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Thanks to considerable progress in quantum techniques, it has been possible to redefine all 
SI base units from fundamental constants. A last challenge is to produce a unified frame-
work for fundamental metrology in which all base quantities and relevant fundamental 
constants appear naturally and consistently. We suggest a generalized 5D framework in 
which both gravito-inertial and electromagnetic interactions have a natural geometrical 
signification and in which all measurements can be reduced to phase determinations by 
optical or matter–wave interferometry. The corner stones of this unification are action and 
entropy. The connection is made with Kaluza’s 5D theory and Planck’s natural units.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

L’année 2018 a été celle du renouvellement complet du système d’unités, avec l’ambi-
tion d’établir un système pérenne, universel et cohérent. Ce système se caractérise par 
l’abandon des artefacts pour se fonder uniquement sur les constantes fondamentales de la 
Physique [1–3]. La cohérence sous-jacente du système proposé et la notion de constante 
fondamentale seront discutées. Un système d’unités naturelles a été introduit par Max 
Planck en 1899. Il est fondé sur cinq constantes fondamentales, h̄, kB, c, G , ε0. Les deux 
premières concernent respectivement les mouvements cohérents et la décohérence ther-
mique dans l’espace des phases au moyen des concepts d’action et d’entropie. Les trois 
dernières précisent la géométrie de cet espace en présence d’interactions gravitationnelles 
et électromagnétiques. Cette géométrie est celle d’un espace à cinq dimensions introduit 
par Theodor Kaluza en 1921 [4]. Les progrès considérables des interféromètres à ondes de 
matière dans les domaines atomique et électrique imposent aujourd’hui un nouveau sys-
tème, dans lequel les deux dernières constantes sont plutôt une différence de masse entre 
les niveaux d’un même atome et la charge de l’électron. La cinquième dimension est alors 
le temps propre donné par les horloges atomiques. Le lien entre les deux systèmes fait in-
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tervenir la constante de structure fine et son équivalent gravitationnel. Le système proposé 
apparaît alors comme le meilleur compromis, dans l’état actuel de nos connaissances.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction: what framework for fundamental metrology?

This framework is naturally the one imposed by the two great physical theories of the 20th century: relativity and quan-
tum mechanics. These two major theories themselves have given birth to quantum field theory, which incorporates all their 
essential aspects and adds those associated with quantum statistics. The quantum theory of fields allows a unified treatment 
of fundamental interactions, especially, of electroweak and strong interactions within the standard model. General Relativity 
is a classical theory; hence, gravitation remains apart and is reintegrated into the quantum world only in the recent theo-
ries of strings. We do not wish to go that far and we will keep to quantum electrodynamics and to the classical gravitation 
field. Such a framework is sufficient to build a modern metrology, taking into account an emerging quantum metrology 
[1–3]. Of course, quantum physics has been operating for a long time at the atomic level, for example in atomic clocks, 
but now it also fills the gap between this atomic world and the macroscopic world, thanks to the phenomena of quantum 
interferences, whether concerning photons, electrons, Cooper pairs or, more recently, atoms in atom interferometers [5–10]. 
The main consequence of this evolution is that all base units can now be redefined by fixing the values of fundamental 
constants having a dimension, such as c, h, kB... whereas constants without dimension such as the fine structure constant α
cannot be arbitrarily fixed.2

1.1. Fundamental constants and symmetries

Some quantities transform into each other in symmetry transformations, thus reflecting a common nature. If independent 
units have been chosen for the corresponding quantities, a fundamental constant appears as a result of this arbitrary choice. 
This is the case for space–time coordinates connected together by rotations or by Lorentz transformations or else to proper 
time as a result of gauge transformations. Other pairs of quantities can be shown to be equivalent once their common 
nature is understood and recognized. This is the case of energy and thermal excitation. This equivalence is responsible for 
the Boltzmann constant. Similarly, mass is equivalent to a proper frequency through Planck’s constant. In all these cases, the 
resulting constant may be fixed (and even in some cases set equal to unity). Finally nature imposes some systems for which 
a quantity is quantized hence becoming universal and reproducible for identical objects. This is the case of atomic levels or 
of the mass of elementary particles, thus imposing a unit of time.

