wave reflections is crucial to understand the 27	
equatorial Pacific variability (e.g. Izumo et al. 2016; their Table 1 and Fig. 4), its timescale is much 28	
shorter than the observed ENSO spectral peak of 4-5 years. This emphasizes the need of a slower 29	
oceanic feedback, which is the focus of another theoretical framework: the recharge oscillator 30	
theory, originally introduced by Wyrtki (1985) and later formulated mathematically by Jin (1997a). 31	
This slower feedback has been related to the Sverdrup balance (Jin 1997a,b) but also to Rossby 32	
wave dynamics (Bosc and Delcroix 2008; Zhang and Clarke 2017; Clarke et al. 2007). In this 33	
paradigm, easterly wind anomalies during La Niña induce a slow recharge in the equatorial Pacific 34	
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through meridional transport converging in the equatorial band. The thermocline feedback then 1	
favours the emergence of positive SSTA, and the development of El Niño, during which westerlies 2	
induce an equatorial OHC discharge, thus resulting in a cyclic sequence (Jin 1997a,b). 3	

The original concept of the recharge-discharge theory identified the OHC in the western Pacific 4	
as precursor of El Niño, in both Wyrtki (1985) and Jin (1997a) seminal studies. However, the 5	
schematic put forward by Jin (1997a) emphasized a recharge throughout the equatorial band. 6	
Meinen and McPhaden (2000) further investigated the lead relation between the equatorial Pacific 7	
recharge and the ENSO from observations. They introduced the Warm Water Volume (WWV), an 8	
index of the total volume of water warmer than 20°C equatorward of 5° in the entire equatorial 9	
Pacific, and showed that it was a good ENSO predictor (r~0.6) at lead times of 4-8 months (Fig. 1a). 10	
This motivated the inclusion of the WWV (or equivalently the equatorial band OHC) in many 11	
analyses, models, or statistical hindcast/forecast schemes of El Niño (e.g. Kessler 2002; Clarke and 12	
van Gorder 2003; Ruiz et al. 2005; Dominiak and Terray 2005; Burgers et al. 2005; McPhaden et al. 13	
2006; Drosdowsky 2006; Lima et al. 2009; Kug et al. 2010; Izumo et al. 2010, 2014; Dayan et al. 14	
2014; Yu et al. 2016). The WWV is hence currently monitored in operational centres, which 15	
interpret a higher than usual value of WWV as an increased risk for the occurrence of an El Niño. 16	
Modelling studies also use early-year WWV as a diagnostic of the oceanic preconditioning for an 17	
upcoming El Niño (e.g. Lengaigne et al. 2004b; Fedorov et al. 2014; Hu et al. 2014; Puy et al. 18	
2017). The WWV has thus become a widespread diagnostic of ENSO preconditioning by the 19	
oceanic state. 20	

The role of the western Pacific equatorial heat content, rather than that across the entire Pacific, 21	
is however emphasized in both seminal (Wyrtki 1985; Jin 1997a,b) and more recent studies 22	
(Ramesh and Murtuggude 2013; Boschat et al. 2013; Lai et al. 2015; Ballester et al. 2016; Petrova 23	
et al. 2017). There is indeed only a brief time window in spring (roughly from February to April-24	
May) when the WWV is the best predictor of an upcoming El Niño (Fig. 1a). The western Pacific 25	
heat content (WWVW, 120°E-155°W) outperforms the WWV at leads longer than 10 months, as 26	
noted by Meinen and McPhaden (2000). After the “spring predictability barrier”, the eastern Pacific 27	
heat content (WWVE, 155°W-80°W) or the typical ENSO indices such as Niño3.4 SSTA become 28	
the best predictors of an upcoming El Niño. These two indices – WWVE and Niño3.4 – are in fact 29	
strongly linked because of the strong prevalence of the thermocline feedback in the eastern Pacific 30	
(e.g. Vialard et al. 2001; Zelle et al. 2004), and they record the short-term response to wind 31	
anomalies in the central Pacific whose influence travel to the eastern Pacific as equatorial Kelvin 32	
waves in about two months. 33	
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In addition to only being the best predictor over a short time window in early spring, the WWV 1	
(WWVE+WWVW) also mixes two very different, and opposed, influences (Fig. 1a, WWVE and 2	
WWVW have a -0.33 correlation). WWV is more correlated with WWVE (0.74 correlation) than it is 3	
with WWVW (0.40 correlation), suggesting that the WWV is more a metric of the eastern Pacific 4	
heat content variations (and hence of the fast response to central Pacific winds) than of the long-5	
term recharge process hypothesized in the recharge oscillator. A role of fast timescales for WWV 6	
has also been underlined by the recent studies of McGregor et al. (2016) and Neske and McGregor 7	
(2018). The present study hence attempts to further disentangle the exact processes driving ENSO-8	
related equatorial OHC variations and their related indices (WWVW, WWVE and WWV). The paper 9	
is organized as follows. Section 2 describes the observations, the simulations from the Coupled 10	
Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012) and the experiments from a 11	
Linear Continuously Stratified (LCS) ocean model used in this paper. Section 3 investigates the 12	
physical processes that respectively control WWVW, WWVE and WWV by analysing their 13	
decomposition into equatorial waves, including the contribution from reflections, and identifying 14	
the main wave contributions. This allows obtaining simple wind stress based indices for the 15	
observed WWVW, WWVE and WWV, hence providing a better understanding of their actual 16	
physical meaning and intrinsic timescales. Section 4 summarizes our findings and discusses their 17	
implications, notably for ENSO conceptual models and forecasts. 18	
 19	
 20	
2) Data and models 21	
2.1 Observations, reanalyses and CMIP models data 22	

We use the following observationally-derived products available over the extended historical 23	
period (at least from 1871 to 2008): HadiSSTv1 SST (Rayner et al. 2002), Sea Level Anomaly 24	
(SLA) from SODA2.2.6 ocean reanalysis (Carton and Giese 2008, Giese and Ray 2011) and surface 25	
wind stress from 20CRv2 atmospheric reanalysis (Compo et al. 2011). These long datasets allow to 26	
thoroughly assess the statistical significance of the results presented in this study, over the 1900-27	
2008 period (we start from 1900, so as to avoid the less observed 19th century period). We also use 28	
the wind stress from ERA-Interim (ERA-I; Dee et al. 2011) atmospheric reanalysis, being one of 29	
the best wind products over the recent period (1979-present) in the tropics (Praveen Kumar et al. 30	
2012) and being available in near real-time (20CRv2 being only available until 2008). The ERA-I 31	
dataset is used to force the LCS model over the recent period and the OHC interannual variations 32	
from this simulation are validated against those derived from the Bureau of Meteorology Research 33	
Center (BMRC) tropical Pacific subsurface temperature dataset (based on XBT and TAO/TRITON 34	
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Array; Smith 1995), available as monthly WWV time series from 1980 up to present 1	
(https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-enso).	 The above repository 2	
provides two types of WWV indices: one based on the 20°C isotherm depth (D20) and the other on 3	
0-300m depth averaged temperature (T300, i.e. OHC). We use the latter one for consistency with 4	
the LCS model results based on SLA, although both types of indices are strongly correlated 5	
(corr.=0.96 for WWVW, 0.98 for WWVE, 0.92 for WWV). T300 indices are multiplied by the 6	
surface area of the box over which they are averaged (i.e. in oC.m2), for consistency with D20-based 7	
(in m3) and SLA-derived (in cm.m2) WWV indices (defined in section 2.3). Results discussed in 8	
this paper are robust when D20-based indices are used (not shown), despite a slightly weaker 9	
weight to the east Pacific OHC variations (the standard deviation (STD) ratio 10	
STD(WWVE)/STD(WWVW) = 1.2, instead of 1.4 for T300-based indices) arguably because the 11	
shallow climatological D20 in the eastern Pacific limits its interannual variability. 12	

We also analyse the monthly SST, wind stress and SLA data from 32 historical simulations in 13	
the CMIP5 dataset over the 1861-2005 period (Taylor et al. 2012, see Table S1). When several 14	
ensemble members are available, we analyse only the first one in order to give the same weight to 15	
each model in the Multi-Model-Mean (MMM). The majority of CMIP5 models exhibits a 16	
reasonable ENSO amplitude and spatial SSTA patterns (e.g. Bellenger et al. 2014) as well as a 17	
reasonable ENSO seasonal phase locking (e.g. Jourdain et al. 2016), which allows us to use the 18	
same index for ENSO peak intensity as in observations, the average November to January (NDJ) 19	
SSTA in the Niño3.4 box (170°W-120°W, 5°S-5°N), which captures the main ENSO variability 20	
(e.g. Takahashi et al. 2011; we here do not discuss ENSO diversity/continuum, e.g. Capotondi et al. 21	
2015, due to CMIP models difficulty in capturing it, e.g. Graham et al. 2017). 22	
 23	
2.2 LCS model 24	

