,

S. Koirala, P. J. Yeh, Y. Hirabayashi, S. Kanae, and T. Oki, Global-scale land surface 630 hydrologic modeling with the representation of water table dynamics, J. Geophys. Res, 2014.

A. , , vol.119, pp.75-89

R. D. Koster and M. J. Suarez, Modeling the Land Surface Boundary in Climate Models 633 as a Composite of Independent Vegetation Stands, J. Geophys. Res, vol.97, pp.2697-2715, 1992.

-. , A. Ducharne, M. Stieglitz, and P. Kumar, A catchment-based approach to modeling 636 land surface processes in a general circulation model: 1. Model structure, J. Geophys. Res, vol.637, pp.24809-24822, 2000.

D. M. Lawrence and C. , , p.639, 2011.

, Structural Advances in Version 4 of the Community Land Model, J. Adv. Model. Earth, vol.640

. Syst, , vol.3, pp.1-27

L. Barbé, L. , T. Lebel, and D. Tapsoba, Rainfall Variability in West Africa during the 642 Years 1950 -90, J. Clim, vol.15, p.15, 2002.

L. Lay, M. , G. M. Saulnier, S. Galle, L. Séguis et al., Model 645 representation of the Sudanian hydrological processes: Application on the Donga catchment 646 (Benin), J. Hydrol, vol.363, pp.32-41, 2008.

T. Lebel and C. , AMMA-CATCH studies in the Sahelian region of West-Africa: 648 An overview, J. Hydrol, vol.375, pp.3-13, 2009.

B. Lehner, K. Verdin, and J. A. , New Global Hydrography Derived from Spaceborne, p.650, 2008.

, Elevation Data, Eos Trans. Amarican Geophys. Union, vol.89, pp.93-94

M. Lo, J. S. Famiglietti, P. J. , .. Yeh, T. H. Syed-;-p et al., Improving parameter estimation 652 and water table depth simulation in a land surface model using GRACE water storage and 653 estimated base flow data, Water Resour. Res, vol.46, pp.1552-1564, 2008.

-. , C. M. Wu, H. Y. Ma, and J. S. Famiglietti, The response of coastal stratocumulus 658 clouds to agricultural irrigation in California, J. Geophys. Res. Atmos, vol.118, pp.6044-6051, 2013.

G. Mahé and J. Paturel, Sahelian annual rainfall variability and runoff 661 increase of Sahelian Rivers, Comput. Rendus Geosci, vol.341, pp.538-546, 2009.

O. Mamadou, S. Galle, J. Cohard, C. Peugeot, B. Kounouhewa et al., 2016: 664 Dynamics of water vapor and energy exchanges above two contrasting ecosystems in 665 sudanian climate, Northern Benin (West Africa), J. Geophys. Res. Atmos, vol.121, issue.19, pp.269-286

D. G. Miralles, T. R. Holmes, R. A. De-jeu, J. H. Gash, A. G. Meesters et al.,

. Dolman, Global land-surface evaporation estimated from satellite-based observations, 2011.

, Hydrol. Earth Syst. Sci, vol.15, pp.453-469

Q. Mu, M. Zhao, and S. W. Running, Improvements to a MODIS global terrestrial 671 evapotranspiration algorithm, Remote Sens. Environ, vol.115, pp.1781-1800, 2011.

C. Ndehedehe, J. Awange, N. Agutu, M. Kuhn, and B. Heck, , vol.674, p.30, 2016.

, Adv. Water Resour, vol.88, pp.211-230, 2002.

G. Niu, Z. Yang, R. E. Dickinson, and L. E. Gulden, A simple TOPMODEL-based 677 runoff parameterization (SIMTOP) for use in global climate models, J. Geophys. Res, vol.110, p.678, 2005.

, , p.21106

-. , -. , -. , and H. Su, Development of a simple groundwater model for use 680 in climate models and evaluation with Gravity Recovery and Climate Experiment data, J, p.681, 2007.

, Geophys. Res, vol.112, p.7103

K. W. Oleson and C. , , 2010.

, Land Model (CLM)

G. Panthou, T. Vischel, and T. Lebel, Recent trends in the regime of extreme rainfall in 685 the Central Sahel, Int. J. Climatol, vol.34, pp.3998-4006, 2014.

