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Abstract

In social interactions, people have to pay attention both to the ‘what’ and ‘who’. In particular, expressive changes heard on
speech signals have to be integrated with speaker identity, differentiating e.g. self- and other-produced signals. While
previous research has shown that self-related visual information processing is facilitated compared to non-self stimuli,
evidence in the auditory modality remains mixed. Here, we compared electroencephalography (EEG) responses to expressive
changes in sequence of self- or other-produced speech sounds using a mismatch negativity (MMN) passive oddball
paradigm. Critically, to control for speaker differences, we used programmable acoustic transformations to create voice
deviants that differed from standards in exactly the same manner, making EEG responses to such deviations comparable
between sequences. Our results indicate that expressive changes on a stranger’s voice are highly prioritized in auditory
processing compared to identical changes on the self-voice. Other-voice deviants generate earlier MMN onset responses and
involve stronger cortical activations in a left motor and somatosensory network suggestive of an increased recruitment of
resources for less internally predictable, and therefore perhaps more socially relevant, signals.
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Introduction

In social interactions, people have to process continuous
changes not only in the vocal and facial expressions of their
interlocutors but also in the feedback from their own facial and
vocal expressions. There is a long-ranging debate in the social-
cognitive and meta-cognitive communities (James, 1884; Frith,
2012) about the mechanistic primacy of both types of inputs;
on the one hand, the social-cognitive interpretation of other
agents is believed to mobilize simulation mechanisms that

supplement the processing of exteroceptive input (Gallese et al.,
2004; Niedenthal, 2007). On the other hand, vocal (Aucouturier
et al., 2016) and facial feedback (Laird and Lacasse, 2014, but see
also Wagenmakers et al., 2016) paradigms suggest that meta-
cognitive evaluations of e.g. one’s own emotional state are
influenced by proprioceptive inputs (the sound of our voice,
the motor pattern of our face) that are processed ‘as if’ they
were external stimuli. In the voice domain in particular, the
question remains whether there are fundamental mechanistic
differences between e.g. hearing one’s own voice suddenly
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change its pitch to sound brighter and happier and processing
the exact same cues on the voice of a conversation partner.

Electrophysiological indices of self- and other-stimulus
processing have provided mixed evidence to this question.
Various studies show converging evidence that self-related
visual stimuli are prioritized in the brain (Apps and Tsakiris,
2014). For instance, images of the self-face elicit faster responses
and recruit greater attentional resources than representations
of another person (Tacikowski and Nowicka, 2010; Pannese
and Hirsch, 2011; Sel et al., 2016). However, self-generated
auditory stimuli do not necessarily show the same pattern; while
participants’ own voice evoked larger N2 and P3 when compared
to a stranger’s voice in an active detection task (Conde et al.,
2015), Graux and colleagues found that participants’ own voice
evoked a smaller P3a amplitude than the voice of a stranger or
a familiar other when using passive oddball paradigms (Graux
et al., 2013, 2015).

Critically, these previous studies have used designs in which
self- and other-stimuli are alternated. While such a contrast
sheds light on the relative saliency of self-voice (SV) deviants in
a context of other-voices (OVs) standards, it does not address the
question of whether we process expressive changes in our own
voice (i.e. SV deviants in a sequence of SV standards) in the same
way as in the voice of others (i.e. OV deviants in a sequence of
OV standards).

On the one hand, the processing of expressive changes
in a sequence of SVs may be facilitated because the SV is
a familiar signal. Visual paradigms have consistently shown
that deviants among familiar letters or shapes elicit faster
mismatch responses (e.g. Sulykos et al., 2015), and similar
results were found contrasting deviants in culturally familiar
sounds (e.g. the Microsoft Windows chime) with deviants in
sequences of the same sounds played backwards (Jacobsen
et al., 2005). An SV advantage would also be consistent with
results documenting facilitating effects of language or speaker
familiarity on phonological and semantic processing (Chen et al.,
2014a; Fleming et al., 2014).