1.2. Geometry and numbers

Most base quantities of metrology, length, time, mass, electrical quantities, temperature, are ultimately measured by op-
tical or matter–wave interferometers. Optics and quantum mechanics play a central role in the description of these devices. 
As a consequence, future fundamental metrology will deal essentially with phase measurements i.e. invariant numbers. One 
should also emphasize the non-commuting character of quantities like mass and proper time, which is a reason why Planck’s 
constant has such a special place in the system of units. Base quantities should be quantum observables. Some appear as 
base quantities with their conjugate partner (e.g., mass and proper time), others do not (e.g., position coordinate and mo-
mentum). The quantum-mechanical link between conjugate quantities does not allow any more to leave Planck’s constant 
out of the system of units. Quantum measurement theory becomes essential to explore the limits of the new metrology.

A natural 5D theoretical framework for the redefinition of the SI is presented, in which a clear separation is made be-
tween proper time (observable!) and time coordinate (not observable!) as distinct quantities sharing the same unit. The role 
of the electromagnetic field is to couple space–time and proper time coordinates through the corresponding off-diagonal 
components of the metric tensor. The 5D action gathers all phenomena and constants of interest for a fully relativistic quan-
tum metrology in an invariant phase through Planck’s constant and this includes the dephasing arising from gravito-inertial 
fields (e.g., the Sagnac effect or the effect of gravitational waves) as well as those of electromagnetic origin (such as the 
Aharonov–Bohm or the Aharonov–Casher effect).

1.3. Action and entropy

Owing to its link with the quantum mechanical phase through Planck’s constant, the concept of action therefore plays 
the central role in the new metrology. Mass is directly connected to Planck’s constant, not only in atomic clocks phases but 

2 These constants are ratios of quantities with identical units and they have to be measured and in some cases can be calculated.
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Fig. 1. Coherent and incoherent motions lead to adimensional factors that may be expressed and classified with Planck and Boltzmann constants along the 
sides of this triangle.

also in the recoil shift [11,12,16], now accessible with high accuracy by atom interferometry [14,15].3 Our new system of 
units cannot escape the fact that mass and time units are directly coupled through the natural standard of action which is 
Planck’s constant. This link is further reinforced by the possibility today to extend this connection to the macroscopic world 
thanks to silicon spheres [19,20] and to the watt balance [21].

Statistical mechanics permits to go from probabilities to entropy thanks to another dimensioned fundamental constant, 
Boltzmann’s constant kB. By analogy with the case of Planck’s constant, it seems natural to fix Boltzmann’s constant kB . 
Indeed, there is a deep analogy between the two “S ’s” of physics, which are action and entropy (illustrated in Fig. 1). They 
provide respectively the phases and the amplitudes for the density operator [22]:

ρ =
∑
ψ

pψ |ψ〉 〈ψ |

The corresponding conjugate variables of energy are respectively time for the Liouville–von Neumann equation and recipro-
cal temperature in the Bloch equation.

The link between atom interferometry and the Doppler broadening of line shapes by the thermal motion of atoms is 
established in reference [13] which brings the connection between phase and temperature measurements. The thermal 
motion of atoms is responsible for a loss of phase coherence and the Doppler broadening may be seen as a limited visibility 
of interference fringes. The relative Doppler width is indeed a measure of entropy4 and is one of the methods that have led 
to a satisfactory determination of the Boltzmann constant [23].

In order to compute action and entropy, we need to know the full 5D geometry and then from the expressions of action 
and entropy, we can obtain the density operator and hence the average value of any quantity.