P. Pavelic, V. Smakhtin, G. Favreau, and K. G. Villholth, 2012: Water-balance approach for 687 assessing potential for smallholder groundwater irrigation in Sub-Saharan Africa, p.688

. Int and . Conf, Groundw. Spec, vol.38, pp.399-406

N. Y. Pokhrel, S. Koirala, P. J. Yeh, N. Hanasaki, L. Longuevvergne et al., Incorporation of groundwater pumping in a global Land Surface Model with the 691 representation of human impacts, Water Resour. Res, vol.690, pp.78-96, 2015.

G. Rasul and B. Sharma, The nexus approach to water-energy-food security: an option 694 for adaptation to climate change, Clim. Policy, vol.16, pp.682-702, 2016.

J. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker et al., , p.31, 2006.

, African Monsoon Multidisciplinary Analysis: An International Research Project and Field 698

, Campaign. Bull. Am. Meteorol. Soc, vol.87, pp.1739-1746

A. Richard, S. Galle, M. Descloitres, J. Cohard, J. Vandervaere et al., Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian, vol.700, p.701, 2013.

, Hydrol. Earth Syst. Sci, vol.17, pp.5079-5096

C. Ringler and R. Lawford, The nexus across water, energy, land and food (WELF): 704 potential for improved resource use efficiency?, Curr. Opin. Environ. Sustain, vol.5, pp.617-624, 0705.

L. Séguis and C. , Origins of streamflow in a crystalline basement catchment in a 707 sub-humid Sudanian zone: The Donga basin, J. Hydrol, vol.402, pp.1-13, 2011.

P. J. Sellers, Y. Mintz, Y. C. Sud, and A. Dalcher, A simple biosphere model (SiB) for 710 use within general circulation models, J. Atmos. Sci, vol.43, pp.505-531, 1986.

-. and C. , A revised land surface parameterization (SiB2) for atmospheric, 1996.

. Gcms, Part I: Model formulation, J. Clim, vol.9, pp.676-705, 1996.

M. Stieglitz, D. Rind, J. Famiglietti, and C. Rosenzweig, An efficient approach to 716 modeling the topographic control of surface hydrology for regional and global climate 717 modeling, J. Clim, vol.10, pp.118-137, 1997.

S. C. Swenson and D. M. Lawrence, A GRACE-based assessment of interannual 720 groundwater dynamics in the Community Land Model, Water Resour. Res, vol.51, p.721, 2015.

M. B. Sylla, J. S. Pal, G. L. Wang, and P. J. Lawrence, Impact of land cover 723 characterization on regional climate modeling over West Africa, Clim. Dyn, vol.46, pp.637-650, 2016.

T. Tadesse and C. , The Need for Integration of Drought Monitoring Tools for 726, 2008.

, Proactive Food Security Management in Sub-Saharan Africa food security management in 727 sub-Saharan Africa, Nat. Resour. Forum, vol.32, pp.265-279

K. Takata, S. Emori, and T. Watanabe, Development of the minimal advanced treatments 730 of surface interaction and runoff, Glob. Planet. Change, vol.38, issue.03, pp.30-34, 2003.

K. E. Taylor, Summarizing multiple aspects of model performance in a single diagram, 2001.

, Geophys. Res, vol.106, issue.D7, pp.7183-7192

R. Taylor, When wells run dry, Nature, vol.516, issue.7530, pp.179-180, 2014.

B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber, The gravity recovery and climate 736 experiment: Mission overview and early results, Geophys. Res. Lett, vol.31, pp.1-4, 2004.

A. Thibaut, K. Tchuente, J. Roujean, and S. Faroux, Remote Sensing of Environment, p.739, 2010.

. Ecoclimap-ii, An ecosystem classification and land surface parameters database of 740

, Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis 741 (AMMA) project. Remote Sens. Environ, vol.114, pp.961-976

, United Nations, Department of Economic and Social Affairs, Population Division, p.743, 2015.