On the other hand, the processing of expressive cues in
a sequence of OVs may be facilitated because the OV is less
predictable, more socially relevant and thus warrants more/-
faster reorientation of attention than self-stimuli. There are
known effects of social relevance on mismatch responses in
the visual and auditory modalities, notably when manipulat-
ing the communicative nature of the signals; in sequences of
emotional face stimuli, Campanella and colleagues (2002) found
earlier and larger mismatch responses to changes of expressions
that led to a different emotional appraisal (e.g. a happy face
in a sequence of sad faces) than to a different depiction of
the same emotion (see also Bayer et al., 2017; Kovarski et al.,
2017). In the auditory domain, affiliative signals such as laughter
evoke larger mismatch negativity (MMN) than a non-affiliative
growl (e.g. Pinheiro et al., 2017b), vowels expressing fear evoke
both an earlier and larger MMN response than expressions of
happiness and sadness (Carminati et al., 2018) and changes of
the same intensity elicit larger MMNs on vocal than nonvocal
stimuli (Schirmer et al., 2005), all of which can be interpreted
as an effect of social relevance. Finally, not only the auditory
stimulus itself but also the context in which it is presented
seems to affect preattentive change detection processes. In an
oddball paradigm using both intensity and frequency deviants
of pure tones, Pinheiro et al. (2017a) reported a smaller MMN
in response to deviants presented when participants looked at
negative images compared to both positive and neutral images.
Similarly, MMN responses to happy two-syllable deviants have

shorter peak latencies when participants receive fear-reducing
testosterone rather than placebo (Chen et al., 2014b). Even non-
vocal tones modulated in F0 and F0 variation to match vocal
expressions of affect are sufficient to evoke MMNs (Leitman et al.,
2011).

One technical obstacle to comparing mismatch responses to
expressive deviants in SV and OV sequences, however, is the
need to control for similar changes to occur in both contexts.
When relying on participant voices, it is always possible that
one speaker expresses a given emotional or expressive change
more clearly or loudly than another speaker (Jürgens et al., 2015),
or with different cues (e.g. louder vs higher pitch), such that
any difference observed in processing such changes cannot be
unambiguously attributed to self/other processing differences
rather than individual production differences.

To make such sequences amenable to an MMN paradigm,
we used a novel voice-transformation software tool (DAVID,
Rachman et al., 2018) in order to create voice deviants which,
while being recognized as authentic expressive changes for both
types of speaker, utilize ‘exactly’ the same cues in ‘exactly’ the
same manner (e.g. a 50 cent pitch increase on the second syllable
of the word) in both contexts. Previous studies using DAVID
have demonstrated that transformed voices are perceived as
natural expressions and in emotional contexts create the same
explicit and implicit reactions as authentic emotional expres-
sions (Aucouturier et al., 2016). In the present study, we used
DAVID to apply identical expressive changes to both SV and OV
stimuli and used an event-related potential MMN paradigm to
examine whether the processing of these controlled changes is
affected by speaker identity.

Methods
Participants

A total of 25 healthy, right-handed female participants took part
in this study [27 came in for voice recordings, but 2 were not able
to do the electroencephalography (EEG) session], 2 of which were
excluded from analysis due to excessive EEG artifacts in the EEG,
leaving 23 participants in the final analysis (mean age = 21.2,
s.d. = 1.8 years).

An additional 20 right-handed female participants took
part in a follow-up behavioral study comprising a catego-
rization task of the expressive changes. One participant was
excluded because of missing data due to technical problems,
leaving 19 participants in the final analysis (mean age = 21.4,
s.d. = 2.1 years). Participants in this second group did not partake
in the EEG experiment.

For both studies, we selected only female participants
because the voice transformations we used worked more reliably
for female than for deep, lower pitch male voices (Rachman et al.,
2018). The experimental protocol was approved by Institut
Européen d’Administration des Affaires (INSEAD)’s Institutional
Review Board, and all participants gave written informed
consent before the start of the study. Participants reported
normal or corrected to normal vision, normal hearing and
an absence of neurological or psychiatric illness. They were
financially compensated for their participation.

Stimuli

Participants came to the lab 1 week prior to the EEG experiment
for a voice recording session. The recordings took place
in a sound-attenuated booth, using a headset microphone
(DPA d:fine 4066), an external sound card (RME UCX Fireface,
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Table 1. Deviant parameter values

Happy Sad

Pitch
shift, cents +50 -70

Inflection
duration, ms 500 –
min., cents -200 –
max., cents +140 –

Shelf filter
cut-off, Hz >8000 <8000
slope, dB/octave +9.5 -12

Parameter values of the happy and sad transformations used in this study [refer
to Rachman et al. (2018) for details].

