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Abstract 45 

A comprehensive estimation of water budget components, particularly groundwater storage (GWS) 46 

and fluxes, is crucial. In this study, we evaluate terrestrial water budget of the Donga basin (Benin, 47 

West Africa), as simulated by three land surface models (LSMs) used in the African Monsoon 48 

Multidisciplinary Analysis, Land Surface Model Intercomparison Project Phase 2 (ALMIP2): 49 

CLM4, CLSM, and MATSIRO. All three models include an unconfined groundwater component 50 

and are driven by the same ALMIP2 atmospheric forcing from 2005 to 2008. Results show that all 51 

three models simulate substantially shallower water table depth (WTD) with smaller seasonal 52 

variations approximately 1-1.5 m compared to the observed values that range between 4-9.6 m. 53 

While as the seasonal variations of GWS are overestimated by all the models. These seemingly 54 

contradictory simulation results can be explained by the overly high specific yield prescribed in 55 

all models. All models achieve similar GWS simulations but with different fractions of 56 

precipitation partitioning into surface runoff, baseflow and evapotranspiration (ET), suggesting 57 

high uncertainty and errors in the terrestrial and groundwater budgets among models. The poor 58 

performances of models can be attributed to bias in the hydrological partitioning (baseflow vs. 59 

surface runoff) and sparse sub-surface data. This analysis confirms the importance of subsurface 60 

hydrological processes in the current generation of LSMs and calls for substantial improvement in 61 

both surface water budget (which controls groundwater recharge) and the groundwater system 62 

(hydrodynamic parameters, vertical geometry). 63 

 64 

 65 

 66 

 67 
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1. Introduction 68 

Approximately one-third of the global population currently lives in the water-stressed regions, and 69 

this figure is expected to rise in the future, because of climate change, expanding irrigation, and 70 

growing population (Alcamo et al. 2007; Döll 2009; Vörösmarty et al. 2000; Elliott et al. 2014; 71 

Taylor 2014; Jasechko and Taylor 2015). This will increase dependence on groundwater, a 72 

relatively reliable source of freshwater in water-deficient regions, with a recognized potential to 73 

enhance economic development and ensure food security (Wada and Bierkens 2014). Yet, the 74 

accompanying exploitation may threaten the future sustainability of groundwater resources 75 

(Gleeson et al. 2010; Gurdak 2017), and the declining groundwater levels can, in turn, have severe 76 

effects on the hydrological budget, irrigated agriculture, and ecosystems (Wada et al. 2010) that 77 

could even alter the regional hydro-climatology (Lo et al. 2013; Wey et al. 2015; Zeng et al. 2017). 78 

This is particularly true for Africa, which is the home to approximately one billion people and has 79 

the highest population growth rate in the world, with the population projected to reach 1.5-billion 80 

by 2050 (UN 2015). In addition, this region lacks proper quantification of freshwater resources 81 

(Taylor 2014); therefore, a comprehensive assessment of water resources particularly groundwater 82 

is essential for sustainable future water use. 83 

The West African Monsoon (WAM) is the main water resource for West Africa and strongly 84 

influences water and food security of this region where approximately 300-million people live and 85 

depend directly on the rain-fed agriculture (Ndehedehe et al. 2016). Agricultural land use in this 86 

region has increased by 57% from 1975 to 2000 (Eva et al. 2006), but severe droughts were 87 

experienced during the recent decades (Le Barbé et al. 2002; Mahé and Paturel 2009; Lebel et al. 88 

2009; Tadesse et al. 2008), and climate projections do not provide a clear picture of future rainfall 89 

trends over the region. However, enhanced runoff capabilities and floods of Sahelian watersheds, 90 
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due to land clearing and past drought impacts, may persist or increase due to rainfall intensification 91 

(Panthou et al. 2014; Sylla et al. 2016). In this context, groundwater is a vital source of water in 92 

West Africa, primarily for improving food security (Pavelic et al. 2012; Altchenko and Villholth 93 

2015). Therefore, climate models with a detailed representation of the groundwater dynamics are 94 

required to address the complex interactions between the climate system and the water-food-95 

energy nexus (Ringler et al. 2013; Rasul and Sharma 2015). This involves land surface models 96 

(LSMs) with reliable simulations of GWS variations and subsurface hydrological processes. 97 

However, the assessment of water and energy fluxes simulated by LSMs are generally challenging 98 

due to the scarcity of observed data, particularly for the subsurface hydrological processes (Lo et 99 

al. 2010; Cai et al. 2014). 100 

The African Monsoon Multidisciplinary Analysis (AMMA) project (Redelsperger et al. 2006) was 101 

aimed to understand the daily-to-interannual variability of the WAM dynamics and terrestrial 102 

water budget. In this framework, the AMMA Land Surface Model Intercomparison Project 103 

(ALMIP) has been designed to gain a better understanding of the skills of state-of-the-art LSMs 104 

using data-scarce West Africa as a test bed. The Phase 1 of ALMIP (ALMIP1) was focused on a 105 

large domain in West Africa using 3-hourly meteorological forcing data at the 0.5° spatial 106 

resolution (Boone et al. 2009a; Xue et al. 2012). A major achievement was the use of an ensemble 107 

of offline LSM simulations with the same climate forcing data to produce a multi-model analysis 108 

of land surface fluxes from 2004 to 2007. The use of three different forcing datasets showed that 109 

the precipitation forcing is crucial for properly simulating the water and energy budgets in the 110 

region. The ALMIP1 LSM simulations were compared with satellite estimates of total water 111 

storage variations (Grippa et al. 2011). The compared LSMs fairly captured the seasonal variability 112 

of the total water storage, despite an underestimation of the seasonal amplitude by the multi-model 113 
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mean. Interestingly, the only model with an explicit groundwater description, namely the 114 

Catchment LSM (Koster et al. 2000), showed a larger amplitude, in better agreement with satellite 115 

gravimetry data.  116 

Due to the coarse spatiotemporal resolution of the models the comparison with in situ data from 117 

the heavily instrumented supersites from the AMMA-CATCH observing system in Mali, Niger, 118 

and Benin (www.amma-catch.org, Lebel et al. 2009)  was difficult. This was a major motivation 119 

for the Phase 2 of ALMIP (Boone et al. 2009b), which is focused on three meso-scale domains 120 

including the above supersites, with high-quality half-hourly meteorological forcing data at 0.05° 121 

resolution (approximately 5 km). In addition, the three participating LSMs namely the Community 122 