, The 2015 Revision, Key Findings and Advance Tables. Working, vol.744, p.241

T. Vischel, G. Quantin, T. Lebel, J. Viarre, M. Gosset et al., 2011: 746 Generation of high-resolution rain fields in West Africa: Evaluation of dynamic 747 interpolation methods, J. Hydrometeor, vol.12, pp.1465-1482

C. J. Vörösmarty, P. Green, J. Salisbury, and R. Lammers, Global Water Resources: 749 Vulnerability from Climate Change and Population Growth, Science, vol.289, pp.284-288, 2000.

J. M. Vouillamoz, F. M. Lawson, N. Yalo, and M. Descloitres, Groundwater in hard 752 rocks of Benin: Regional storage and buffer capacity in the face of change, J. Hydrol, vol.520, pp.753-379, 2015.

Y. Wada and M. F. Bierkens, Sustainability of global water use: past reconstruction 755 and future projections, Environ. Res. Lett, vol.9, p.104003, 2014.

. Bierkens, Global depletion of groundwater resources, Geophys. Res. Lett, vol.37, pp.1-5, 2010.

M. Watanabe and C. , Improved climate simulation by MIROC5: Mean states, p.760, 2010.

, variability, and climate sensitivity, J. Clim, vol.23, pp.6312-6335

H. W. Wey, M. H. Lo, S. Y. Lee, J. Y. Yu, and H. H. Hsu, Potential impacts of wintertime 762 soil moisture anomalies from agricultural irrigation at low latitudes on regional and global 763 climates, Geophys. Res. Lett, vol.42, pp.8605-8614, 2015.

Y. Xue, A. Boone, and C. M. Taylor, Review of Recent Developments and the Future, vol.765, p.34, 2012.

, Prospective in West African Atmosphere / Land Interaction Studies, Int. J. Geophys, vol.766, pp.1-12

P. J. Yeh and E. A. Eltahir, Representation of water table dynamics in a land 768 surface scheme. Part I: Model development, J. Clim, vol.18, pp.1861-1880, 2005.

P. J. Yeh and E. A. Eltahir, Representation of water table dynamics in a land 771 surface scheme. Part II: Subgrid Variability, J. Clim, vol.18, pp.1881-1901, 2005.

X. Zeng and M. Decker, Improving the Numerical Solution of Soil Moisture -Based 774, 2009.

, Richards Equation for Land Models with a Deep or Shallow Water Table

. Hydrometeorol, , vol.10, pp.308-319

Y. Zeng, Z. Xie, Y. Yu, S. Liu, L. Wang et al., Effects of 777 anthropogenic water regulation and groundwater lateral flow on land processes, J. Adv, 2016.

Y. Zeng, Z. Xie, and J. , Model. Earth Syst, vol.8, pp.1106-1131

. Zou, Hydrologic and climatic responses to global anthropogenic groundwater 780 extraction, J. Clim, vol.30, pp.71-90, 2017.

, Annual water budget terms in the Donga basin during the period 2005-2008 (precipitation, 790 surface runoff, baseflow, total runoff, groundwater recharge, and ET, vol.1, p.791

, MTS" denotes the MATSIRO model) and according to observations 792 (observed streamflow and ET estimates from GLEAM, GLM") and MODIS, vol.16

, Values in italic represent the percentage of each water flux with respect to 794 precipitation, which was the same for all three models

. Fig, Map of Donga Basin showing elevation in meters (Aster DEM), and the location of the 796 main streams, the stream gauge station, and the available observation wells. The longitudes 797 and latitudes are given in decimal degrees

, Time series of the fluxes related to the total water budget (mm/d), on average over the 799

, Donga basin: (a) input precipitation; (b) simulated and observed ET; (c) simulated and 800 observed total runoff; (d) simulated and observed total water storage changes, p.801

P. ,

, MATSIRO (red line), average of observations from 24 wells (black line), grey 804 envelope indicates the well's spatial standard deviations for each month, CLSM 803 (green line), p.4, 2005.

, Seasonal ?GWS (in mm) from CLM4, CLSM, and MATSIRO against observations from 807, vol.808, 2005.