2. From 4 to 5 dimensions: proper time interval and mass as a conjugate pair for a 5-dimensional optics

Matter–wave interferometry started with electrons and neutrons, for which a pure space–time description is sufficient in 
analogy with ordinary interferometry of light waves. However, an extra phase factor is required for these massive particles, 
which is provided by the action. Since, for these particles, mass is a constant of motion, the corresponding phase is simply 
proportional to the proper time interval along each path. When it comes to atoms or molecules, mass varies with internal 
excitation and it plays the same role as any external momentum component as a new dynamical variable to achieve mode 
coupling and generate new optical paths in an interferometer. The internal phase contributes to the overall dephasing and 
is responsible for the clock term in atoms. Atomic clocks can then be seen as genuine atom interferometers. To account for 
this internal motion, we may enlarge our space–time with the additional dimension s = cτ (see Fig. 2)

d̂xμ̂ = (c dt,dx,dy,dz, c dτ ) = (dx0,dx1,dx2,dx3,dx4) (1)

3 The ratio of Planck’s constant to electron mass was already measured with much lower accuracy using interferometry in rotating superconductors 
[17,18].

4 An interesting analogy may be drawn for the two inaccessible limits that are the velocity of light c and the absolute zero temperature T = 0. In both 
cases, internal motion stops and both velocities dτ/dt (cf. Langevin twins) and u = √

2kB T /m −→ 0. (The Doppler width and the black body radiation shift 
vanish as the thermal decoherence time decreases.)
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Fig. 2. In 5D coordinates, the 5D velocity is always c, but the projection on space is the particle’s velocity −→v , whereas the component along the proper 
time axis is reduced accordingly.

and introduce a generalized light cone for massive particles

dσ 2 = Gμ̂ν̂ d̂xμ̂d̂xν̂ = 0 with μ̂, ν̂ = 0,1,2,3,4 (2)

where Gμν = gμν ; Gμ̂4 = G4ν̂ = 0; G44 = G44 = −1.
In flat space–time, since g00 = 1 and gii = −1, this relation reduces to Pythagoras’ theorem:

c2dt2 = c2dτ 2 + d−→x 2 (3)

Proper time is not defined by this equation from other coordinates, but is a true evolution parameter representative of 
the internal evolution of the object. It coincides numerically with the time coordinate in the frame of the object. Since the 
time unit is a proper time unit provided now by an atomic clock, this choice determines the time coordinate scale and the 
length unit by fixing the velocity of light.

Mass is conserved when the system under consideration is invariant in a proper time translation and will become the 
generator of such translations in the quantum theory. In the case of atoms, the internal degrees of freedom give rise to 
a mass that varies with the internal excitation. For example, in the presence of an electromagnetic field inducing transi-
tions between internal energy levels, the mass of atoms becomes time-dependent (Rabi oscillations). It is thus necessary 
to enlarge the usual framework of dynamics to introduce this new dynamical variable as a fifth component of the energy–
momentum vector.

The energy–momentum relation

E2 = −→p 2c2 + m2c4 (4)

can be written with a five dimensional notation:

Gμ̂ν̂ p̂μ̂ p̂ν̂ = 0 (5)

where p̂μ̂ = (pμ, p4 = −m c) (see Fig. 3).
Finally, if we combine momenta and coordinates to form a mixed scalar product, we obtain a new relativistic invariant, 

which is the differential of the action. In 5D, we shall therefore introduce the superaction:

Ŝ = −
∫

p̂μ̂d̂xμ̂ (6)

equivalent to

p̂μ̂ = − ∂ Ŝ

∂ x̂μ̂
with μ̂ = 0,1,2,3,4 (7)

If this is substituted in

Gμ̂ν̂ p̂μ̂ p̂μ̂ = 0 (8)

we obtain the Hamilton–Jacobi equation in 5D

Gμ̂ν̂∂μ̂ Ŝ ∂ν̂ Ŝ = 0 (9)
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Fig. 3. 5D energy–momentum picture.

which has the same form as the eikonal equation for light in 4D. It is already this striking analogy that pushed Louis de 
Broglie to identify action and the phase of a matter wave in the 4D case [24]. We shall follow the same track for a quantum 
approach in our 5D case.