Germany) and Garage-Band software (Apple Inc., Cupertino,
California, USA) with a 44.1 kHz sampling rate and 16-bit resolu-
tion. Participants were asked to read a list of 20 disyllabic neutral
words and 6 disyllabic pseudo-words with a neutral intonation
(Supplementary Table S1). All sounds were normalized at 70 dBA
using a Matlab (Natick, Massachusetts, USA) toolbox (Pampalk,
2004). Because only the recordings of the pseudoword /ba-ba/
were used during the EEG session, these sound files were
also normalized in time to have a duration of 550 ms using
superVP/audiosculpt software. To ensure comparable amounts
of vocal diversity in ‘self’ and ‘other’ stimuli, participants were
grouped in pairs such that the ‘self’ voice (SV) of one participant
served as the ‘other’ voice (OV) for the other participant and
vice versa.

Finally, we processed all recordings with the DAVID software
platform (Rachman et al., 2018) to generate expressive changes
related to happiness and sadness to create two deviants from the
standard utterance. These changes were created by combining
audio effects such as pitch shift (increasing the standard’s
pitch by 50 cents in the happy deviant and decreasing by 70
cents in the sad deviant), inflection (increasing the beginning
of the second syllable by an extra 70 cents in happy) and
filtering (increasing high-frequency energy with a high-shelf
filter in happy and decreasing high-frequency energy with
a low-shelf filter in sad; see Table 1 for parameter values).
Two different expressive changes were chosen to test for c
onsistency between effects with parameter changes in different
directions (upward and downward pitch.) Crucially, using such

programmable transformations ensured that, in both the self
and other sequences, deviants differed from the standards
in exactly the same manner, making EEG responses to such
deviations comparable between sequences (Figure 1).

Oddball paradigm

We used an oddball paradigm with two different sequences: one
‘self sequence’ and one ‘other sequence’. In the ‘self sequence’,
the neutral recording of the SV served as the standard stimu-
lus and the ‘happy’ and ‘sad’ transformations of the standard
stimulus served as the two expressive deviants. Following the
same logic, the ‘other-sequence’ used the neutral recording of
the OV as the standard and its ‘happy’ and ‘sad’ transformations
as deviants (see Figure 2). Additionally, both sequences also con-
tained an identity deviant to try to replicate previous studies by
Graux and colleagues (2013, 2015); the neutral SV was presented
as the identity deviant in the ‘other sequence’ and vice versa
(see Replication of Graux et al. (2015) for further information). We
counterbalanced the order of the sequences across participants.
Each sequence contained 1080 stimuli in total with the standard
stimulus occurring 80% of the time and each of the three deviant
stimuli (‘happy’, ‘sad’ and ‘identity’) occurring 6.7% of the time
(72 stimuli). Each sequence started with 10 standard stimuli
and 2–7 standards occurred between successive deviants. All
stimuli lasted 550 ms and were presented with a stimulus onset
asynchrony of 1000 ms.

Behavioral tasks

To test whether participants were able to distinguish their own
voice from a stranger’s voice, they performed a behavioral self-
other discrimination task. Five bisyllabic words and three pseu-
dowords (Supplementary Table S1), produced by the participant
and another person (the same ‘other’ as was presented during
the EEG recording), were presented in the neutral version and
with the happy and sad transformations applied. Participants
were asked to indicate for each stimulus if it was their own
voice or the voice of someone else. In a second behavioral task
participants rated the emotional intensity of the voices (see
Supplementary Material for results).

Follow-up categorization task

To test whether the expressive transformations were correctly
recognized, a second group of N = 20 female participants per-
formed a categorization task of the expressive transformations

Fig. 1. Acoustic content of two representative stimuli used in the MMN experiment. Solid line, black, pitch of the standard; red, increase of pitch in the happy deviant;

green, decrease of pitch in the sad deviant. Shaded area indicates second-syllable inflection in the happy deviant. Dotted line, black, spectral centroid (centre of mass) of

the standard; red, high-frequency energy added in the happy deviant; green, high-frequency energy removed in the sad deviant. Bottom, black, half-corrected waveforms

of the standard. Left, participant’s own voice (SELF). Right, another participant’s voice (OTHER).
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Fig. 2. Schematic representation of the oddball sequences for the self (above)

and other (below) conditions. In the SV sequences, standards are neutral SV and

deviants are happy (SV+) and sad (SV-) manipulations of the standard, as well

as one OV recording of the same word (OV). In the OV sequences, standards are

neutral OVs and deviants are happy (OV+) and sad (OV-) manipulations as well

as one SV recording of the same word (SV).

with the same stimuli as above (five bisyllabic and three pseudo
words). Participants were presented with pairs of the same word
produced by the same speaker (SV or OV). The first stimulus
was always an original, non-manipulated recording, and the
second stimulus was either a neutral recording or transformed
using the ‘happy’ or ‘sad’ effect. Participants were then asked to
categorize the second stimulus in a three-option categorization
task (neutral–happy–sad).