Land Model version 4 (CLM4) (Oleson et al. 2010; Lawrence et al. 2011), the Catchment LSM 123 

(CLSM) (Ducharne et al. 2000; Koster et al. 2000), and the Minimal Advanced Treatments of 124 

Surface Interaction and Runoff (MATSIRO) (Takata et al. 2003) include an unconfined aquifer 125 

module for simulating water table dynamics. The current study is thus focused on evaluating the 126 

groundwater simulations in these ALMIP2 models, in one of the ALMIP2 representative sites, the 127 

Donga River basin in northern Benin, where measurements of WTD and streamflow are available 128 

from 2005 to 2008 (Kamagaté et al. 2007; Séguis et al. 2011; Hector et al. 2015). Furthermore, the 129 

Donga basin does not exhibit significant anthropogenic groundwater withdrawal (GW withdrawal 130 

is less than 1% of the total water consumption, Vouillamoz et al. 2015), that would otherwise 131 

influence the results due to the lack of such representation in the evaluated models. Comparisons 132 

of simulated GWS and the related water fluxes with corresponding in situ and satellite observations 133 

are carried out with two complementary objectives: (1) understanding the strengths and 134 

shortcomings of the groundwater simulations by these LSMs; (2) providing some insight into the 135 

water budget of the studied basin. 136 

http://www.amma-catch.org/
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2. Study area 137 

This study focuses on the Donga River basin in Benin (Figure 1), one of the AMMA-CATCH 138 

representative sites (www.amma-catch.org). The monitored river basin has an area of 586 km2, 139 

and the topography ranges between 317 m and 508 m above sea level with a subdendritic drainage 140 

pattern. The climate is subhumid, with a mean annual precipitation of 1200 mm (Séguis et al. 141 

2011), concentrated in a single rainy season extending from March to October, and approximately 142 

60% of precipitation occurring between July and September (Depraetere et al. 2009). Streamflow 143 

starts in June–July, 2 to 3 months after the beginning of the rainy season, and declines by the end 144 

of the rainy season (October – November). The groundwater system is composed of a permanent 145 

unconfined aquifer located in a weathered crystalline formation (saprolites), with a thickness of 10 146 

to 25 m over the metamorphic bedrock, overlaid with a seasonal perched groundwater, which 147 

contributes most of the baseflow (Kamagaté et al. 2007; Séguis et al. 2011; Hector et al. 2015). 148 

Inhabitation is mainly rural, and domestic water demand is supported by groundwater from 149 

boreholes. Land use and land cover are composed of wooded savannah along with agricultural 150 

land with sorghum, maize, yam, kassava, cotton, and cashew nuts as major crops.  151 

3. Models 152 

a. CLM4 153 

CLM4 (Oleson et al. 2010; Lawrence et al. 2011) coupled with an unconfined groundwater model 154 

(Niu et al. 2007) includes representations of various hydrological processes, namely soil hydrology, 155 

runoff generation, groundwater dynamics, and snowpack. Runoff generation is calculated as an 156 

exponential function of the grid-mean WTD, using simple TOPMODEL based runoff 157 

parametrization (SIMTOP) (Niu et al. 2005). The 3.8-m soil depth is divided into 10 hydrologically 158 
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active layers with varying soil layer thicknesses. The water table and soil moisture are coupled 159 

through net groundwater recharge (gravity drainage - capillary rise); moreover, the representation 160 

of groundwater dynamics is a simple extension of a one-dimensional diffusion equation, with a 161 

full hydraulic connection between the saturated and unsaturated zone, but no horizontal 162 

groundwater fluxes between neighboring grid cells. Soil water is calculated using a revised 163 

numerical solution of the one-dimensional Richards equation (Zeng and Decker 2009). 164 

Groundwater recharge from the soil column and WTD are updated using the parameterizations 165 

given in Niu et al. (2007) and Zeng and Decker (2009). Sub-surface runoff (baseflow) is 166 

formulated as:  167 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶4 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑓𝑓 ∗𝑊𝑊𝑊𝑊𝑊𝑊)   `   (1) 168 

qdraimax is 0.0055 mm s-1 (global constant derived from sensitivity tests) and f is the decay factor 169 

in the SIMTOP scheme with the value of 2.5 m-1 (Niu et al. 2005). The WTD is in units of meters. 170 

In addition, the remained excess water after saturating the entire soil column is treated as the 171 

saturation excess baseflow, and is added into the baseflow generated by the SIMTOP scheme 172 

(Oleson et al. 2010). The unconfined aquifer is assumed to have a storage capacity of 5000 mm, 173 

with a 25-meter depth to bedrock (Oleson et al. 2010). 174 

b. CLSM  175 

CLSM (Ducharne et al. 2000; Koster et al. 2000) belongs to a generation of LSMs that rely on the 176 

hydrological model TOPMODEL (Beven and Kirkby 1979) to account for lateral water fluxes 177 

along the topography, as well as their influence on the small-scale variability of soil moisture, 178 

runoff, and ET and thus, on the larger scale water budget. The simulated domain is discretized into 179 

elementary units, each including a shallow WTD. They are designed to be watersheds, but they 180 
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can be grid cells, as in this study with the 0.05° ALMIP2 mesh. In each grid cell, the spatial 181 

distribution of the topographic index is used as a template to laterally distribute the WTD around 182 

its mean value, which varies in time with the water budget. According to the concept of 183 

TOPMODEL, the WTD distribution controls the saturation excess runoff and baseflow to the 184 

streams. This distribution also influences the water exchanges with the root zone (recharge and 185 

capillary rise, both defining the net recharge). The resulting soil wetness in the root zone and 186 

surface layer (2 cm) drives the infiltration-excess (Hortonian) runoff and ET described using 187 

classic soil–vegetation–atmosphere transfer formulations, mostly derived from the Mosaic LSM 188 