What is the link between the three previous invariants given above? As in optics, the direction of propagation of a 
particle is determined by the momentum vector tangent to the trajectory. The 5D momentum can therefore be written in 
the form:

p̂μ̂ = d̂xμ̂/dλ (10)

where λ is an affine parameter varying along the ray. This is consistent with the invariance of these quantities for uniform 
motion.

In 4D the canonical 4-momentum is:

pμ = mc
gμνdxν√

gμνdxμdxν
= m c gμνuν (11)

where uν = dxν/c dτ is the normalized 4-velocity with c dτ = √
gμνdxμdxν .

We observe that dλ can always be written as the ratio of a time to a mass:

dλ= dτ

m
= dt

m∗ = dθ

M
= ... (12)

where τ is the proper time of individual particles (e.g., atoms in a clock or in a molecule), t is the time coordinate 
of the composed object (clock, interferometer, or molecule) and θ its proper time; m, m∗, M are, respectively, the mass, 
the relativistic mass of individual particles and their contribution to the scalar mass of the device or composed ob-
ject.

In the usual paradigm of relativity, the time t is a coordinate variable and the proper time τ is taken as the evolution 
parameter to describe the motion of particles in space–time. In this presentation however, proper time is an independent 
coordinate describing the internal motion of massive particles, so that we shall rather choose the coordinate time as the 
evolution parameter. We shall therefore write in 5D:

p̂μ̂ = m∗Gμ̂ν̂
˙̂xν̂ = m∗ ˙̂xμ̂ (13)

expressed with the “relativistic mass“:

m∗ = m
dt

dτ
= m c√

gμν ẋμ ẋν
(14)

and where the dot refers to derivation with respect to a “laboratory time” (identical to the proper time θ of the apparatus 
only in the absence of gravitation or inertial effects). With this choice ˙̂x0 = c and p̂0 = m∗c. An alternate choice could be to 
take the proper time θ of the full device as the evolution parameter. In which case:

c dθ = √
G00 dx0 and M = m∗√G00 (15)
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From

dσ 2 = Gμ̂ν̂ d̂xμ̂d̂xν̂ = 0 (16)

we infer in 5D

d̂S = 0 (17)

We shall generalize these relations to an object, such as a clock, a molecule. . . , composed of a number of subparticles and 
illustrate the origin of proper time as coming from the inner structure of the object. For such composite objects, mass is 
given by the eigenvalues of their internal Hamiltonian and thus becomes an operator in the quantum theory.

This picture can be generalized with the introduction of the electromagnetic interaction potentials in the 5D metric 
tensor.

3. Generalization in the presence of gravitational and electromagnetic interactions

3.1. Generalization of the metric tensor from the generalized interval

The previous 5D scheme can be extended to general relativity with a 4D metric tensor gμν and an electromagnetic 
4-potential Aμ

gμν
(

pμ − q Aμ

)
(pν − q Aν) = m2c2 (18)

(q = −e for the electron).
We shall search for a metric tensor Gμ̂ν̂ for 5D such that the generalized interval given by:

dσ 2 = Gμ̂ν̂ d̂xμ̂d̂xν̂

is an invariant.
Let us recall that, from the equivalence principle, the metric tensor gμν can be obtained from the Minkovski flat space–

time tensor ημν using infinitesimal frame transformations from a locally inertial frame. Quite generally, any infinitesimal 
coordinate transformation considered as a gauge transformation can be used to introduce a component of the gravito-inertial 
field. As an example, in 4D, the transformation (case of a rotation):

dx′i = dxi + αi
0dx0

dx′0 = dx0 (19)

transforms the interval

ds2 = g′
00(dx′0)2 + g′

i jdx′idx′ j (20)

into

ds2 = g00(dx0)2 + 2g0idx0dxi + gijdxidx j (21)

with

g00 = g′
00 + αi

0α
j
0 g′

i j (22)

g0 j = αi
0 g′

i j (23)

gij = g′
i j (24)

g00 = g′ 00 = 1/g′
00 (25)

g′ i j = 1/g′
i j (26)