Procedure

During the EEG recordings, subjects were seated in front of a
computer screen (55 × 32 cm) on which they watched a silent
subtitled movie. Participants were asked to pay attention to the
movie and to ignore the sounds. Auditory stimulus presentation
was controlled with PsychoPy (Peirce, 2007), and sounds were
delivered through Sennheiser (Germany) CX 300-II earphones at
70 dB SPL.

Electroencephalographic (EEG) data were recorded from 63
scalp locations (actiCHamp, Brain Products GmbH, Germany)
with a sampling rate of 500 Hz, relative to a nose tip reference,
and filtered with a bandpass of 0.01–100 Hz (12 dB/octave roll-
off). Four electrodes were placed on the left and right temples
[horizontal electrooculogram (EOG)] and above and below the
left eye (vertical EOG) to monitor eye movements and blinks,
respectively. Sound onset triggers were sent to the EEG acqui-
sition computer by a Cedrus StimTracker (Cedrus Corporation,
San Pedro, CA) to control synchronization between stimulus
presentation and the EEG signal.

Pre-processing and statistical analyses were performed in
FieldTrip (Oostenveld et al., 2011). Offline, the continuous data
were re-referenced to the average of the left and right mastoid
electrodes (TP9 and TP10) and filtered with a 0.1 Hz high-pass
filter (Butterworth, 12 dB/octave roll-off) and a 30 Hz low-pass
filter (Butterworth, 48 dB/octave roll-off). The data were then
visually inspected to remove epochs with artifacts, such as mus-
cle activity and signal drifts. Next, eye blinks and movements
were corrected using the fast independent component analysis
method.

To get a better estimation of the MMN, we equated the
number of deviants and standards by randomly selecting 69
standards (as many as the mean number of deviants after arti-
fact rejection) that immediately preceded a deviant in the self
and other sequences. Individual EEG epochs were averaged sepa-
rately for each type of standard (self, other) and deviant stimulus
(neutral self, neutral other, happy self, happy other, sad self, sad
other), with a 200 ms pre-stimulus baseline and a 700 ms post-
stimulus period. After artifact rejection, each subject had at least

75% trials remaining in each condition and the number of trials
did not differ across conditions (Self standard, M = 831.5; happy,
M = 69.7; sad, M = 69.4; Other standard, M = 831.3; happy, M =
68.7; sad, M = 69.0; Ps > 0.05). Finally, four difference waves were
calculated by subtracting the grand average waveform of the
standard stimuli from each of the deviant grand averages within
each sequence type (i.e. for each speaker separately), yielding the
following conditions: ‘Happy Self’, ‘Happy Other’, ‘Sad Self’ and
‘Sad Other’.

Statistical analyses

Statistical analyses were conducted in Python 2.7. The alpha
level was set at 0.05, and all statistical tests were two-tailed.

Accuracy scores and ratings were computed from the dis-
crimination and intensity rating tasks, respectively. We con-
ducted one-sample t-tests on the accuracy scores to test whether
SV and OV were discriminated above chance level (50%). Signifi-
cant main effects and interactions were followed up with Tukey
HSD for post-hoc comparisons.

EEG data were analyzed using cluster-based statistics imple-
mented in FieldTrip (Maris and Oostenveld, 2007). In total, four
cluster-based permutation tests were performed: one on the
standard grand averages to test for an effect of speaker identity
and three on the difference waves to investigate main effects
of identity and expression and the identity × expression inter-
action. For the interaction we first calculated the difference
between the happy and sad difference waves for each speaker
identity separately before entering these data into the analysis.
Based on prior hypotheses about the temporal location of the
MMN component (e.g. Beauchemin et al., 2006, Graux et al., 2015,
Pinheiro et al., 2017b), analyses were carried out within a 50–300
ms time window across all electrodes. For each cluster-based
permutation test, we first conducted pairwise t-tests between
two conditions at each channel and time point in the predefined
time window. The critical P-value for the t-statistic for depen-
dent samples was set to 0.05 (two-sided). Spatial clusters were
formed if a significant channel had at least two neighbouring
channels that also passed the specified significance threshold.
For each cluster, the sum of the individual t-values of all the
samples included in that cluster was computed and compared
with the maximum cluster-level test statistic obtained by 5000
random permutations in which subject-specific averages were
randomly permuted for each subject individually (Monte Carlo
P-value < 0.05, two-sided).