We also use a LCS ocean model (McCreary 1980) to understand the processes driving the 25	
WWV variations, using the same configuration as in Izumo et al. (2016). The LCS model allows 26	
avoiding the complexity of a general ocean circulation model, without losing the essential physics 27	
that drives SLA/OHC variability (contrary to a simpler shallow water model; e.g. Dewitte and 28	
Perigaud 1996). It also allows separating explicitly the contribution from the directly forced and the 29	
reflected waves on the SLA variations (cf. below). The model domain is the full Indo-Pacific basin, 30	
with coastlines defined from the 200-m isobath, including an Indonesian Throughflow (ITF) for the 31	
realistic experiments, as in e.g. McCreary et al. (2007). As we will discuss in section 4, the time 32	
series of WWV indices in the realistic experiments are however not sensitive to whether the ITF is 33	
open or not. Therefore, in the LCS idealised experiment, the ITF is closed for the sake of simplicity. 34	
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Background vertical modes are derived from the average stratification over the equatorial Indo-1	
Pacific region (30°E–75°W, 10°N–10°S). These choices result in Kelvin wave speed of 2.5 m.s-1 for 2	
the 1st baroclinic mode and of 1.5 m.s-1 for the 2nd baroclinic mode. The vertical mixing coefficient 3	
is set to 4 × 10-8 m2 s-3, corresponding to a 5-year damping scale for the first baroclinic mode (and a 4	
2-year damping scale for the second baroclinic mode). Results in our paper are quite robust when 5	
using 1, 2, 10 and 20-year damping timescales. We retain the first five baroclinic modes but will 6	
show that equatorial Pacific OHC interannual variations obtained from the first two modes 7	
reproduce most of the observed variations, in agreement with earlier studies (e.g. Chen et al. 1995; 8	
Boulanger and Menkes 2001; Shu and Clarke 2002; Izumo et al. 2016; Zhang and Clarke 2017). 9	

We will analyse the physical processes controlling the WWV variations from a LCS simulation 10	
forced with 20CRv2 wind stresses over the 1871-2008 period, for the sake of statistical reliability 11	
and for efficient filtering of the interdecadal fluctuations. We also performed idealized experiments 12	
with ENSO-like westerly wind stress anomalies in the central-western Pacific switched on January 13	
1st of year 0: 14	

τx = A exp(−((x – x0)2/ ∆x2 + y2/∆y2)/2) 15	
with ∆x = 25°, ∆y = 7°, x0 = 180° and A = 0.02 N.m-2 (as in Izumo et al. 2016). These parameters 16	
have been chosen to match the observed spatial pattern of zonal wind stress regressed on Niño3.4 17	
(not shown). 18	

We analyse our results in the context of the long-wave approximation of the linear theory of 19	
equatorial waves (e.g. chapter 11 of Gill 1982). The LCS provides the SLA or current contribution 20	
of each baroclinic mode separately. We further separate SLA contributions associated with wave 21	
reflections at both boundaries using a dedicated LCS experiment with land points replaced with 22	
dampers (e.g. McCreary et al. 1996, Suresh et al. 2016) at both boundaries. In such an experiment, 23	
there is no wave reflection as incoming signals are “absorbed” into both boundaries and dissipated. 24	
The contribution from wave reflections is obtained as the difference between the control experiment 25	
and the damper experiment. See the supplementary information for more details on the procedure to 26	
obtain reflected waves and Suppl. Fig. S1 for a validation of the wave decomposition method. Later 27	
in the paper, we call “forced” variations the solution that involves no reflections at both boundaries 28	
and “reflected” that associated with the residual. We further project those contributions on the 29	
waves theoretical meridional SLA structures as in Boulanger and Menkes (1995) for each baroclinic 30	
mode in order to obtain the Kelvin and Rossby meridional modes contributions. In the rest of the 31	
paper, we will mostly discuss the forced and reflected contributions from the first two baroclinic 32	
modes Kelvin (noted K1 and K2) and first-meridional mode Rossby (noted R11 and R12) waves, 33	
which explain the bulk of SLA variations equatorward of 5° (and hence WWV, WWVE and 34	
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WWVW variations, as we will demonstrate). 1	
 2	

2.3 Methods 3	
Our analyses will focus on SLA, which is an accurate proxy for OHC and thermocline depth 4	

variations (e.g. Rebert et al. 1985; Gasparin and Roemmich 2016; Palanisamy et al. 2015). SLA, by 5	
vertically integrating OHC over the whole water column, is less noisy than the D20, and is observed 6	
by satellites allowing a better spatial sampling. We will hence integrate SLA spatially over the 7	
western (120°E-155°W), eastern (155°W-80°W) and entire (120°E-80°W) equatorial (5°N-5°S) 8	
Pacific as measures of WWVW, WWVE, and WWV, respectively. We also use Niño3.4 SSTA and 9	
equatorial Pacific zonal wind stress anomalies (hereafter τx, averaged over 120°E-80°W; 5°N-5°S, 10	
i.e. the WWV region) indices. Long-term trends and decadal-to-multidecadal fluctuations are 11	
removed from our 20CRv2 LCS model experiment, SODA reanalysis and CMIP historical 12	
simulations using a 14-year window Hanning filter (preserves most of the variance at periods < 7 13	
years; half-power cut at ~10 years). For the analyses of the ERA-I LCS model experiment over the 14	
recent 1979-2017 period, we simply detrend the time series through linear regression in order to 15	
avoid losing too many endpoints. A 3-month Hanning smoothing is applied for each of these 16	
datasets to reduce intraseasonal noise before computing the lag-correlations. Our results are not 17	
sensitive to the details of filtering methods (not shown). 18	

Significance tests for regression or correlation coefficients (and correlation critical values) are 19	
computed using a Student’s two-tailed t-test, assuming one degree of freedom per year (this is 20	
justified by the insignificant or negative 1-year lag autocorrelation of the climate indices used in 21	
this paper; Bretherton et al. 1999). The consistency between the different CMIP5 models is assessed 22	
by showing signals where 70% of models (e.g. Christensen et al. 2013) have the same sign when 23	
plotting the MMM. We use a regression approach to diagnose the typical ENSO evolution in the 24	
paper, but we have checked using a composite approach that all of our results are to the first order 25	
valid for both ENSO phases in observations as well as in CMIP MME, with only some 2nd order 26	
assymetries (cf. Suppl. Fig. S2). Therefore, all along this paper, we show by convention results for a 27	
“typical” El Niño event (one STD), knowing that they remain the same for a La Niña event, with 28	
reversed signs. 29	
 30	
2.4 LCS validation 31	

We validate the LCS model forced by ERA-I by comparing the simulated SLA with the 32	
observed estimates. Izumo et al. (2016) already demonstrated that this model captures very 33	
accurately the equatorial Pacific SLA, thermocline depth and zonal current variability (their Figure 34	
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2). Fig. 2 further demonstrates that this simulation also accurately captures the WWVW, WWVE and 1	
WWV interannual variations, with correlations to observations ranging from 0.86 to 0.92. Our 2	
model results exhibit a similar level of agreement with WWV indices computed from the 3	
SODA2.2.6 ocean reanalysis, with correlations ranging from 0.84 to 0.90 (not shown). For the 4	
extended period, the 20CRv2 LCS simulation also captures the interannual SLA variations 5	
simulated by SODA2.2.6 (correlation of 0.78, 0.90 and 0.90 for WWVW, WWVE and WWV 6	
respectively). 7	
 8	
 9	
3) Results 10	
3.1 Typical OHC preconditioning and evolution during an El Niño 11	

Fig. 1b provides a lead-correlation analysis of the WWV, WWVW, WWVE from SODA 12	
reanalysis over the 1900-2008 period with Niño3.4 SSTA in November0-January1 (NDJ0, the index 13	
makes reference to the central month of the period, with 0 designating the year of the ENSO onset 14	
and growth and -1 the previous year), i.e. at the ENSO peak. This analysis generally gives very 15	
similar results to those derived from observations over the recent 1980-2017 period presented in the 16	
introduction (Fig. 1a). Both analyses indicate that Niño3.4 SSTA is a good predictor of ENSO 17	
throughout the mature and peak phases thanks to persistence, i.e. roughly from summer to winter. 18	
WWVE exhibits the same behaviour as Niño3.4 SSTA, as expected from the strong coupling 19	
between SST and thermocline depth in the central and eastern Pacific (e.g. Zelle et al. 2004). 20	
Niño3.4 SSTA and WWVE lead-correlations however drop before spring (MAM0), a phenomenon 21	
often referred to as the ENSO “spring predictability barrier” (Torrence and Webster 1998).  The 22	
WWV has higher lead-correlations of ~0.6-0.7 during that spring period. Before that (i.e. at longer 23	
leads than 10 months, e.g. in DJF0, SON-1, and JJA-1), WWVW outperforms WWV, with a 24	
maximum lead-correlation of ~0.4-0.5 around SON-1. These results are broadly consistent with 25	
those obtained by Meinen and McPhaden (2000), who did not consider the seasonality and focussed 26	
on a shorter period (1980-1999). The WWV index is hence the best ENSO precursor only over a 27	
short ~3 months window during spring preceding the ENSO peak. 28	

Figures 1c,d show the same analysis as in Fig. 1a,b but for the long 20CR LCS simulation and 29	
CMIP5 MMM respectively. These two datasets reproduce the key features discussed above: WWVE 30	
and WWVW indices have very different lead-relations with ENSO, the former being the best 31	
precursor at short lead time (< 6 months) and the latter being the best predictor at long lead time (> 32	
10 months). WWV is again the best precursor only during a short time window during spring. 33	
Individual CMIP5 models generally exhibit a similar behaviour (not shown). The fact that the 34	
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WWV variations from the LCS simulation compare very well with observations (Fig. 2) is a strong 1	
suggestion that diabatic processes (see e.g. Clarke et al. 2007; Brown and Fedorov 2010; Lengaigne 2	
et al. 2012) or the surface heat flux variations (e.g. Forget and Ponte 2015) are second-order 3	
processes relative to wind stress-driven WWV variations. And this good agreement suggests that 4	
the physical processes controlling these WWV indices are similar in observations, CMIP5 and LCS 5	
simulations. 6	