(Koster and Suarez 1992). For computational efficiency, all processes related to the spatial WTD 189 

distribution are approximated by empirical functions of mean WTD. 190 

In this framework, it is noteworthy that GWS and specific yield are not defined in a standard way 191 

in CLSM. As detailed in Ducharne et al. (2000), GWS is quantified by the mean saturation deficit 192 

assuming a hydrostatic soil moisture profile above the spatially distributed WTD, and this mean 193 

saturation deficit (MD in mm) is linked to the mean WTD (d* in m) by a quadratic function:  MD = 194 

A (d*+B)². The parameters A and B are adjusted in each grid-cell to match the results of high-195 

resolution 3D hydrodynamic calculations accounting for the full WTD distribution, and they 196 

implicitly depend on assumed porosity, suction, hydraulic conductivity. The specific yield is 197 

approximated by MD/d*, with a spatio-temporal range between 0.084 and 0.147 and a mean ca 198 

0.12, further used for comparison with the other models. 199 

The version of CLSM used in ALMIP2 is the same as that of the ALMIP1 intercomparison (Boone 200 

et al. 2009a; Grippa et al. 2011). To accurately constrain topography-related parameters, the 201 

topographic index (TI) is calculated from the 3-arc-sec resolution (ca 90 m at Equator) 202 

hydrologically conditioned elevation data of HydroSHEDS (Lehner et al. 2008); therefore, the 203 
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required TI distribution comprises 3600 values in each 0.05° cell (instead of 25 values only if we 204 

had kept the 1-km elevation used for ALMIP1). The mean WTD and baseflow, as in TOPMODEL, 205 

depend on the mean TI, which also depends on the digital elevation model (DEM) resolution. To 206 

prevent from changes in the simulations that would only result from a change in DEM resolution, 207 

the choice has always been made in the CLSM to scale the mean TI values to the ones of a 100-m 208 

DEM (Ducharne et al., 2000). The scaling law of Wolock and McCabe (2000) used in ALMIP1 209 

only works to rescale the mean TI (noted TI*) from a 1-km to a 100m resolution, and we rather 210 

used here the more generic scaling method of Ducharne (2009), according to which the DEM 211 

resolution is a scaling factor: TI*
100m = TI*

90m + ln (100/90). Other differences compared with the 212 

ALMIP1 simulations lie in the model’s parameters, based on different soil and vegetation datasets.  213 

c. MATSIRO 214 

The original version of MATSIRO (Takata et al. 2003) was designed to serve as the land surface 215 

scheme of the general circulation model from the Model for Interdisciplinary Research on Climate 216 

(Hasumi and Emori 2004; Watanabe et al. 2010). Energy balances at the ground and canopy 217 

surfaces are considered in snow-covered and snow-free areas separately within a grid cell 218 

according to the subgrid snow distribution. Water evaporation is calculated using the bulk transfer 219 

function, and transpiration is estimated using the SiB2 parameterization scheme (Sellers et al. 220 

1986, 1996). The surface and subsurface runoff processes are based on those of a simplified 221 

TOPMODEL (Stieglitz et al. 1997; Beven and Kirkby 1979). To incorporate an explicit 222 

representation of groundwater dynamics for more realistic hydrological simulations, Koirala et al. 223 

(2014) incorporated a groundwater scheme (Yeh and Eltahir 2005) with globally varying 224 

parameters into the original MATSIRO to more effectively consider the soil moisture flux 225 

exchange between an unsaturated soil layer and the underlying unconfined aquifer near the water 226 
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table. Given that the depth of an unsaturated soil zone can vary depending on the WTD, the soil 227 

column is extended to 40 m in the updated MATSIRO (Koirala et al. 2014). After the inclusion of 228 

groundwater dynamics, model processes have been demonstrated to yield an improved simulation 229 

of river discharge (Koirala et al. 2014) and groundwater withdrawals and depletion (Pokhrel et al. 230 

2015).  We use MATSIRO with groundwater representation based on (Yeh and Eltahir 2005 a, b; 231 

Koirala et al. 2014). 232 

4. Data and methods 233 

a. Simulation design and forcing data  234 

The simulations were performed for ALMIP2 intercomparison at a spatial resolution of 0.05° over 235 

the Benin mesosite. A common set of forcing data was provided to all ALMIP2 participants; hence 236 

the same half-hourly meteorological forcing is used to drive all three LSMs for the period 2005–237 

2008. We used here in-situ rainfall data from the AMMA-CATCH rain gauge network interpolated 238 

with the Thiessen method. Downwelling radiative fluxes are obtained from the Surface Analysis 239 

Satellite Applications Facility (Land-SAF) in Meteosat Second Generation satellite series (Geiger 240 

et al. 2008). The European Centre for Medium-Range Weather Forecasts provides the remaining 241 

required meteorological forcing variables, namely air temperature, specific humidity, and surface 242 

pressure. The data are resampled from a 3-km resolution to a 0.05° resolution at 30-minute time 243 

steps for use in ALMIP2 studies. Other required parameters such as land cover, surface roughness, 244 

leaf area index, albedo, and soil properties, are provided by the ECOCLIMAP-II-Africa database 245 

(Thibaut et al. 2010). Notice that the vegetation map in CLM4 uses intrinsic parameters based on 246 

MODIS. Further details concerning the ALMIP2 protocol can be found in Boone et al. (2009b), 247 

He et al. (2015), Getirana et al. (2017), and Grippa et al. (2017). The original model outputs are at 248 
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the native ALMIP2 time step (30-minute), and we aggregated it to monthly resolution for the 249 

current analysis. 250 

b. Validation data 251 

WTD measurements are provided by the AMMA-CATCH observation system, and the average 252 

time series of WTD data from 2005-2008 are constructed from 24 wells distributed throughout the 253 

Donga basin (Figure 1) (Séguis et al. 2011). The wells monitor the moderately deep saprolite 254 

aquifer, and the average WTD ranges between 4 and 9.6 m below ground level. 255 

Streamflow measurements (m3/s) are available for the period 2005–2008 at 15-minute time steps 256 

at the outlet of the river basin (station Donga-Pont, shown in Figure 1). Streamflow is converted 257 

from m3/s to mm/day by time-aggregation and normalization by the watershed area.  Monthly ET 258 

simulations are compared with two satellite-based datasets, namely the Moderate Resolution 259 