Using

gij gi0 = −g00 g j0 (27)

we find

αi
0 = − gi0

g00
(28)

αi
0α

j
0 g′

i j = − gi0 gi0

g00
(29)

In the case of rotation we recover the usual metric tensor in the rotating frame.
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The action S becomes

S = −
∫

p′
μdx′μ = −

∫
p′

0dx′0 −
∫

p′
idx′i (30)

= −
∫

p′
0dx0 −

∫
p′

i(dxi + αi
0dx0) (31)

S = −
∫ (

p′
0 + p′

iα
i
0

)
dx0 −

∫
p′

idxi = −
∫

pμdxμ

which gives the Sagnac phase as 
∫ (

pi gi0/g00
)

dx0.
The same approach can be used with the fifth dimension by introducing the gauge transformation

dx′4 = dx4 + β4
μd̂xμ

d̂x′μ = d̂xμ (32)

to generate the off-diagonal elements Gμ4

dσ 2 = G44

(
dx4

)2 + 2 G44β
4
μdx4d̂xμ +

(
gμν + β4

μβ4
ν G44

)
d̂xμd̂xν

G44 = G ′
44 (33)

Gμ4 = β4
μG44 (34)

Gμν = gμν + β4
μβ4

ν G44 (35)

The superaction Ŝ given by (6) becomes

Ŝ = −
∫

p̂μ̂d̂x′μ̂ = −
∫

pμd̂x′μ −
∫

p̂4dx′4 (36)

= −
∫

pμd̂xμ +
∫

m c (dx4 + β4
μd̂xμ) (37)

Ŝ = −
∫ (

pμ − m c β4
μ

)
d̂xμ +

∫
m c2dτ (38)

which yields the Aharonov–Bohm phase if m c β4
μ = q Aμ .

The metric tensor in five dimensions Gμν is thus written as in Kaluza’s theory to include the electromagnetic gauge field 
potential Aμ

Gμ̂ν̂ =
(

Gμν Gμ4
G4ν G44

)
=

(
gμν + κ2G44 Aμ Aν κG44 Aμ

κG44 Aν G44

)
Gμ̂ν̂ =

(
Gμν Gμ4

G4ν G44

)
=

(
gμν −κ Aμ

−κ Aν G44

)
(39)

where κ is given by the charge-to-mass ratio of the object. This metric tensor is such that

Gμ̂λ̂G λ̂ν̂ =
(

Gμλ Gμ4

G4λ G44

)(
Gλν Gλ4
G4ν G44

)
= δ

μ̂
ν̂

(40)

=
(

Gμλ −κ Aμ

−κ Aλ G44

)(
gλν + κ2G44 AλAν +κG44 Aλ

+κG44 Aν G44

)
=

(
Gμλgλν κG44GμλAλ − κG44 Aμ = 0

−κ Aλ(gλν + κ2G44 AλAν) + κG44G44 Aν −κ2G44 AλAλ + G44G44

)
= δ

μ̂
ν̂

which implies

Gμλgλν = δ
μ
ν

G44 = 1/G44 + κ2 AλAλ (41)

The equation

Gμ̂ν̂ p̂μ̂ p̂ν̂ = 0 (42)

with
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p̂μ̂ = (pμ,−mc) (43)

and G44 = −1 is therefore equivalent to equation (18)

gμν
(

pμ − q Aμ

)
(pν − q Aν) = m2c2 (44)

Higher-order electromagnetic interactions are introduced via the multipolar expansion pμ − q Aμ + Q λFμλ , where dipole 
moments will become operators in the quantum description.5

The fundamental constants associated with this geometry and its metric tensor are:

c,m, and e (45)

which together with h̄ and kB constitute the natural set of fundamental constants to be fixed for the new system of units. 
The choice of the reference mass m is made according to the best possible clock required to define the unit of proper time. 
Clearly, today this mass has to be the mass difference of the atomic levels corresponding to the transition defining this unit.