Fig. 3 displays maps of lead-regression of SLA, SSTA and wind stress anomalies onto NDJ0 7	
Niño3.4 SSTA three to five seasons before the ENSO peak (SON-1, DJF0 and MAM0) for SODA. 8	
The LCS (not shown) and CMIP5 simulations (Suppl. Fig. S3) give similar results to those of 9	
SODA, further asserting that the processes controlling SLA variations are similar in these datasets. 10	
As initially suggested by Wyrtki (1985) and Jin (1997a,b), the typical OHC pattern one year before 11	
an El Niño (in SON-1, DJF0) corresponds to a build-up in the western Pacific rather than in the 12	
whole equatorial band (Fig. 3a,c). This echoes the analysis of Fig. 1, for which WWVW is a better 13	
ENSO predictor than WWVE or WWV indices at long leads. This western Pacific build-up exhibits 14	
larger loadings off the equator, roughly at the typical latitudes of SLA maxima related to Rossby 15	
wave first meridional modes, as expected from linear wave theory, and is associated with easterly 16	
wind stress anomalies in the western-central equatorial Pacific and cold SSTA in the eastern Pacific 17	
reminiscent of a weak La Niña tendency. This pattern is similar in JJA-1 (not shown), but 18	
considerably changes in MAM0, with a positive SLA anomaly along the entire equatorial strip, 19	
associated with westerly wind stress anomalies in the western Pacific and positive SSTA along the 20	
central-eastern equatorial Pacific (Fig. 3e). This signal is reminiscent of the downwelling Kelvin 21	
wave response to westerly wind stress anomalies typical of an El Niño onset, favouring eastward 22	
currents and deeper thermocline, and hence SST warming. The strong early-year increase in WWV 23	
lead correlation to ENSO on Fig. 3 therefore appears to stem from this Kelvin wave signal. This 24	
simple analysis hence suggests that the WWV may be an efficient ENSO precursor in MAM0 25	
because it captures the downwelling Kelvin wave response, and associated temporary recharge, 26	
forced by westerly wind anomalies during El Niño onset and development (and related meridional 27	
Ekman convergence; e.g. Izumo 2005; McGregor et al. 2016; Zhu et al. 2017; Neske and McGregor 28	
2018). In other words, the WWV in MAM0 would track the response to zonal wind anomalies (for 29	
instance westerly wind events) early in the year, and not only the long-term recharge associated 30	
with the recharge oscillator. 31	

The SON-1 and DJF0 SLA patterns not only exhibit a build-up signal in the western Pacific but 32	
also negative SLA and SSTA signals in the eastern Pacific (Fig. 3a,c). This zonal seesaw is typical 33	
of the rapid thermocline response to equatorial wind stress anomalies, i.e. the ENSO zonal tilt mode 34	
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(e.g. Meinen and McPhaden 2000). This La Niña-type signature one year before the El Niño peak is 1	
related to ENSO biennal tendency (e.g. Meehl et al. 2003) as illustrated by the weak negative 2	
Niño3.4 correlation at leads longer than 10 months on Fig. 1. This tilt-mode signal could blur a 3	
weaker long-term build-up of heat content. To separate those two signals, we estimate the zonal tilt 4	
mode associated with the previous year ENSO signal from the lead/lag regression of SLA on 5	
Niño3.4 SSTA in SON-1. As this zonal tilt mode and the recharge mode are largely independent (e.g. 6	
Jin 1997a,b; Meinen and McPhaden 2000; Alory et al. 2002; Clarke 2010; Thual et al. 2013), we 7	
obtain the long-term recharge by regressing out this signal from the total SLA. Fig. 3b,d,f repeats 8	
the analysis of Fig. 3a,c,e, but for this “tilt mode independent” SLA pattern. The key features 9	
discussed in Fig. 3a,c,e remain robust in this new analysis. The western Pacific OHC (and hence 10	
WWVW) remains the best ENSO predictor at leads longer than one year (also in JJA-1, not shown), 11	
irrespective of whether the previous ENSO signal is removed or not. Removing the tilt mode 12	
reveals a clear western Pacific wind stress forcing and Kelvin wave response starting in DJF0 and 13	
intensifying in MAM0. Again, this suggests that the WWV in MAM0 is influenced by the Kelvin 14	
wave response to early-year equatorial Pacific zonal wind stress anomalies, i.e. has a faster 15	
timescale than that of the recharge oscillator theory, which involves the influence of previous year’s 16	
winds. In the following, we will use dedicated LCS experiments to explain the main processes that 17	
control the WWVW, WWVE and WWV variations. 18	

 19	
3.2 Fast recharge and long-term discharge in response to ENSO-like westerly anomalies 20	

In order to illustrate the timescales of the WWV, WWVE and WWVW response and explain 21	
them in terms of linear equatorial wave theory, we have performed an idealised LCS experiment 22	
forced by ENSO-like westerly wind stress anomalies (Fig. 4d, cf. section 2.2). The LCS model 23	
starts from rest, with westerly anomalies switched on January 1st of year 0 and maintained constant 24	
throughout the simulation. This is a similar problem to that of the basin adjustment to uniform 25	
winds described by Philander and Pacanowski (1980), but for an ENSO-like wind anomaly. We will 26	
first briefly describe the sea-level response in terms of equatorial waves, before discussing 27	
consequences for the WWV, WWVE and WWVW indices. 28	

Fig. 4 provides a zonal-time section of equatorial SLA in this experiment (Fig. 4a), along with 29	
contributions from the 1st and 2nd baroclinic modes Kelvin and first-meridional Rossby waves, K1, 30	
K2, R11 and R12 (Fig. 4b,c,e,f). These waves dominate the SLA response equatorward of 5°. The 31	
first two baroclinic modes indeed dominate the response and the symmetric wind forcing 32	
meridional structure projects negligibly on 2nd and higher-order meridional Rossby modes (not 33	
shown). At equilibrium, the solution is a balance between the force exerted by the westerly wind 34	
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stress (Fig. 4d) on the ocean and the pressure gradient associated with the zonal slope of the 1	
thermocline (Fig. 4a). The main adjustment is done after one year, and the quasi-equilibrium state is 2	
almost reached after three years (Fig. 4a). K1 and K2 downwelling waves (Fig. 4b,e) radiate 3	
eastward from the wind forcing region, at phase speeds of 2.5 and 1.5 m.s-1, reaching the eastern 4	
boundary within 1.7 and 2.8 months (propagation times for those starting from the dateline), where 5	
they reflect as R11 and R12 downwelling waves (Fig. 4c,f), as predicted by the linear equatorial 6	
theory. As a result, the sea level is highest in the eastern Pacific within 3-12 months after the 7	
forcing is switched on (Fig. 4a). R11 and R12 wind-forced upwelling waves radiate westward from 8	
the wind forcing region, at a phase speed of -0.8 and -0.5 m.s-1, reaching the western boundary 9	
within ~3 and ~5 months respectively (Fig. 4c,f), where they reflect as K1 and a weak K2 upwelling 10	
waves (Fig. 4b,e). As a result, the sea level has its first minimum in the western Pacific within ~6 11	
months of the forcing onset (Figs 4a and 5a). 12	

Fig. 5a shows the temporal evolution of the three WWV indices in this experiment, and Fig. 13	
5b,c display SLA snapshots after 2.5 months (i.e. during the adjustment phase, when WWV is 14	
maximum) and 3 years (longer-term adjustment, almost in equilibrium). WWVW reaches a 15	
minimum, close to its quasi-equilibrium value, after about 7 months (Fig. 5a), associated with the 16	
R11 and R12 wave reflection at the western boundary (Fig. 4b,c,e,f). WWVE initially increases faster 17	
(Fig. 5a), due to the larger propagation speed and stronger projection of Kelvin waves in the 5°N-18	
5°S band (Fig. 5b), but also reaches a maximum after 5-6 months associated with their reflection as 19	
slower Rossby waves (Fig. 4b,c,e,f). While WWVW has reached an almost steady state after 6 20	
months, WWVE decreases and only stabilizes a couple of years later (Fig. 5a). Fig. 5c shows that 21	
this is associated with the asymmetry between reflections at eastern and western boundaries. 22	
Coastal Kelvin waves indeed propagate poleward at the eastern boundary, inducing a leakage of 23	
positive SLA anomalies toward higher latitudes (Suppl. Figure S4), leading to a weaker positive 24	
WWVE than negative WWVW at equilibrium (Fig. 5a). 25	

The WWV evolution is the result of two large and opposed contributions from WWVE and 26	
WWVW (Fig. 5a). The initial WWV response during the first year is a temporary recharge, peaking 27	
about 2-3 months after the onset of westerly winds (Fig. 5a; due to Ekman convergence, in line with 28	
e.g. Izumo 2005; McGregor et al. 2016; Zhu et al. 2017; Neske and McGregor 2018). This recharge 29	
results from the strong positive equatorial SLA east of the dateline associated with downwelling 30	
Kelvin waves (Fig. 4b) that overcomes the weaker negative SLA to the west associated with the 31	
upwelling Rossby waves. This is because (1) the meridional structure of Rossby waves has a 32	
relative minimum at the equator, while that of Kelvin waves has a maximum (2) Kelvin waves are 33	
at least three times faster than the Rossby waves (3) the typical ENSO wind patch is located slightly 34	
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west of the basin (Fig. 4d), resulting in Kelvin waves influencing WWV more than Rossby waves 1	
(as inferred from additional sensitivity experiments in which wind patch location is changed; not 2	
shown). The long-term decrease of WWVE, associated with leakage toward higher latitudes along 3	
the eastern boundary (cf. Suppl. Fig. S4; Wyrtki 1985), however combines with the stable negative 4	
WWVW to yield a long-term discharge of WWV under the effect of westerly anomalies, as 5	
expected from the recharge oscillator theory. 6	