Imaging Spectroradiometer (MODIS) product MOD16 and Global Land Evaporation Amsterdam 260 

Model (GLEAM). The global monthly ET product MOD16 works on the Penman–Monteith 261 

framework and data are available at a spatial resolution of 0.05° (Mu et al. 2011). GLEAM works 262 

on the Priestley and Taylor methodology using multiple satellite sensor products for generating 263 

daily ET data at a spatial resolution of 0.25° (Miralles et al. 2011; 264 

http://www.gleam.eu/#downloads).  265 

5. Results  266 

a. Total water budget 267 

Table 1 shows that the three LSMs simulate noticeably different water budget partitions. For ET, 268 

the simulations of MATSIRO (79% of multi-year mean precipitation P) and CLM4 (72% of P) 269 

http://www.gleam.eu/#downloads
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are much larger than that of the CLSM (57% of P), and they are closer to the ET estimates obtained 270 

from the two satellite datasets (66% to 71% of P). For streamflow (Q), the simulations of the 271 

CLSM (42% of P) and CLM4 (28% of P) are larger than that of the MATSIRO (18% of P), and 272 

they are all larger to much larger than the corresponding streamflow observations (12% of P). 273 

Regarding the total runoff partitioning between surface runoff and baseflow, the three models also 274 

present contrasted results. The MATSIRO and CLM4 simulate nearly two-thirds of total runoff as 275 

baseflow, whereas the CLSM simulates all runoff as surface runoff. The simulated groundwater 276 

recharge (taken here as the net recharge, i.e. the downward recharge reduced by upward capillary 277 

fluxes to the unsaturated zone) is a small fraction of precipitation in all three models, but it 278 

decreases with the importance of surface runoff: 8, 4, and 1 % of P for the MATSIRO, CLM4, and 279 

CLSM, respectively. 280 

These results are confirmed by the monthly time series of the main water budget components 281 

(Figure 2). In particular, the CLSM significantly underestimates ET and overestimates runoff, 282 

compared with the other two models and the corresponding observations. Besides, the strong 283 

seasonal cycle (summer peak and winter trough) of ET, as displayed by four other ET datasets in 284 

Figure 2b, is largely dampened in the CLSM simulations. Both satellite-based ET datasets 285 

demonstrate consistent mean ET estimates and ET-to-precipitation ratios (Table 1): the mean ET 286 

estimated from GLEAM (MODIS) is 2.15 (2.31) mm/d, and the ET-to-precipitation ratio is 66% 287 

(71%) for GLEAM (MODIS). The seasonality of observed ET is found to closely follow that of 288 

precipitation, with the highest ET occurring during the rainy season (Figure 2a and 2b). Despite a 289 

slight overestimation, mostly during the dry season and the beginning of the rainy season, the 290 

MATSIRO and CLM4 adequately reproduce the seasonal variability of satellite-based ET 291 

observations (Figure 2b), contrarily to the CLSM. This model underestimates/overestimates ET 292 
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during the rainy/dry season, and as the forcing data are the same for all three models, we attribute 293 

these defects to the overestimation of surface and total runoff during the rainy season, and 294 

excessive capillary rise during the dry season, probably linked to the too shallow WTD(discussed 295 

in section 6). 296 

Regarding total runoff simulations, all models are consistent with the observations in that no 297 

streamflow occurs in the absence of rainfall, but they show an excessive runoff production at the 298 

beginning of the rainy season, which is particularly strong for the CLSM. The early runoff 299 

generation biases are also indicated in Getirana et al. (2017). Peak flows and their interannual 300 

variability are well captured by CLM4 despite minor timing errors in 2006 and 2008. The CLSM, 301 

too, captures the interannual variability of peak flows, although they are strongly overestimated, 302 

especially during the first two years, which are drier (less annual mean runoff and precipitation 303 

than the last two years, Table 1). The MATSIRO, in contrast, underestimates the peak runoff, 304 

which balances the overestimation found at the monsoon onset, so the annual mean runoff is close 305 

to observations, while the other two models exhibit a positive bias. 306 

The monthly changes of total water storage (dS/dt) are similar in all three models and consistent 307 

with the corresponding observations, except for the slight overestimation of the peak in the summer 308 

of 2008 by both the MATSIRO and CLM4. Although all three models exhibit similar monthly 309 

dS/dt, the partitioning between monthly ET and runoff differs significantly and this discrepancy 310 

can be attributed to differences in the parameterizations linking these fluxes to the various water 311 

storage components (groundwater and soil moisture) and/or in the parameters on each model.  312 

b. Groundwater storage 313 
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Figure 3 presents a comparison of the average seasonal cycles of WTD obtained from the three 314 

models and observations. A considerable discrepancy can be observed between all model 315 

simulations and observations. The observed WTD shows a sharp rise during the peak rainy season, 316 

because of substantial groundwater recharge (as analyzed below). WTD reaches to maximum 317 

(approximately 4 m) in September, one month after the maximum rainfall, and starts to decline 318 

rather steadily to the deepest observed level of the year (approximately 9.6 m) in March–April, 319 

before the onset of the monsoon. By contrast, the WTD simulated by all three models displays a 320 

lag of 1 to 2 months, and much lower seasonal amplitudes (approximately 1–1.5 m, one order of 321 

magnitude smaller than the observations), around a shallower mean depth. The CLM4 simulated 322 

WTD ranges from 2.8 m in July to 3.9 m in October, whereas the CLSM and MATSIRO simulated 323 

WTD are in the ranges of 2–3.1 and 3.2–4.7 m, respectively. Important differences between the 324 

simulated and observed WTD result from uncertainties in the groundwater system properties, 325 

particularly the depth to bedrock and the porosity. To examine the effect of these uncertainties, we 326 

measured the anomalies in the GWS (with respect to its mean over the period, ΔGWS), based on 327 

the following equation:  328 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 =  𝑆𝑆𝑦𝑦 ×  𝛥𝛥ℎ          (2) 329 

where Sy is the specific yield and Δh (in meters) is the anomaly of the WTD (with respect to its 330 

mean over the period). The specific yield, also called drainable porosity, indicates the fraction of 331 

the bulk aquifer volume that can be drained out under gravity. In unconfined aquifers, it is 332 

equivalent to the effective porosity and makes the link between the changes in WTD and GWS. 333 