We can derive the direct link between the coordinate ̂x4 and the proper time τ starting from:

Gμ̂ν̂ d̂xμ̂d̂xν̂ = 0

we obtain

dx4 = − G4μ

G44
d̂xμ + 1

G44

(
G4μG4ν − G44Gμν

)1/2 (
d̂xμd̂xν

)1/2

= − G4μ

G44
d̂xμ + 1√−G44

(
gμν d̂xμd̂xν

)1/2

which, compared to

dx4 = G44dx4 + G4μd̂xμ

gives

dx4 = −√−G44
(

gμν d̂xμd̂xν
)1/2 = − (

gμν d̂xμd̂xν
)1/2

3.2. Complex bodies (composite objects)

We can connect this proper time with an intra-atomic or intra-molecular motion and thus link mass and internal kinetic 
energy. If we consider an object (such as a clock, a molecule...) composed of a number of subparticles, the 5D superaction 
differential is given by the sum:

d̂S =
∑

A

(
−pAμdxμ

A + mAc2dτA

)
(46)

where mA is the mass of particle A. With the following change of coordinates:

dxμ
A = dXμ + dξ

μ
A (47)

d̂S = −PμdXμ +
∑

A

(
−pAμdξ

μ
A + mAc2dτA

)
(48)

with

Pμ =
∑

A

pAμ and pAμ = (
m∗

A/m∗) Pμ + πAμ (49)

The coordinates Xμ and ξμ
A are such that∑

A

m∗
Adξ

μ
A = 0 and ξ0

A = 0 (50)

(common time coordinate for all the particles of the composed object). One obtains for the full object:

d̂S = −PμdXμ + Mc2dθ = −P μ̂dX μ̂ = 0 (51)

5 For atoms interacting with light, these dipole moment operators are off-diagonal with respect to internal states, i.e. mass states and equation (42) leads 
to coupled equations for the different states. As examples, references [28,10] present coupled Dirac equations for two-level systems.
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provided that:

Mc2dθ =
∑

A

(
−pAμdξ

μ
A + mAc2dτA

)
(52)

=
∑

A

(
−πA jdξ

j
A + mAc2dτA

)
(53)

This calculation can be easily generalized to take into account the electromagnetic interaction potentials between the 
constitutive particles:∑

A

(
−pAμ

qA

mA
Aμd̂xA4

)
(54)

In all cases, the source of the proper time θ for the object lies in the internal degrees of freedom and its mass Mc2

is given by its internal Hamiltonian. A well-defined quantum phase for the composed object requires that it should be 
in an eigenstate of this internal Hamiltonian. For objects like atoms, molecules..., mass is thus an operator with quantized 
eigenvalues. The description of the interaction with an external electromagnetic field requires to deal with coupled equations 
corresponding to each of these mass eigenstates. A wave equation will be written for each internal state and each of these 
is coupled with the other ones through an off-diagonal electric dipole operator.

3.3. Connection with Kaluza’s theory

In his search for a unified theory including both gravitational and electromagnetic interactions, Theodor Kaluza has 
already introduced a 5D space–time in 1921 [4]. His fifth dimension was later interpreted by O. Klein as an internal closed 
dimension of electrons. We shall now establish the link between this additional dimension and the proper time used in our 
approach.

The interval squared in Kaluza’s theory is written as:

dσ 2 = gμνdxμdxν + φ2 (
kAνdxν + dx5)2

corresponding to the metric tensor:

G̃μ̃ν̃ =
(

Gμν Gμ5
G5ν G55

)
=

(
gμν + k2φ2 Aμ Aν kφ2 Aμ

kφ2 Aν φ2

)
G̃μ̃ν̃ =

(
Gμν Gμ5

G5ν G55

)
=

(
gμν −kAμ

−kAν k2 gμν Aμ Aν + 1
φ2

)
(55)

where φ is a scalar dilaton field and where

k = 4
√

πGε0

c

We shift to proper time as the new variable:√
G44dx4 = i dx4 = φ dx5

Kaluza’s interval becomes

dσ 2 = gμνdxμdxν + φ2
(

kAνdxν +
√

G44

φ
dx4

)2

to be identified with our 5D interval:

Gμ̂ν̂ d̂xμ̂d̂xν̂ =
(

gμν + κ2G44 Aμ Aν

)
d̂xμd̂xν + 2κG44 Aν d̂xνdx4 + G44

(
dx4

)2

Then:

φ = G44
κ

i k
= i

κ

k

is given by the ratio of charge-to-mass ratios of the electron and of Planck’s particle, and

dx4

5 = −iφ = κ = e c√ = 1
√

α

dx k m c 4 π G ε0 2 αG
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Fig. 4. Link between Planck’s units and proposed SI units thanks to the fine structure and to the gravitational constants. The present development of atomic 
clocks and of quantum electric metrology obliges us to back up from Planck’s units to a more realistic choice for time and electrical units. Similarly, the 
electron mass is not an option for today and should be replaced by the mass difference between the internal energy levels of an atom. This connection 
involves again a dimensionless constant such as the fine structure constant for the Rydberg constant in the case of hydrogen transitions.

The dispersion relations are respectively:

gμν pμpν − 2kAμpμp5 +
(

k2 gμν Aμ Aν + 1

φ2

)
(p5)

2 = 0

and

gμν
(

pμ − q Aμ

)
(pν − q Aν) = m2c2 (56)

which gives the momentum:

p5 = −iφ m c = e/k

connected to charge as expected.
The metric tensor introduced by Kaluza imposes a set of natural units which coincides with those introduced by Planck 

in 1899. In this system the properties of electrons are given by two dimensionless constants, which are the fine structure 
constant and its analog for gravitation. At the present time, Planck’s system of units is too far from a realistic system of 
units, essentially because G cannot be measured with sufficient accuracy and cannot compete with present atomic clocks
(see Fig. 4). Our 5D geometry using proper time is more general, since it applies to any composite object, including of course 
atoms and molecules that are used as clocks. The mass of electrons appears then as the most elegant choice to define the 
unit of proper time. Unfortunately, we do not know yet how to build a good clock based upon electron–positron annihilation, 
and an atomic transition is the best compromise combining high accuracy and a close connection with the electron’s mass. 
The future choice of the time unit is a fascinating question that is widely debated today and evolves quickly with the 
permanent progress of clocks in the optical domain and beyond [25–27]. Finally, given the role of gyromagnetic ratios in 
the theory, consistency imposes the electron charge to define the unit of electric charge rather than the electric properties 
of vacuum, which is the case today.

3.4. Conclusions

The most basic mathematical tool of statistical quantum mechanics, which is the density operator ρ , involves both action 
and entropy and hence requires both Planck’s constant h̄ and Boltzmann’s constant kB. This operator acts in a phase space 
that, in turn, contains the geometry and the three corresponding fundamental constants c, �mat, e thanks to the metric 
tensor.

Action and entropy are the two corner stones of the future SI. They should be explicitly introduced in its formulation. 
Mass and time units are coupled through h̄ and both fixed by the choice of the pair of atomic levels having the mass dif-
ference �mat corresponding to the transition Bohr frequency �matc2/h. The ratio �mat/me is obtained with high accuracy 
from the Rydberg constant.

A natural theoretical framework for the redefinition of the SI is completely provided by the connection between 5D 
geometry, metric tensor, and metrology that we have outlined. To reduce the theory of measurements to the determination 
of quantum phases was our primary objective. The direct link between action and matter–wave interferometry can be 
found in a number of references dealing with all recent applications of this field to metrology. This approach is an attempt 
to unify all aspects of modern quantum metrology. The final aim is, of course, to adopt a system of units free of arbitrary 
and artificial features, in harmony with contemporary physics. The perspective that we have adopted incorporates naturally 
all relevant fundamental constants in a logical scheme, with obvious constraints of economy, aesthetics, and rigour.
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