Overall, the above analyses suggest that the WWV varies as the result of several processes with 7	
very different timescales in response to a westerly wind: it is first dominated by a fast (2-3 months 8	
timescale) recharge in response to westerly winds, followed by a longer-term (O(years)) discharge 9	
caused by a leakage toward higher latitudes at the eastern boundary. This result is robust 10	
irrespective of the mixing coefficient or whether the Indonesian Throughflow is closed or not. The 11	
fast recharge is largely associated with the downwelling Kelvin waves, which have a stronger 5°N-12	
5°S projection than the upwelling Rossby waves. In the real world, where central-west Pacific 13	
winds have energetic fluctuations at intraseasonal to interannual timescales, one may thus expect 14	
the slow adjustment associated with the long-term discharge to never reach equilibrium, and WWV 15	
variations to be dominated by the short-term Kelvin wave response. In the next section, we will 16	
perform an in-depth analysis of LCS simulations forced by a realistic wind forcing to show that this 17	
is indeed the case in a more realistic context than the idealised experiments analysed above. 18	

 19	
3.3 Quantifying the processes controlling WWV indices in a more realistic context 20	

In this section, we analyse the processes controlling WWVE, WWVW and WWV in the LCS 21	
experiment forced by historical 20CR wind stress described in section 2. We have also verified that 22	
the results below are robust in the ERAI-forced experiment. Table 1 quantifies the contributions of 23	
the first three baroclinic modes to each WWV index in the 20CR simulation, by providing the 24	
regression coefficient of each mode contribution to the total signal (as in Suresh et al. 2013, 2016). 25	
Baroclinic modes 1 and 2 explain more than 89% of all three WWV indices variations (95% for 26	
WWV), with mode 1 contributing about twice as much as mode 2. Mode 3 contributes marginally 27	
(~5-10%), and higher modes can be neglected (not shown). Table 1 further indicates that K1 + K2 + 28	
R11 + R12 contribute to more than 85% (99% for WWV) of the three WWV indices variability. We 29	
will therefore focus on these waves in the following. Since baroclinic modes 1 and 2 have a very 30	
similar behaviour (with mode 2 generally lagging mode 1), we will sum their contributions. We will 31	
also separate the directly-forced SLA contribution from that involving reflections at both 32	
boundaries (cf. section 2). Hereafter, Kf and R1f (Kr and R1r) designate the sum of the first two 33	
baroclinic modes for the forced (reflected) Kelvin and first-meridional mode Rossby waves. 34	
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Fig. 6 quantifies the contribution of each of those waves to the equatorial SLA evolution 1	
throughout the ENSO cycle, using lead-lag regressions to the observed NDJ0 Niño3.4 index. Prior 2	
to El Niño onset (i.e. before February 0), the equatorial Pacific SLA exhibits a weak La Niña signal, 3	
with anomalous easterlies around the dateline (black contours) forcing downwelling to the west of 4	
the dateline and upwelling to the east (Fig. 6a). These anomalies switch sign at the El Niño onset 5	
(from about March 0 onwards). The zonal westerly wind stresses associated with El Niño are 6	
centred near the dateline, and force a downwelling Kf response that propagates to the east and an 7	
upwelling R1f response that propagates to the west (Fig. 6b,d,f). The forced downwelling Kf 8	
(upwelling R1f) reflects into a downwelling R1r (upwelling Kr) at the eastern (western) boundary, as 9	
can clearly be seen in Fig. 6d,e (Fig. 6f,g). The reflected waves signals span the entire basin, with 10	
diminishing sea level amplitudes from west to east for Kr (Fig. 6g) and from east to west for R1r 11	
(Fig. 6e), as a result of damping along their paths. Those two opposite signals cancel out in the 12	
central part of the basin, and the total reflected signal mostly contributes to positive (negative) sea 13	
level signals in the eastern (western) Pacific (Fig. 6c). The wave reflection is theoretically about 14	
two times more efficient at the eastern than at the western boundary (cf. appendix C of Boulanger 15	
and Menkes 1995). I.e. the reflection into Rossby waves is efficient at the eastern boundary, but 16	
these waves have a relatively weak projection within 5°N-5°S due to their meridional structure. The 17	
Kelvin waves project much more into 5°N-5°S, but their reflection at the western boundary is less 18	
efficient. These two factors conspire in yielding SLA signals associated with reflected waves with 19	
far smaller amplitudes (Fig. 6c) than those associated with forced waves (Fig. 6b). 20	

Fig. 7 displays the contributions of each of those waves to WWV indices, throughout the 21	
ENSO cycle. Due to the smaller amplitude of SLA signals associated with reflected waves (Fig. 22	
6a,b,c), the evolution of all WWV indices is clearly dominated by the forced waves (Fig. 7a,b,c). 23	
This is especially striking for WWV, for which the reflected waves almost exactly cancel out (Fig. 24	
7c), due to opposite contributions in the east and west (Fig. 6c). The WWV evolution can thus be 25	
largely understood in terms of forced waves (Fig. 7f). The WWVW evolution is mainly driven by 26	
the R1f response (Fig. 7d). Indeed, there is a 0.93 correlation between WWVW and R1f time series 27	
(see also Suppl. Fig. S5 for ERAI-forced LCS). While the Kf contribution to WWVW is on average 28	
much weaker (STD(Kf)/STD(R1f) = 0.4), it is not negligible, especially around MAM0 (Fig. 7d), 29	
when ENSO-related westerly anomalies are located in the far west Pacific so that Kf has also a 30	
significant contribution on the WWVW region. The WWVE evolution is dominated by Kf, with a 31	
0.96 correlation between WWVE and Kf time series (Suppl. Fig. S5). The R1r contribution however 32	
also contributes (STD(R1r)/STD(Kf) = 0.65), and is almost in phase with Kf (~2 months lag ;Fig. 33	
7e; Suppl. Fig. S5). The opposite Kr contribution is two times weaker than the R1r one, and R1f is 34	
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completely negligible. The sum Kf + R1r is hence an excellent approximation of WWVE (0.98 1	
correlation; Suppl. Fig. S5). 2	

As we underlined above, the reflected waves contributions to WWV almost exactly cancel out 3	
(Fig. 7c). The WWV variability hence results from a competition between the downwelling Kf 4	
signal and the opposite R1f upwelling signal, which displays a ~3 months lag due to the slower 5	
propagation speed of Rossby waves than of Kelvin waves. Regressing Kf+R1f onto WWV indeed 6	
yields WWV≈ 0.78 (Kf + R1f), an approximation that has a 0.83 correlation with the WWV time 7	
series (Suppl. Fig. S5). This high correlation confirms that WWV can be generally explained by the 8	
sum of the Kf and of the generally-opposite delayed R1f contributions, with R1f having a slightly-9	
weaker amplitude (STD(Kf)/STD(R1f) = 1.2). The Kf contribution to WWV is larger than that of 10	
R1f (Fig. 7f, Suppl. Fig. S5) due to the stronger projection of the Kelvin wave onto the 5°N-5°S 11	
band and to the mean position (within the WWVW box) of ENSO-related zonal wind interannual 12	
variability. As a result, the WWV variations are more correlated to Kf (0.64) than to R1f (-0.01), 13	
indicating that Kf in general tends to dominate WWV variations (STD(Kf)/STD(WWV-Kf) = 1.8, 14	
i.e. the Kf amplitude is almost twice larger than the sum of R1f and the other remaining waves 15	
included in the residual WWV-Kf). 16	

The respective contributions of Kf and R1f signals to the WWV evolution however vary over 17	
the ENSO cycle (Fig. 7f). Before the El Niño onset, the Kf upwelling and R1f downwelling signals 18	
cancel each other (with R1f slightly stronger), resulting in a negligible WWV precursory signal until 19	
one year before the peak. During spring (MAM0), ENSO-related wind stress anomalies (which 20	
often occur under the form of Westerly Wind Events, e.g. Lengaigne et al. 2004a) usually appear in 21	
the western Pacific (Fig. 6), inducing a fast transition of Kf to a downwelling signal (Fig. 7f). The 22	
R1f signal transitions more slowly from the downwelling signal associated with the previous ENSO 23	
phase to an upwelling signal in response to westerlies: it is therefore overall weaker during MAM. 24	
As a result, the Kf downwelling signal dominates WWV during MAM0, with a much weaker 25	
contribution of the R1f downwelling signal (Fig. 7f). From summer onward (JJA0 and later), as the 26	
El Niño grows, the R1f signal reverses sign to become an upwelling signal, strengthens and damps 27	
the Kf downwelling signal. During the El Niño peak and demise, the slower timescale of Rossby 28	
waves yields an R1f upwelling signal that fades more slowly than Kf. R1f hence explains most of the 29	
WWV initial discharge during the El Niño peak phase. Overall, WWV is hence well approximated 30	
by Kf + R1f, with a larger amplitude of Kf especially in spring prior to ENSO events, while R1f 31	
tends to become dominant towards the end of ENSO events. 32	