The GWS here is defined using Eq. 2. On the basis of magnetic resonance sounding, Séguis et al. 334 

(2011) estimated specific yield in the Donga catchment to be approximately 0.02. The 335 

corresponding values are much higher in the three models (specific yield is 0.20 in CLM4, 0.12 in 336 
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CLSM, and 0.08 in MATSIRO). It is noteworthy that specific yield is an explicit parameter of 337 

CLM4 and the MATSIRO, but not of the CLSM. In this model, the link between GWS and WTD 338 

is based on TOPMODEL's concepts (Ducharne et al. 2000). The resulting relationship is not linear 339 

but leads to an equivalent specific yield ca 0.12 in the Benin mesosite and the Donga basin. 340 

Figure 4 presents a comparison of the simulated (by all three models) and observed monthly 341 

ΔGWS from 2005–2008 (averaged over the entire Donga basin) along with the monthly rainfall. 342 

Both observations and simulations exhibit strong seasonal variations in GWS, which respond to 343 

the alternation of clearly distinguishable wet and dry seasons. Like for the WTD, the observed 344 

ΔGWS rises rapidly at the onset of the rainy season in June-July, whereas the simulated ΔGWS 345 

by the models responds more slowly, with a lag of approximately 2 months relative to the 346 

observations, which is likely due to excessive early runoff generation in the models (Figure 2c). 347 

But in contrast to the WTD, the mean annual amplitude of ΔGWS is overestimated by the models: 348 

134 mm for the MATSIRO, 206 mm for the CLSM, and 244 mm for CLM4 compared to only 112 349 

mm based on the WTD observations and Eq. 2. This results from both a too strong decrease of 350 

GWS at the beginning of the rainy season, and a too strong GWS increase at the end of it, which 351 

is particularly marked during the two wettest years (2007 and 2008). These differences are 352 

attributed to different groundwater flow parametrizations (subsurface runoff or baseflow), 353 

different model-setup as the prescribed intrinsic parameters in each model are different e.g. 354 

specific yield, depth to bedrock, aquifer geometry, and different partitioning bias among 355 

hydrological fluxes such as surface runoff and infiltration which reduces early recharge to the 356 

groundwater system. 357 

This overestimated annual amplitude of ΔGWS is also revealed by Figure 5. This Taylor diagram 358 

(Taylor 2001) provides a statistical summary on how well the simulations match observations in 359 
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terms of temporal correlation (angle) and standard deviation (the radial distance gives the 360 

normalized standard deviation, i.e. the standard deviation of model simulations divided by that of 361 

observations) at monthly timescale. For all three models, the normalized standard deviation is 362 

greater than 1 (Figure 5), showing that the variability of model simulations is higher than that in 363 

observations, in agreement with overestimated seasonal amplitude of ΔGWS. The correlation 364 

coefficient around 0.8 is consistent with the correct seasonality of the simulations, despite a slight 365 

phase shift (Figure 4). This delay is slightly higher in MATSIRO, which shows the lowest 366 

correlation coefficient among the three LSMs. Notice that the three models exhibit very similar 367 

temporal characteristics in the total runoff with the correlation coefficient around 0.85 in the Taylor 368 

diagram, but with rather different seasonal amplitudes. Figure 5 also indicates the lower ET 369 

seasonality simulated by the CLSM compared to the MATSIRO and CLM4. 370 

c. Groundwater budget 371 

Figure 6 shows the monthly variations in GWS (its time derivative), surface runoff, groundwater 372 

recharge, and baseflow for the period 2005–2008 as simulated by all three models. For comparison, 373 

the monthly changes of observed GWS (based on Eq. 2) are also plotted in Figure 6a. For all three 374 

models, the seasonal dynamic of the GWS is rather well captured, although the decrease of GWS 375 

after the annual peak (negative monthly GWS change) tends to start too late. The monthly changes 376 

of GWS simulated by the MATSIRO and CLSM are close to each other and consistent with the 377 

observations, while CLM4 considerably overestimates these monthly changes. 378 

According to the groundwater budget equation, changes in GWS must be balanced by the 379 

difference: groundwater recharge - baseflow. Thus, the overestimation of GWS variations by 380 

CLM4 may be explained, at least partially, by its much higher recharge (for both peak recharge in 381 
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winter and negative recharge in summer) than the other two models, so much higher that they are 382 

plotted separately (Figure 6c and 6d). Another important difference between the three models is 383 

that only CLM4 and the CLSM simulate negative groundwater recharge (occurring when capillary 384 

rise outweighs gravity drainage) during the dry months. The negative recharge in the MATSIRO 385 

is very weak, which helps this model to simulate the highest mean recharge (Table 1). The three 386 

models simulate between 1% and 8% of annual precipitation as recharge (8% for MATSIRO, 4% 387 

for CLM4, and 1% for the CLSM). In comparison, the recharge estimates from a model-based 388 

analysis based on the calibration of routing scheme on observational river discharge, Kamagaté et 389 

al. (2007) and Séguis et al. (2011) report higher mean recharge rates, between 10% and 17% of 390 

annual precipitation.  391 

For baseflow, the simulations of all three models differ significantly. CLM4 simulates the largest 392 

amount of baseflow (108 mm/yr, 38% of total runoff), followed by the MATSIRO (68 mm/yr, 393 

32% of total runoff), whereas the CLSM simulates only a negligible amount of baseflow (4 mm/yr, 394 

0% of total runoff). The baseflow ratio in all models is less than 40% of total runoff, so 395 

considerably lower than the estimate of 70%–90% reported by other studies (Kamagaté et al. 2007; 396 

Séguis et al. 2011; Hector et al. 2015). Accordingly, all three models overestimate surface runoff 397 

(ranging between 62% and 100%, Table 1), compared with the estimate of 10%–30% from the 398 

aforementioned studies. In addition, CLM4 simulates markedly higher baseflow values in the wet 399 

years of 2007 (119 mm/yr) and 2008 (216 mm/yr), four to five times greater than the other two 400 

models, because of its correspondingly high GWS changes (Figure 6a).  401 

For these three LSMs with groundwater parametrization, the simulated groundwater budget largely 402 

depends on the effective groundwater rating curve (i.e., the relation between WTD or ΔGWS and 403 

baseflow), shown in Figure 7. When baseflow is confronted to the WTD (Figure 7a), CLM4 404 