Spring (MAM0) is the only season when the WWV outperforms the other WWV indices as 33	
an ENSO predictor, with WWVW performing better at longer lead times, and in particular during 34	
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the previous boreal fall (SON-1). It is hence important to quantify the dominant contributors to 1	
WWV in MAM and to WWVW in SON more precisely, and in particular the relative role of fast 2	
timescales (the forced Kelvin wave) and slower ones (the forced Rossby waves, and reflected 3	
waves). Fig. 8 illustrates the relative contributions of the fast oceanic response (Kf contribution) and 4	
of slower processes (all other waves contributions) to the average WWV in MAM (Fig. 8a) and 5	
WWVW in SON (Fig. 8b) over the 1979-2017 period for the ERA-I forced LCS simulation (we 6	
chose ERA-I due to an arguably better wind reconstruction than in 20CR over the recent period, and 7	
also to have wind data until 2017, but results are similar with the 20CR-forced experiment; not 8	
shown). Contrary to Fig. 7 analysis, Fig. 8 involves no regression to an ENSO index and allows us 9	
to directly evaluate the contribution of various waves to the MAM average WWV. This analysis 10	
clearly demonstrates that the MAM WWV is indeed dominated by Kf (Fig. 8a). The Kf contribution 11	
to MAM WWV has a twice larger STD than that of the other waves and has a 0.84 correlation to 12	
WWV, while the sum of all other waves has a 0.15 correlation. This domination by Kf is 13	
particularly true for the events with a relatively high WWV in MAM, i.e. prior to all major El Niño 14	
events (1982, 1987, 1997 and 2015), and in particular before extreme El Niño events. In MAM 15	
prior to the onset of major La Niña events (e.g. 1988, 1998, 2007, 2010), the WWV is generally 16	
negative (except in 2010) but the contribution of Kf varies from one event to another: it dominates 17	
for some events like in 1988 and 1998, but slower oceanic processes (notably R1f) can also play a 18	
strong role in other instances (like in 2007) as expected from delayed negative feedbacks at the end 19	
of El Niño events in the delayed oscillator theory (Schopf and Suarez 1988; Battisti and Hirst 1989). 20	
The slow oceanic response (mainly R1f, cf. Fig. 7d) dominates the SON WWVW variability, with a 21	
much weaker Kf  contribution (~3 times weaker STD) in any ENSO phase (Fig. 8b). Overall, this 22	
section hence demonstrates the strong predominance of the fast forced Kelvin wave in the MAM 23	
WWV variations, while the SON WWVW is dominated by slower timescales (and in particular R1f). 24	

 25	
3.4 Explaining WWVW, WWVE and WWV through simple wind stress-based proxies  26	

The contributions from the K and R1 forced and reflected waves can in principle be estimated 27	
from wind stress variations during the preceding months. On the basis of the section 3.3 results, we 28	
will now examine whether WWV indices can be approximated by simple proxies based on 29	
equatorial wind stress anomalies. 30	

The above analysis suggests that WWVW is mainly driven by R1f. The typical timescale for R1 31	
to cross the basin is ~8 months for the 1st and ~14 months for the 2nd baroclinic mode. WWVW 32	
should thus be related to the time integral of the equatorial Pacific (5°N-5°S, 120°E-80°W) zonal 33	
wind stress anomaly τx over the previous ~10 months: 34	
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i.e. τ10 represents the integral of τx anomaly along the equatorial Pacific over the last 10 months. 2	
Integrating the zonal wind stress over the entire equatorial strip rather than a box more focussed on 3	
the usual forcing region in the central-west Pacific allows us also to integrate the effect of early-4	
year wind anomalies (that are shifted westward) or opposite anomalies in the east during the ENSO 5	
peak. Fig. 9a shows that -τ10 (red curve) does a reasonable job in explaining the typical observed 6	
WWVW phase relationship with ENSO (WWVW has a 0.82 correlation with -τ10 in our 20CR-forced 7	
historical LCS experiment over ~100 years; the minus sign comes from the fact that westerlies force 8	
upwelling Rossby waves). Note that similar correlations – in the 90% confidence limit – are 9	
obtained when integrating over the last ~5-14 months, i.e. the 10 months timescale is indicative. 10	
Similar results can be obtained from CMIP5 models (cf. Suppl. Fig. S6). Fig. 10a further illustrates 11	
that the time evolution of this WWVW wind proxy is able to accurately explain most of the recent 12	
observed WWVW interannual variations over the last ~35 years (corr. = 0.75). 13	

The WWVE evolution is dominated by Kf, with non-negligible, almost-in-phase (~2 months 14	
lag) R1r contribution (cf. section 3.3). The typical timescale for Kelvin wave signals to cross the 15	
basin is about 3 months (e.g. Fig. 6g). This matches qualitatively with the timescales estimated from 16	
theoretical wave speeds (2.7 months for the first baroclinic mode Kelvin wave). WWVE should thus 17	
be related to the integral of the basin-averaged 5°N-5°S zonal wind stress anomalies roughly over 18	
the previous ~3 months, noted τ3. Fig. 9b confirms that τ3 matches well the typical observed WWVE 19	
phase relationship with ENSO. And WWVE indeed has a 0.87 correlation to τ3 in our 20CR-forced 20	
historical LCS experiment over ~100 years (here the positive sign results from the fact that the 21	
westerlies force downwelling Kelvin waves; note that similar correlations – in the 90% confidence 22	
limit – are obtained when integrating over the last ~1-6 months). As shown on Suppl. Fig. S6, this is 23	
also the case for CMIP5 models, except for ENSO decay phase (possibly due to CMIP typical 24	
biases, e.g. Brown et al. 2014). Fig. 10b also illustrates that the time evolution of τ3 accurately 25	
captures most of the observed WWVE interannual variations (corr.=0.9). 26	

Finally, we have shown that the WWV evolution is dominated by the balance between the 27	
forced Kelvin and Rossby waves. As for WWVE, the Kf contribution to WWV can be roughly 28	
approximated by τ3 (Kf_WWV ≈ 6.4±0.6 x 1015 τ3; corr.= 0.88). The opposite and delayed R1f 29	
contribution to WWV can be approximated by -τ10 (R1f_WWV ≈ -6.1±0.7 x 1015 τ10; corr.= 0.81). We 30	
hence can simply sum these two forcing terms to obtain the following proxy for WWV: 31	

WWV ≈ C (τ3  – τ10)  (2) 32	
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a proxy that has a 0.64 correlation with the actual LCS WWV time series (C being a constant 1	
obtained from regression, C = 4.8 x 1015 cm.m4.N-1, for WWV in cm.m2, and τ3 and τ10 in N.m-2). 2	
This confirms that the WWV can be reasonably well explained by a combination of τ3 and the 3	
opposite delayed τ10 contribution, with the latter having a slightly-weaker amplitude (STD ratio of 4	
0.8). Note however that, as for the equation WWV ≈ Kf + R1f (cf. section 3.3), the total WWV 5	
variability is more correlated to the first term (corr. =0.44) than to the second one (corr. =-0.01). 6	
This WWV wind forcing proxy is able to accurately capture the typical WWV evolution during 7	
ENSO events in observations (Fig. 9c) and CMIP5 models (Suppl. Fig. S6). Fig. 10c further 8	
demonstrates that equation (2) explains most of the observed WWV interannual variations since 9	
1980 (corr.=0.76). 10	

Overall, we have shown in this section that the three WWV indices can be reasonably 11	
approximated through simple wind stress based proxies of the various wave contributions to sea 12	
level. WWVE is dominated by the influence of the forced Kelvin wave and almost-in-phase 13	
reflected R1r wave. WWVW is dominated by the opposite influence of the forced Rossby wave with 14	
a weaker contribution from the forced Kelvin wave. WWV combines Kf and R1f, with the Kelvin 15	
wave contribution dominating, notably in spring, at the beginning of ENSO events, explaining why 16	
the WWV then becomes the best ENSO predictor. 17	
 18	
 19	
4) Summary and Discussion 20	
4.1 Summary 21	

ENSO predictability is grounded on the ocean memory: the warm water volume (WWV), a 22	
proxy for the equatorial Pacific heat content, is a widely used predictor of ENSO. This lead relation 23	
between WWV and ENSO is usually interpreted in the context of the recharge oscillator theory as a 24	
long-term response of the equatorial heat content to wind variations during the previous years. In 25	
the present study, we have used observations, CMIP5 historical simulations, and idealized and 26	
realistic LCS experiments with a proper equatorial wave decomposition to challenge that 27	
interpretation. Idealized experiments first illustrate that the response to switched-on ENSO-like 28	
westerlies involves a fast (~3 months timescale) WWV recharge, associated with the imprint of 29	
equatorial Kelvin waves in the 5°N-5°S band. A WWV discharge only overcomes this initial 30	
recharge after 2-3 years, and is largely due to coastal Kelvin waves carrying the positive sea level 31	
anomalies poleward in the eastern Pacific, as initially suggested by Wyrtki (1985; rather than to the 32	
Sverdrup transport discharge effect suggested by Jin 1997a,b). Since there are energetic variations 33	
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of wind stress in the central Pacific at intraseasonal to interannual timescales, this simple 1	
experiment suggests that equatorial Kelvin waves may dominate the short-term WWV variations. 2	

We then demonstrate that the WWV variations in experiments forced by realistic wind stresses 3	
are dominated by forced waves, due to the almost exact cancellation of reflected waves 4	
contributions. Since first-baroclinic mode first-meridional mode Rossby waves typically take 10 5	
months to cross the basin, this provides an upper limit to the WWV adjustment timescale. We 6	
further show from observations, LCS experiments and CMIP5 models that WWV serves as the best 7	
predictor of the upcoming ENSO event only in spring (MAM0): WWVW performs better at longer 8	
lags, and WWVE or Niño3.4 SST perform better at shorter lags. In MAM0, WWV variations are 9	
dominated by the downwelling Kelvin wave contribution in response to wind anomalies during the 10	
preceding 3 months (i.e. the forced Rossby wave contribution to WWV is relatively weak in 11	
MAM0). More specifically, the WWV at this time does not generally reflect the influence of the 12	
previous phase of the ENSO cycle, as opposed to what was suggested by the summarizing sketches 13	
in Jin (1997a,b) and Meinen and McPhaden (2000). 14	

The best ENSO predictor at 10 to 18 months lead times (i.e. before ENSO spring predictability 15	
barrier) is the WWVW. At these lead times, the WWVW build-up is dominated by the first and 16	
second baroclinic modes first meridional mode Rossby wave R1f. This is further confirmed by the 17	
good match between the WWVW and the integral of equatorial Pacific-averaged zonal wind stress 18	
anomalies over the last 10 months τ10 (e.g. 0.75 correlation in observations, cf. Fig. 10a). WWVW 19	
hence contains information about wind anomalies during the previous ENSO phase. 20	

Based on the above results, we suggest, as initially put forward in Wyrtki (1985) and in Jin 21	
(1997a,b) analytical development, that the WWVW is a better index of the long-term ocean memory 22	
from the previous ENSO phase than WWV, which largely reflects the shorter-term (~3 months 23	
timescale) equatorial Kelvin wave response to wind anomalies during the early stage of an 24	
upcoming ENSO event. 25	

 26	
4.2 Discussion 27	

The spring WWV is used as an index of the long-term memory of ENSO in the framework of 28	
the recharge oscillator theory in many studies (e.g. Meinen and McPhaden 2000; Kessler 2002; 29	
Clarke and Van Gorder 2003; Lengaigne et al. 2004; McPhaden et al. 2006; Fedorov et al. 2014; Hu 30	
et al. 2014; McGregor et al. 2016; Puy et al. 2017; Neske and McGregor 2018). Our results indicate 31	
that spring WWV is not a relevant index to describe the slow equatorial heat content build-up that 32	
results from easterly anomalies and leads to a phase transition in the recharge oscillator theory. We 33	
indeed show that WWV in boreal spring is mainly influenced by forced Kelvin waves, which have a 34	
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timescale of ~3 months, in agreement with McGregor et al. (2016), Zhu et al. (2017) and Neske and 1	
McGregor (2018) who found that equatorial or off-equatorial westerly wind stress anomalies can 2	
induce a rapid WWV recharge through Ekman convergence during ENSO onset. All of these 3	
studies however still interpret the WWV as an index of the long-term memory of ENSO in the 4	
framework of the recharge oscillator paradigm, despite the temporary nature of this recharge. Those 5	
results however imply that spring WWV contains more information from wind variations during the 6	
last few months than during the previous year, i.e. during the previous ENSO phase. Our study does 7	
not imply that the recharge oscillator theory is incorrect. While reflected waves do not contribute to 8	
WWV because they cancel out, they indeed have significant impacts on thermocline variations near 9	
both boundaries and zonal currents throughout the basin (cf. Suppl. Fig. S7), and hence can affect 10	
SST (and the Bjerknes feedback) through the thermocline and zonal advective feedbacks (e.g. 11	
Picaut et al. 1997; Vialard et al. 2001; Izumo et al. 2016 among others). Our study rather implies 12	
that spring WWV is not a good measure of the slow recharge of this theory, with fall WWVW being 13	
a better measure of it. The fact that WWV is not an appropriate measure of the long-term recharge 14	
invoked in the recharge oscillator could for instance explain why recent studies have questioned the 15	
relevance of the recharge oscillator on the basis of the analysis of WWV variations (Linz et al. 16	
2014; Graham et al. 2015; Lu et al. 2017). 17	

The comprehensive quantification of the different wave contributions to the WWV evolution in 18	
the present study demonstrates that the WWV is dominated by its short-term component. A recent 19	
study (Neske and McGregor 2018) quantified the contribution from the instantaneous wind 20	
response to the WWV evolution and found that roughly half of the WWV variations arise from 21	
wind forcing in the past three months. While the two studies agree qualitatively, our study suggests 22	
a larger contribution of fast timescales. This may arise from several causes. First, we use a different 23	
methodology from Neske and McGregor (2018) to isolate fast timescales. Neske and McGregor 24	
(2018) do not separate contributions from the Kelvin/Rossby and forced/reflected waves as in the 25	
present study, and rather define the instantaneous contribution as the signal induced by the wind 26	
over the last three months. This “instantaneous” response mixes Kf and R1f as well as a part of the 27	
reflected waves (Kelvin waves can cross the basin in less than 3 months). Second, there is a 28	
significant contribution from the 2nd baroclinic mode to WWV variability in our study, that is 29	
neglected by the Neske and McGregor (2018) shallow water model. Many past studies (e.g. Chen et 30	
al. 1995; Boulanger and Menkes 2001; Shu and Clarke 2002; Izumo et al. 2016; Zhang and Clarke 31	
2017) have shown the importance of the second baroclinic mode for ENSO-related equatorial 32	
thermocline depth variations. Including the 2nd baroclinic mode in our model increases the 33	
dominance of Kf, since Kf,2 is fast enough to be rather in-phase with Kf,1 and amplifies it, while the 34	
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slower R1f,2 does not, being less in phase with R1f,1 (not shown). Due to those methodological 1	
differences, it is not straightforward to compare our results with Neske and McGregor (2018) 2	
quantitatively, but they both qualitatively indicate that at least half of the WWV variance has a fast 3	
timescale. 4	

In agreement with some previous studies (Wyrtki 1985; Ramesh and Murtuggude 2013; Lai et 5	
al. 2015; Graham et al. 2015; Ballester et al. 2015, 2016), our results indicate that the slow 6	
preconditioning rather occurs in the western Pacific. We also demonstrate that the WWVW 7	
evolution can be largely explained by the wind stress forcing over the preceding ~10 months (this 8	
integration period can be varied over the last 5 to 14 months with a statistically indistinguishable 9	
skill). This result may however appear to be a bit inconsistent with the analytical results of Fedorov 10	
(2010), which indicated that the WWVW can be approximated by the temporal integral of the zonal 11	
wind stress forcing over a longer period (plus a weaker faster tilt mode contribution). Our 10 12	
months timescale is indeed shorter than the observed ENSO half-period (~4-5 years/2), suggesting 13	
that the WWVW index may not fully capture ENSO long-term recharge processes. The fast oceanic 14	
adjustment over the equatorial band may explain why the current WWVW index is largely explained 15	
by the wind variations over the preceding 10 months. Fig. 3 however shows that the OHC 16	
preconditioning in fall before ENSO onset not only occurs over the western equatorial Pacific but 17	
also over the southwest Pacific, a region not encompassed in the current WWVW index. The 18	
influence of this region on ENSO evolution has already been suggested in previous studies (e.g. 19	
Alory and Delcroix 2002; Cibot et al. 2005; and in Wen et al. 2014, but only in spring). Preliminary 20	
analyses suggest that a WWVW extended to the southern Pacific, where off-equatorial Rossby 21	
waves propagation are slower, may indeed be a better index (notably in previous fall before ENSO 22	
onset) to fully integrate the wind information and capture the slower long-term recharge related to 23	
the recharge oscillator theory. 24	

Our results are robust when we use different choices for analysing the LCS model results. Our 25	
results are unaffected irrespectively of whether we use an open/closed throughflow to the Indian 26	
Ocean (and the variations of the WWV indices are equally realistic in both cases), of the dissipation 27	
timescale used in the model, when using different wind forcing products (see e.g. Suppl. Fig. S7, 28	
equivalent of Fig. 6 for ERAI-forced LCS), or when analysing the results over a different period. 29	

Our results demonstrate that WWVW is the best oceanic predictor of ENSO at long-lead (>10 30	
months) in all the datasets we analysed (observations, ocean reanalyses, LCS experiments forced by 31	
different wind products, CMIP simulations). The physical mechanisms by which WWVW can 32	
favour an ENSO onset/phase transition is however still unclear. The original recharge theory 33	
suggested that a recharged state would favour positive thermocline depth anomalies and warmer 34	
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SST through the thermocline feedback. The thermocline variability in the western Pacific indeed 1	
weakly influences SST there, due to the thermocline being very deep in that region. The 2	
thermocline feedback however mostly operates in the eastern Pacific where the thermocline is 3	
shallow (e.g. Vialard et al. 2001), whereas SST is the closest to the deep atmospheric convection 4	
threshold (e.g. Graham and Barnett 1987), and hence favourable to induce an atmospheric response, 5	
in the western-central Pacific. Therefore, identifying the mechanism that acts to link a recharged 6	
WWVW with SSTA in the central Pacific is the next challenge. Some studies have suggested that 7	
heat content variations could influence central Pacific SST through zonal current anomalies (e.g. Jin 8	
and An 1999; Zhang et al. 2007). Recent studies have also suggested that the subsurface zonal 9	
advection of western Pacific heat content anomalies by the equatorial undercurrent could also play a 10	
role (Ballester et al, 2016). There is hence yet no consensus on the precise mechanisms through 11	
which a recharge/discharge in the western Pacific at the end of the year could influence central 12	
Pacific SSTA during the following spring. We hope that the present study will provide some 13	
guidance for future studies attempting to ground the lead relation of equatorial Pacific heat content 14	
anomalies to ENSO with physical explanations that are compatible with observations. 15	
 16	
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	 	 	 	 	 	 TABLE	AND	FIGURES	
	
	
	

	 baroc.	1 baroc.	2 	baroc.	3	 	K1+2+R11+2	 Residual	=		
Total	-	K1+2-R11+2	 

WWVw 58% 33% 9%	 86%	 14% 

WWVE 53% 36% 11%	 96%	 4% 

WWV 69% 26% 5%	 99%	 1% 

Table	1	:	%	of	contribution	obtained	from	the	regression	coefficient	of	each	contribution	onto	
total	signal,	for	each	index,	in	the	historical	LCS	experiment	forced	by	20CR	windstress.	