 18 

exhibits the steepest rating curve so the simulated baseflow in CLM4 is dissipated more rapidly 405 

(Figure 6e). CLM4 generates a significantly higher baseflow simulation than does the MATSIRO 406 

when the water table is shallower than 3 m, whereas the CLSM generates zero baseflow when the 407 

water table is deeper than 2 m. After multiplying by the corresponding specific yield, Figure 7b 408 

indicates similar relations between the ΔGWS and baseflow for the MATSIRO and CLM4, 409 

although a larger range of ΔGWS in CLM4, corresponding with higher baseflow that is also clearly 410 

shown. Thus, the different baseflow simulations (Figure 6e) can be explained by the different 411 

∆GWS simulated among the models (Figure 4). The discrepancies in the rating curves partially 412 

explain the large sensitivity of simulated groundwater-related fluxes and GWS changes (Figure 6). 413 

6. Discussion 414 

The closure of the water budget is not perfect when based on observational estimates (Table 1), 415 

which reveal uncertainties on the observed fluxes that can amount 13%–18% of the mean 416 

precipitation. The uncertainty on observed rainfall is estimated at approximately 10% (relative 417 

error, Vischel et al. 2011). The main source of uncertainties probably arises from the satellite ET, 418 

due to the coarse spatial resolution of satellite data (MOD16: 0.05° and GLEAM: 0.25°) compared 419 

to the smaller dimensions of the forest clumps in the area. This needs to be kept in mind when 420 

comparing models to observations, but the main modeling errors revealed by the above analyses 421 

are large enough to stand against observational uncertainties. 422 

Compared to the observational data, the simulated ΔGWS in all three LSMs shows a strong 423 

seasonal variability with a lag of approximately 2 months, especially CLM4 with larger variations 424 

of ΔGWS during the wet years. The models also simulate substantially shallower WTD than 425 

observed, with smaller seasonal variations. These seemingly paradoxical conclusions can be 426 
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reconciled given the overly high specific yield in the models. The results also show that the three 427 

models achieve rather similar simulations of ΔGWS by means of different precipitation 428 

partitioning between runoff and ET, implying different shortcomings and errors with respect to the 429 

total and groundwater budget. Therefore, improvement in model set-up and parameters, 430 

particularly specification of regional aquifer properties, is crucial and can be achieved by rigorous 431 

experiments and calibrations. The LSMs used in current study despite their similar GWS 432 

variability, do have multiple partitioning differences. For example, CLSM simulates an overly 433 

shallow WTD due to the specification of an insufficient depth to bedrock (4 m). This is a major 434 

explanation for the overestimated ET during the dry season, by means of excessive capillary rise, 435 

as also noted in temperate climate (Habets et al. 2013). The TOPMODEL concept embedded into 436 

the CLSM leads to saturation-excess runoff when the WT reaches the soil surface, but this does 437 

not happen in the studied simulation (Figure 7). The overly high surface runoff (Figure 3b) rather 438 

results from excessive infiltration-excess runoff (Horton mechanism), as also reported in the Mali 439 

mesosite of ALMIP2 (Grippa et al. 2017). This latter error propagates to excessively weak ET and 440 

recharge by CLSM during the rainy season, especially at the onset of the monsoon, which prevents 441 

capturing the sharp rise of the WT and ΔGWS (Figures 3 and 4). In contrast, the MATSIRO and 442 

CLM4 realistically reproduce the magnitude and seasonal variations of observed ET (Figure 2b). 443 

The MATSIRO and CLM4 have a much deeper depth to bedrock than the CLSM (25 m thick in 444 

CLM4, 40 m in MATSIRO), but they also fail to capture the phase of the WTD and ΔGWS, notably 445 

the sharp rise of July and August. 446 

Eventually, a major problem shared by all three models is their overestimation of total runoff at 447 

the beginning of the rainy season, which delays the recharge to the groundwater system, consistent 448 

with the findings of Getirana et al. (2017). Furthermore, Grippa et al. (2017) compared ALMIP2 449 
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simulations with observations from the arider ALMIP2 site in Mali and also reported that the 450 

simulated total runoff was overestimated by most models with the early runoff generation and 451 

reduced infiltration, despite the different hydrological functioning of this Sahelian area. This 452 

explains why the models simulate an excessive GWS decrease at the beginning of the rainy season 453 

(Figures 4 and 6a). Correspondingly, the excessive increase of GWS at the end of the rainy season 454 

(in the same figures) may be attributed to the underestimation of baseflow and ET by the three 455 

models. 456 

To further explore how the simulated hydrological fluxes affect ΔGWS, we changed the surface 457 

runoff generation parameterization in CLM4 by performing two experiments (Figure S1): 1) In the 458 

first experiment (EXP1) the generating factor for the surface runoff parameterization was 459 

decreased to 10 times compared to the controlled simulations (CON-SIM). 2) In the second 460 

experiment (EXP2), the generating factor of surface runoff parameterization was increased by 50% 461 

compared to the CON-SIM. In the experiments, the changes in surface runoff leads to changes in 462 

infiltration, recharge and baseflow. The results show that the total runoff simulations along with 463 

ΔGWS do not show significant differences because of the counter-balance effect of recharge and 464 

baseflow on ΔGWS. Also, the increased baseflow is compensated by the reduced surface runoff 465 

in EXP1 and vice versa in EXP2; thus, the total runoff remains nearly unchanged in both the 466 

experiments. Therefore, while the modification in parameterization can partially improve the 467 

simulations of certain water budget fluxes (e.g., recharge and baseflow), the modified simulation 468 

may not improve the simulation of overall water budget and ΔGWS. Further evaluations with a 469 

combination of other improved model parameterization and more suitable specification of 470 

groundwater parameters are required to explore for future improvement. 471 
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Furthermore, a series of sensitivity tests were carried out in CLM4 to evaluate the impact of the 472 

specification of specific yield on ΔGWS simulations. The results show that although ΔGWS is 473 

considerably influenced by these modifications (Figure S2), the modification of the specific yield 474 

value to the in-situ value (0.02) does not result in improved GWS simulations. Furthermore, there 475 

is negligible change in the total runoff simulations and WTD (Table S1). It is clear that 476 

groundwater simulation should be sensitive to the specific yield, but its value is not the only 477 

parameter which causes the uncertainty in groundwater simulations. Other factors of uncertainty 478 

sources such as the depth to bedrock, the bias in hydrological fluxes partitioning, and the 479 

uncertainty in model structures (e.g., non-representation of the lateral groundwater flow), all need 480 

to be considered in current LSMs to best improve model simulations. We recognize these 481 

limitations in our modeling study and their improvement will be investigated in our future studies. 482 