	 	



	
	

	
	

Fig.	 1.	 Lead-lag	 correlation	 of	 WWV	 indices	 with	 ENSO	 peak.	 	 (a)	 Lag-correlation	 of	
TAO/TRITON/BMRC	 T300-based	WWVW	 (purple),	 WWVE	 (black)	 and	WWV	 (green),	 as	 well	 as	
Niño34	SST	(dashed	black)	with	Niño3.4	SST	in	NDJ0	(in	the	entire	paper,	the index makes reference 
to the central month of the period, with 0 designating the year of the ENSO onset and growth, and -1 and 
1 the previous and next years respectively)	 over	 the	 1980-2017	 period.	 Negative	 lags	 (in	months)	
mean	that	e.g.	WWV	leads	Niño3.4	index.	(b)	Same	as	(a)	but	for	SLA-based	WWV	from	historical	
observations/reanalysis	 over	 the	 1900-2008	 period.	 (c)	 Same	 as	 (b),	 but	 for	 20CRv2	 LCS	
simulation	over	the	1900-2008	period.	d)	Same	as	b,	but	 for	CMIP	MMM	(Multi-Model	Mean)	 for	
historical	 runs	 over	 the	 1861-2005	 period	 (here	 the	 multi-model	 mean	 of	 the	 lag-correlation	
computed	 for	 each	model	 separately	 is	 shown).	 Correlations	 that	 are	 different	 from	 zero	 at	 the	
90%	confidence	level	for	observations/reanalysis	and	LCS,	and	the	70%	sign	consistency	level	for	
CMIP	 MMM,	 are	 marked	 using	 crosses/dots.	 Shaded	 purple,	 green	 and	 grey	 vertical	 bars	
respectively	highlight	SON-1,	MAM0	and	NDJ0	.	
	

	 	



	
Fig.	 2.	 Validation	 of	 LCS	WWV	 indices.	Anomalous	 time	 series	 for	 normalised	 (a)	WWVW,	 (b)	
WWVE	and	(c)	WWV	based	on	T300	from	TAO/TRITON/BMRC	(black)	and	based	on	SLA	from	ERA-
I	 (blue)	 or	 20CR	 (green)	 wind-forced	 LCS	 experiments.	 All	 time	 series	 are	 linearly	 detrended.	
Correlations	between	each	of	the	three	datasets	are	given	on	the	top	of	each	panel.		

	 	



	
	

	

	
Fig.	3.	Precursory	SLA	signals	before	and	during	ENSO	onset.	(Top)	SON-1,	(middle)	DJF0	(Dec-1	
to	Feb0),	(bottom)	MAM0	SLA	(color),	SSTA	(SST	anomalies,	contours)	and	wind	stress	anomalies	
(vectors)	 regressed	 onto	 normalized	 NDJ0	 (Nov0	 to	 Jan1)	 Niño3.4	 SSTA	 in	 SODA	 reanalysis.	 Left	
panels	correspond	to	simple	regression	analyses	while	right	panels	display	partial	regressions,	 in	
which	previous	year’s	ENSO	influence	has	been	removed	(i.e.	signals	independent	of	the	influence	
of	Niño3.4	in	SON-1).	Units	are	cm	for	SLA,	°C	for	SSTA	and	N.m-2	for	wind	stress.	Signals	are	shown	
only	if	they	are	statistically	significant	at	the	90%	level.	Boxes	defining	WWV	indices,	and	equator,	
are	shown	in	black.	
	 	



	
	

	

	
Fig.	 4.	 Equatorial	 longitude-time	 SLA	 evolution	 for	 the	 idealized	 LCS	 switch-on	westerlies	
experiment.	 (a)	 Equatorial	 (5°N-5°S)	 SLA	 from	 idealized	 LCS	 experiment	 (in	 cm).	 Contribution	
from	b)	K1,	c)	R11,	e)	K2,	 f)	R12	to	the	SLA	signal	shown	in	panel	a.	The	vertical	line	indicates	the	
boundary	 between	 the	WWVE	 and	WWVW	boxes.	 The	 horizontal	 dashed	 lines	 indicate	 the	 dates	
(after	 2.5	months	 and	 3	 years)	 of	 the	 snapshots	 in	 Figure	 5bc.	 (d)	 Gaussian	 zonal	 profile	 of	 the	
zonal	wind	stress	 forcing	 for	 this	 idealized	experiment	 starting	 from	 January,	Yr0	averaged	over	
5°N-5°S.		
	

	 	



	

Fig.	5.	Response	of	 the	WWV	indices	 in	the	 idealised	LCS	switch-on	westerlies	experiment.	
(a)	Temporal	evolution	of	WWV	(green),	WWVE	(black),	WWVW	(purple).	(b)	SLA	snapshot	at	the	
time	of	the	maximum	of	the	WWV	temporary	recharge,	i.e.	2.5	months	after	westerlies	are	switched	
on.	(c)	Same	as	(b)	but	when	the	quasi-stationnary	state	has	been	reached	in	the	equatorial	band,	
i.e.	3	years	after	westerlies	are	 switched	on.	Units	are	 in	 cm	 for	SLA	maps	and	 in	1013	cm.m2	 for	
WWV	indices.	Boxes	of	these	indices,	and	equator,	are	shown	in	black.		

	 	



	
Fig.	6.	Lag-regression	onto	normalised	Niño3.4	SST	in	NDJ0	for	(a)	the	total	5°S-5°N	20CR	LCS	
SLA	(cm,	colors)	during	1900-2008,	the	contributions	from	the	(b)	forced	and	(c)	reflected	signals,	
(d)	the	forced	K1+2,f,	(e)	its	reflection	at	the	eastern	boundary	into	reflected	R11+2,r,	(f)	forced	R11+2,f	
and	(g)	 its	reflection	at	the	western	boundary	into	reflected	K1+2,r.	 In	all	panels,	zonal windstress 
(in	 10-2N/m2)	 is	 overlaid	 as	 black	 contours.	 The	 vertical	 axis	 denotes	 the	 lag	 in	 months	 (same	
convention	as	in	Fig.	1).	Vertical	dashed	lines	represent	the	155°W	boundary	between	WWVW	and	
WWVE	 regions.	 Shaded	 pink	 highlights	 SON-1,	 shaded	 green	 shows	 MAM0.	 Blue	 horizontal	 line	
represents	next	MAM1,	when	ENSO	event	and	related	westerlies	have	terminated.		 	



	 	 	

 	
Fig.	 7.	 Contribution	 of	 directly-forced	 and	 reflected	waves	 to	 all	 three	WWV	 indices.	 Lag-
regression	onto	normalised	ENSO	index	of	(left)	WWVW,	(middle)	WWVE	and	(right)	WWV	(full	in	
black)	 and	 the	 respective	 contribution	 of	 the	 directly-forced	 (red)	 and	 reflected	 (green)	 signals	
(upper	 panels),	 further	 decomposed	 into	 K1+2	 (crosses)	 and	 R11+2	 (circles)	 in	 the	 lower	 panels.	
Based	 on	 20CR-forced	 LCS.	 All	 curves	 divided	 by	 the	 full	WWV	 STD	 (thus,	 left+middle	 columns	
curves	=	right	column	curves).			

	 	



 

 
Fig.	8.	The	main	wave	contributions	to	recent	variations	of	(a)	WWV	in	MAM	and	(b)	WWVW	
in	SON.	a)	ERAI-forced	LCS	WWV	in	MAM,	and	the	contributions	of	Kf	(i.e.	rapid	oceanic	response;	
red)	and	all	other	waves	(i.e.	slower	oceanic	response,	the	residual	WWV-Kf;	green).	Values	during	
El	Niño	years	are	highlighted	as	circles,	and	La	Nina	years	as	squares.	Time	series	of	Niño3.4	SST	in	
following	NDJ	is	shown	as	an	inset	on	the	top	of	each	panel	(black	line	with	crosses;	SST	levels	in	oC	
are	shown	on	right	vertical	axis),	shifted	backward	by	8	months	to	match	the	MAM	values.	b)	same	
for	WWVW	in	SON;	Niño3.4	SST	is	shifted	here	by	14	months	(e.g.,	in	panel	b,	the	Nov.1997-Jan.1998	
value	of	Niño3.4	is	shown	on	SON	1996).	
	



	Fig.	 9.	 Lead-lag	 correlation	 as	 Fig.	 1b	 (historical	 observations/reanalysis),	 but	 now	with	 the	
different	wind	 forcing	 terms	explaining	 the	WWVW	 (left	 column),	 the	WWVE	 (middle)	 and	
the	 WWV	 (right).	 a)	WWVW	(black)	 and	 -τ10	 (red).	 b)	WWVE	 (black)	 and	�3 (red).	 c)	WWV	
(black)	and	τ3 –	τ10 (red,	 cf.	 equation	3).	Equatorial	Pacific	τx is	 shown	 in	all	panels	 for	 reference	
(blue).		

	 	



	
Fig.	 10.	 Explaining	 recent	 observed	WWV	 indices	 variations	with	 the	wind	 forcing	 terms.	
Anomalous	 time	 series	 of	 normalised	WWVW,	WWVE	 and	WWV	 from	TAO/TRITON/BMRC	T300	
observations	(black),	and	their	related	normalised	wind	proxies	(red,	from	ERAI): a) -τ10; b) τ3; c) 
τ3–	τ10 (correlation	given	within	each	panel).		All	time	series	are	detrended.	
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Boundary conditions used within the LCS to separate directly-forced and reflected waves 

To separate quantitatively the directly-forced and reflected equatorial waves, we have conceived an 

additional LCS experiment with dampers (dampers defined as in e.g. McCreary et al. 1996, Suresh et al. 

2016). The sensitivity experiments with “no reflections” apply dampers from 65°S to 65°N over areas 

which are normally land in the control experiment, i.e. west of 120°E and east of 80°W. The damping 

coefficient is ramped at the land-sea boundary in order to avoid numerical instabilities. The control 

experiment minus the “no reflection” experiment provides an estimate of reflected signals. In order to 

demonstrate that this simple approach successfully separates the forced and reflected signals, we show the 

results of the decomposition in Figure S1 below, for an idealised experiment with a short wind burst 

applied in the central Pacific. As can be seen in panel c, the reflected contributions look exactly as they are 

supposed to look, confirming that our approach to separate reflected signals is appropriate. 

 

 
Figure S1: Hovmüller of the SLA response (cm) averaged over 5°N-5°S to an idealised westerly pulse 

lasting 10 days, in early January (same Gaussian spatial pattern as the one described in Fig. 4d) for (left) 

the full experiment, (middle) the experiment with no wave reflection (i.e. with dampers at both western 

and eastern boundaries) and (right) their difference (i.e. the reflected signals).  

Main message: The forced and reflected waves look similar to the expected theoretical solution, 

underlining the relevance of the method to separate the forced and reflected contributions.  



 

Figure S2. Equivalent to Fig. 7, but for El Nino composites (1st and 2nd rows) and La Nina composites 

(with a -1 sign, for easier comparison; 3rd and 4th rows). Years are defined as El Niño or La Niña when 

Niño3.4 SST anomaly in NDJ is larger than 2/3 of its interannual standard deviation STD, i.e. 

approximately the quartile on each side of the distribution).  

Main message: the results remain at first order valid for both ENSO phases, in observations as well as in 

CMIP MME (not shown), with only some 2nd order assymetries. Notably, the slow western Pacific 

recharge/discharge preconditionning tends to be sligthly stronger before a La Niña, implying that El Niño 

is harder to predict than La Niña from WWVW, but is still mostly due to R1f. At the end of an El Niño, the 

western Pacific discharge tends to be stronger than the recharge at the end of a La Niña event (but still 



mostly due to R1f), and the WWV has a larger and earlier sign reversal due to a larger R1f contribution 

counteracting Kf, likely because the El Niño westerly anomaly is stronger than the La Niña easterly 

one. We are currently investigating in more details these asymmetries, likely larger for extreme events 

(Planton et al., in prep.). 

 

 

 

 
Fig. S3. As Fig. 3 (SLA in colors, SST in black contours), but for CMIP MMM. Signals only shown 

when sign is consistent in at least 70% of the CMIP models. 

Main message: CMIP5 simulations agree qualitatively well with observations, which reaffirms that the 

processes controlling the SLA are generally similar in these climate models. 

  



 
Fig. S4. Role of leakage to high-latitudes for WWV long-term recharge/discharge. As Fig. 5a, i.e. for 

the idealised LCS switch-on westerlies experiment, but here for WWV within the 15°N-15°S band 

excluding the equatorial 5°N-5°S band (i.e. 15°S-5°S plus 5°N-15°N bands, blue), all WWV out of 15°N-

15°S band (green) and its west (purple) and east (of 155°W, black, including WWV gone to Atlantic) 

contributions.  

Main message: understanding such idealised switch-on experiment - which is exactly the temporal 

integral of the impulse response shown in Izumo et al. (2016) thanks to linearity - is important for 

understanding the fundamental processes at play. The oceanic response to any temporal evolution of the 

ENSO-like τx pattern will be exactly the convolution with the LCS impulse response, thanks to LCS 

linearity (and to the quasi-linearity of ocean dynamics for the processes analysed here; e.g. Izumo et al. 

2016).  

Suppl. Fig. S4 shows that the long-term recharge/discharge of the equatorial band is due to leakage to 

subtropics and mid-latitudes through the east Pacific coastal waveguides, in the switched-on westerlies 

idealised experiment. The WWV within the 15°N-15°S band excluding the equatorial 5°N-5°S band, in 

blue, shows a long-term discharge in the case of switched-on westerlies, while the contrary would be 

expected if the long-term discharge of the equatorial band WWV were due to meridional Sverdrup 

transport at 5°N and 5°S, as hypothesized by Jin et al. (1997ab), or to Rossby waves forcing near the 

equator (Zhu et al. 2017). The long-term recharge explaining the equatorial band discharge is actually out 

of the 15°N-15°S band, and in the east Pacific only, and is caused by the leakage to subtropics and mid-

latitudes through the east Pacific coastal waveguides (poleward coastal Kelvin waves, and the Rossby 

waves then emited westward along their path, cf. Fig. 5c; a leakage ~2 times larger towards the south of 

15°S than to the north of 15°N; not shown), as suggested by the original recharge theory of Wyrtki (1985). 

Hence, the long-term discharge after 5 years, when measured over a wider 15°N-15°S tropical band (as in 

Wyrtki 1985), is ~5 times larger than the usual 5°N-5°S WWV, and completely dominates the temporal 

evolution of “tropical 15°N-15°S WWV”. These results further question the relevance of using the usual 

WWV for the recharge oscillator paradigm. 

  



 

 

Fig. S5. The waves dominating WWVW, WWVE and WWV.  Time series of ERAI-LCS WWV indices 

(black), confirming the approximations (purple; each wave separately in red/green) chosen in section 3.3.  



 
Fig. S6. As Fig. 9, but for CMIP MMM. Crosses/dots only shown when sign is consistent in at least 

70% of the CMIP models. 

Main message: for CMIP MMM, there is also a qualitative agreement between the WWV indices and 

their respective wind forcing. It is however slightly less accurate than that for observations. E.g. the actual 

WWVW decreases later than WWVW wind proxy, -τ10, during ENSO onset. This mismatch is certainly 

related with the tendency of most CMIP models to exhibit a typical cold tongue bias and related westward 

shift of ENSO-related wind stress (e.g. Bellenger et al. 2013, Brown et al. 2014). The westerly-induced 

downwelling Kf at ENSO onset is then shifted to the west (cf. Suppl. Fig. S3) compared to observations, 

having thus more weightage on the WWVW box and competing more with upwelling R1f wave. There is 

another mismatch, between WWVE and its proxy τ3 during ENSO decay phase, maybe because the 

negative contribution of the upwelling reflected Kelvin wave Kr to WWWE is not well captured. 



 
Fig. S7. Dominance of the zonal advection delayed negative feedback on the thermocline one. As Fig. 

6a,b,c, but here for ERAI-forced LCS SLA (shading in upper panels, cm) and zonal current in the upper 

100m (shading in lower panels, cm/s), and for ERAI zonal windstress (contours).  

Main message :  

Upper panels show that results remain similar for ERAI-forced LCS (1979-2017), as compared to 20CR-

forced LCS over a much longer period (1900-2008, cf. Fig. 6), with slightly stronger amplitudes, due to 

stronger windstress (due possibly to the stronger El Nino events that occured in the recent period, and 

likely also to better observational constraints).  

Comparing these upper panels with the lower ones for the upper layer zonal current U allows us to 

compare thermocline and zonal advection delayed negative feedbacks. Concerning the phase transition 

after an ENSO peak, e.g. an El Niño, upper panels suggest that the upwelling Kr effect on eastern Pacific 

thermocline depth, i.e. the delayed negative feedback at the heart of the delayed oscillator paradigm (Shopf 

and Suarez 1989, Battisti and Hirst 1989), is weak, being counteracted by the downwelling R1r. The 

reversal of SLA anomaly only appears in central-eastern Pacific around lag +8 (i.e. JAS+1), and is actually 

mainly due to Kf forced by the wind reversal. Conversely, there is a strong delayed negative impact of this 

downwelling R1r on U (with an additionnal, but weaker, effect of upwelling Kr on U), at the heart of the 

advective-reflective oscillator paradigm (Picaut et al. 1997), suggesting that this latter one may be 

generally dominant for short term delayed negative feedback on 5°N-5°S SST, rather than the original 

delayed oscillator (in agreement with earlier studies, e.g. Izumo et al. 2016), and hence for explaining the 



termination of an ENSO event. Concerning the ENSO onset (before spring, i.e. lag -10 and earlier), while 

the positive zonal currents related to R1r seem to play a favourable role, it is difficult, from our present 

analyses, to isolate its effect on SST from the WWVW build-up effect, that could also play a role, possibly 

more through thermocline depth anomalies. 

 

 

Additional discussion on the use of WWV in autumn as a precursor of following year’s ENSO 

One may wonder why WWV has still been a useful precursor in autumn (e.g. SON-1) of following year’s 

ENSO (e.g. Clarke and Van Gorder 2003, Izumo et al. 2010, 2014, Dayan et al. 2014, Jourdain et al. 

2016), in apparent contradiction with the WWV non-significant correlation in SON-1 shown in Fig. 1. 

Actually, for the OHC component independent of the zonal tilt mode, Fig. 3b shows that the WWV region, 

in SON-1, still captures part of the long-term preconditionning. Hence, when WWV is combined with the 

Indian Ocean Dipole (itself correlated with ENSO and the zonal tilt mode, not shown) through linear 

regression in these previous studies, it is actually this independent component of WWV that brings added 

predictability to the system (not shown).  

  



 

   

 

Institute name Model name 
BCC bcc-csm1-1 

 bcc-csm1-1-m 

CCCma CanCM4 

 CanESM2 

CMCC CMCC-CESM 

 CMCC-CM 

 CMCC-CMS 

CNRM-CERFACS CNRM-CM5 

 CNRM-CM5-2 

CSIRO-BOM ACCESS1-0 

 ACCESS1-3 

CSIRO-QCCCE CSIRO-Mk3-6-0 

FIO FIO-ESM 

INM inmcm4 

IPSL IPSL-CM5A-LR 

 IPSL-CM5A-MR 

 IPSL-CM5B-LR 

LASG-CESS FGOALS-g2 

LASG-IAP FGOALS-s2 

MIROC MIROC5 

 MIROC-ESM 

 MIROC-ESM-CHEM 

MOHC HadGEM2-CC 

MRI  MRI-CGCM3 

 MRI-ESM1 

NASA-GISS GISS-E2-R 

 GISS-E2-R-CC 

NCC NorESM1-M 

 NorESM1-ME 

NOAA-GFDL GFDL-CM2p1 

 GFDL-CM3 

 GFDL-ESM2G 

 GFDL-ESM2M 

NSF-DOE-NCAR CESM1-CAM5 

 

Table S1 : CMIP5 models used in the present study. The 34 models, for which we have SST, SLA and 

windstress available in their historical runs (at least over the 1861-2005 historical period, except CanCM4 

starting in 1961).  

 