The analysis in this study overlooks a major feature of the Donga basin, namely the co-existence 483 

of two different water tables (Séguis et al. 2011): a deep one in the saprolites, mostly related to 484 

storage processes, and surveyed by the 24 wells analyzed in this study; a seasonal perched WT, 485 

mostly related to baseflow production, as illustrated by the fact that the WTD and GWS mostly 486 

decrease between November and April, when streamflow is negligible (Figure 2c). Using chemical 487 

signatures, Séguis et al. (2011) confirmed this differentiated behavior and estimated that 488 

approximately 70–90% of the total streamflow was provided by the seasonal perched WT. In 489 

contrast, the evaluated LSMs represent a single groundwater table, contributing to baseflow, and 490 

rather shallow (Figure 3). Combined with evidence that deep roots may contribute to groundwater 491 

loss through ET in the Donga catchment (Le Lay et al. 2008; Guyot et al. 2009; Richard et al. 2013; 492 

Mamadou et al. 2016), this sheds a new light on the partitioning of the output water fluxes along 493 

the year. Since streamflow is negligible at the end of the rainy and the dry season, the decrease in 494 
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GWS is likely caused by ET. This decrease is underestimated by the models, which even predict 495 

an increase of GWS at the end of the rainy season, suggesting that when the groundwater level is 496 

deep, the models either underestimate ET, or overestimate recharge, or both. The second option is 497 

consistent with the underestimation of baseflow from the perched water table compared to the 498 

estimates of Seguis et al. (2011). The fact that baseflow originates from the perched water table is 499 

also consistent with the timing of this flux, largely synchronous with the peak rainfall. Eventually, 500 

it may be argued that the baseflow from the perched water table shows many similarities with what 501 

models call surface runoff, so the overall simulated water budget is rather satisfactory, at least for 502 

the MATSIRO and CLM4. In contrast, the CLSM suffers from excessive dry season ET and 503 

excessive runoff, which may be explained, at least partially, by the too shallow water table. 504 

Furthermore, two-dimensional groundwater representation is essential as highlighted by Zeng et 505 

al. (2016). However lateral groundwater flow is not represented in current LSMs, therefore, its 506 

representation in future can improve model simulations. 507 

7. Conclusions 508 

This study aims at evaluating the terrestrial water budget simulated by three LSMs (CLM4, CLSM, 509 

and MATSIRO) over the Donga basin (Benin, West Africa). This well-monitored 586-km2 sub-510 

basin in the upper Ouémé basin is the most humid among the three AMMA-CATCH study sites 511 

in the ALMIP2 project. All three LSMs are driven by the same atmospheric forcing data, and their 512 

simulations are evaluated against the same set of observational data. A particular emphasis of this 513 

study is placed on groundwater budget simulations since all three models include an unconfined 514 

aquifer representation, which remains a rare feature in state-of-the-art LSMs. 515 
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Interestingly, the three LSMs simulate rather consistent GWS and total water storage dynamics 516 

despite many differences in their groundwater properties (e.g., specific yield, depth to bedrock, 517 

baseflow rates) and simulated water fluxes (ET, surface runoff, baseflow, recharge). The overall 518 

water budget is well captured by the MATSIRO and CLM4, but the CLSM fails to capture the 519 

contrasted seasonal cycle of observed ET, which reveals tight links, probably too strong, with the 520 

groundwater. The considerably overestimated ET during the dry season by CLSM can be attributed 521 

to its too shallow WT which overstimulates capillary rise to the overlying soil layers. The 522 

significant underestimation of ET at the beginning of the rainy season is likely coupled to the 523 

underestimation of infiltration induced by the excessive runoff. In contrast, the MATSIRO and 524 

CLM4 achieve a favorable agreement with the satellite-derived ET, despite the consistency with 525 

the CLSM in the simulated shallow WT and overestimated runoff at the beginning of rainy season. 526 

Major improvements can be expected from the adequate estimation of the sensitive parameters 527 

through reliable regional information, either by direct parameter specification or through 528 

calibration. For instance, the above results suggest that the infiltration capacity should be reduced 529 

in the CLSM. Regarding the groundwater compartment, the specific yield and the baseflow rate 530 

are shown to significantly contribute to the dispersion of the simulated GWS and WTD among the 531 

models. The vertical geometry of the groundwater system is also relevant, as highlighted by 532 

Swenson and Lawrence (2015) and Brunke et al. (2016) for CLM4. This point is particularly 533 

important in the Donga basin to faithfully describe the origin of baseflow and ET between the 534 

perched water table and the deeper saprolite aquifer, as detailed in the Discussion. A two-layer 535 

aquifer model might thus be useful in this particular site, and in many others as argued by de Graaf 536 

et al. (2017).  537 
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Captions for Table and Figures 789 

Table 1. Annual water budget terms in the Donga basin during the period 2005–2008 (precipitation, 790 

surface runoff, baseflow, total runoff, groundwater recharge, and ET, all with units of mm/yr) 791 

in the three LSMs (“MTS” denotes the MATSIRO model) and according to observations 792 

(observed streamflow and ET estimates from GLEAM (“GLM”) and MODIS (“Mod 16”) 793 

satellite data). Values in italic represent the percentage of each water flux with respect to 794 

precipitation, which was the same for all three models. 795 

FIG. 1. Map of Donga Basin showing elevation in meters (Aster DEM), and the location of the 796 

main streams, the stream gauge station, and the available observation wells. The longitudes 797 

and latitudes are given in decimal degrees. 798 

FIG. 2. Time series of the fluxes related to the total water budget (mm/d), on average over the 799 

Donga basin: (a) input precipitation; (b) simulated and observed ET; (c) simulated and 800 

observed total runoff; (d) simulated and observed total water storage changes (derived from 801 

P-E-Q, and E is the average of MODIS and GLEAM products). 802 

FIG. 3. Simulated and observed monthly WTD from 2005 to 2008: CLM4 (blue line), CLSM 803 

(green line), MATSIRO (red line), average of observations from 24 wells (black line), grey 804 

envelope indicates the well’s spatial standard deviations for each month, along with 805 

precipitation (mm; blue bars). 806 

FIG. 4. Seasonal ΔGWS (in mm) from CLM4, CLSM, and MATSIRO against observations from 807 

2005 to 2008. Vertical blue bars represent monthly average rainfall (mm/d) from 2005 to 808 

2008. 809 
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FIG. 5. Taylor diagram presenting a comparison between observed (black circle) and simulated 810 

ΔGWS (circle), ET (square), and R (diamond) from 2005 to 2008. Blue is for CLM, green is 811 

for CLSM, and red is for MATSIRO. Solid black lines represent the radial distance from the 812 

origin proportional to the normalized standard deviation. 813 

FIG. 6. Time series of fluxes related to the groundwater budget ( mm/d), on average over the 814 

Donga basin: (a) simulated and observed ΔGWS ; (b) simulated surface runoff; (c) simulated 815 

groundwater recharge from CLM4; (d) simulated groundwater recharge from CLSM and 816 

MATSIRO; (e) simulated baseflow.  817 

FIG. 7. Monthly effective groundwater rating curves (a) WTD and (b) ΔGWS versus monthly 818 

baseflow simulations during 2005–2008 in the Donga catchment, as obtained from three 819 

LSMs. Blue lines are the baseflow simulated by the SIMTOP scheme in CLM4 (without the 820 

saturation excess from the soil layers).  821 
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 829 

 830 

  2005  2006  2007  2008  Average  
P  1130  1062  1253  1343  1197  

Qs CLM 219 19 191 18 230 18 280 21 230 19 

 CLSM 452 40 407 38 524 42 607 45 498 42 

 MTS 145 13 116 11 131 10 194 14 147 12 
Qsb CLM 62 5 35 3 119 10 216 16 108 9 

 CLSM 0 0 0 0 3 0 12 1 4 0 

 MTS 59 5 46 4 61 5 107 8 68 6 
Q 

(Qs+Qsb) CLM 280 25 226 21 350 28 497 37 338 28 

 CLSM 453 40 408 38 528 42 619 46 502 42 

 MTS 204 18 163 15 192 15 301 22 215 18 

 Obs 129 11 134 13 194 15 307 23 191 16 
R CLM -56 -5 -37 -3 141 11 160 12 52 4 

 CLSM 0 0 1 0 35 3 27 2 16 1 

 MTS 59 5 40 4 113 9 155 12 92 8 
ET CLM 866 77 840 79 881 70 848 63 859 72 

 CLSM 677 60 641 60 675 54 725 54 679 57 

 MTS 936 83 906 85 966 77 958 71 942 79 

 Mod16 862 76 854 80 842 67 839 62 849 71 

 GLM 817 72 734 69 780 62 827 62 790 66 
 831 
Table 1. Annual water budget terms in the Donga basin during the period 2005–2008 (precipitation, 832 

surface runoff, baseflow, total runoff, groundwater recharge, and ET, all with units of mm/yr) in 833 

the three LSMs (“MTS” denotes the MATSIRO model) and according to observations (observed 834 

streamflow and ET estimates from GLEAM (“GLM”) and MODIS (“Mod 16”) satellite data). 835 

Values in italic represent the percentage of each water flux with respect to precipitation, which 836 

was the same for all three models. 837 
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 840 

 841 
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 842 

FIG. 1. Map of Donga Basin showing elevation in meters (Aster DEM), and the location of the 843 

main streams, the stream gauge station, and the available observation wells. The longitudes 844 

and latitudes are given in decimal degrees. 845 

 846 
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 847 

FIG. 2. Time series of the fluxes related to the total water budget (in mm/d), on average over the 848 

Donga basin: (a) input precipitation; (b) simulated and observed ET; (c) simulated and 849 

observed total runoff; (d) simulated and observed total water storage changes (derived from 850 

P-E-Q, and E is the average of MODIS and GLEAM products). 851 
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 855 
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 856 

FIG. 3. Simulated and observed monthly WTD from 2005 to 2008: CLM4 (blue line), CLSM 857 

(green line), MATSIRO (red line), average of observations from 24 wells ( black line), grey 858 

envelope indicates the well’s spatial standard deviations for each month, along with 859 

precipitation (in mm; blue bars). 860 
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 866 



 41 

 867 

FIG. 4. SeasonalΔGWS (mm) from CLM4, CLSM, and MATSIRO against observations from 868 

2005 to 2008. Vertical blue bars represent monthly average rainfall (mm/d) from 2005 to 869 

2008. 870 
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 878 
 879 

FIG. 5. Taylor diagram presenting a comparison between observed (black circle) and simulated 880 

ΔGWS (circle), ET (square), and R (diamond) from 2005 to 2008. Blue is for CLM4, green is for 881 

CLSM, and red is for MATSIRO. Solid black lines represent the radial distance from the origin 882 

proportional to the normalized standard deviation. 883 
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 890 

FIG. 6. Time series of fluxes related to the groundwater budget (mm/d), on average over the Donga 891 

basin: (a) simulated and observed ΔGWS; (b) simulated surface runoff; (c) simulated 892 

groundwater recharge from CLM4; (d) simulated groundwater recharge from CLSM and 893 

MATSIRO; (e) simulated baseflow.  894 
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 895 

FIG.7. Monthly effective groundwater rating curves (a) WTD and (b) ΔGWS versus monthly 896 

baseflow simulations during 2005–2008 in the Donga catchment, as obtained from three 897 

LSMs. Blue lines are the baseflow simulated by the SIMTOP scheme in CLM4 (without the 898 

saturation excess from the soil layers).  899 
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