As an alternative parametric analysis strategy, we analyzed
the mean MMN amplitude and MMN peak and onset latencies
within a region of interest (ROI) comprising electrodes F1, Fz, F2,
FC1, FCz, FC2, C1, Cz and C2. We extracted the mean amplitude
over a 40 ms time window around the averaged MMN peak
across conditions, participants and electrodes (280 ± 20 ms) to
avoid a possible bias introduced by differences in conditions.
We extracted the MMN onset and peak latencies using a jack-
knife procedure and tested for differences in the four conditions
(identity × expressive tone). The jackknife procedure improves
statistical power by taking the latencies of the grand average
using a leave-one-out method (Ulrich and Miller, 2001, Kiesel
et al., 2008); for N = 23 participants, we calculated 23 grand
averages, each leaving out 1 of the participants and including
the other 22. We then determined the onset latency for each
of these 23 grand averages as the time where the difference
wave reached 50% of the MMN peak amplitude. In a similar way,
we defined the MMN peak latency as the time at which the
difference wave reached the most negative amplitude. These val-
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ues were entered into two separate repeated measures analysis
of variance (rmANOVA)s with identity (self, other), expressive
tone (happy, sad), antero-posterior site (frontal, frontocentral,
central) and lateralization (1-line, z-line, 2-line) as within-subject
factors. Finally, we divided the resulting F-value by (N − 1)2 to
correct for the artificially low error variance introduced by the
leave-one-out procedure (Ulrich and Miller, 2001). Furthermore,
Greenhouse–Geisser correction for non-sphericity was applied
when necessary. We report uncorrected degrees of freedom and
corrected P-values.

Source localization. Estimation of cortical current source den-
sity was performed with Brainstorm (Tadel et al., 2011). The
cortical current source density mapping was obtained from a
distributed source model of 15 000 current dipoles. The dipoles
were unconstrained to the cortical mantle of a generic brain
model built from the standard Montreal Neurological Institute
(MNI) template brain provided in Brainstorm. EEG electrode posi-
tions were determined for each subject using a CapTrak sys-
tem (Brain Products GmbH, Germany) and aligned to the stan-
dard MNI template brain. The forward model was computed
with the OpenMEEG Boundary Element Method (Gramfort et al.,
2010). A noise covariance matrix was computed for each sub-
ject by taking the 200 ms baseline period of each trial and
was taken into account in the inversion algorithm. The cortical
current source density mapping was then obtained for each
subject from the time series of each condition by means of
the weighted minimum-norm estimate. Z-scored cortical maps
across all conditions were used to define the ROIs that are
activated irrespective of expressive tone and identity within
the time window in which there was a significant difference
between self and other conditions. ROIs contained at least 30
vertices with a z-score above 60% of the maximum z-score. To
analyze the cortical sources of the difference waves we per-
formed paired t-tests for each vertex within the defined ROIs,
taking the mean values across the 190–230 ms window. This
time window was chosen to span the interval between the
average MMN onset latency in the OV condition (190 ms) and
the average MMN onset latency in the SV condition (236 ms),
in order to identify sources for the activity explaining the effect
(see ‘Results’ section). Activations within an ROI were consid-
ered significant whenever at least 10 adjacent vertices reached
statistical significance.

Replication of Graux et al. (2015)

In addition to the above procedure, we included extra stim-
uli to replicate the identity mismatch response of Graux et
al. (2013), namely one neutral-other deviant (P = 0.067) in the
‘self’ sequences (the same stimulus that served as standard in
the ‘other’ sequence) and one neutral-self deviant (P = 0.067)
in the ‘other’ sequences (the same stimulus that served as
standard in the ‘self’ sequence). Difference waves were calcu-
lated by subtracting (neutral) standards that immediately pre-
ceded the identity deviant of one sequence (e.g. ‘other’ stan-
dard from ‘other’ sequence) from the neutral deviant of the
same identity in the other sequence (e.g. ‘other’ deviant from
‘self’ sequence). While not statistically significant, the pattern
of responses to both types of deviants was consistent with
Graux et al. (2013), with larger P3a for ‘other’ deviants than ‘self’
(see Supplementary Figure S1). These results are not further
discussed in this paper.

Fig. 3. (A) Discrimination accuracy (%) for neutral, happy and sad versions of SV

and OV. Dotted line indicates chance level performance (50%). (B) Categorization

accuracy (%) for neutral, happy and sad versions of SV and OV. Dotted line

indicates chance level performance (33.3%). Error bars represent standard error

of the mean (SEM). **P < 0.01

Results
Behavioral results

In the post-EEG task, participants were tested on a variety of
SV and OV stimuli, unprocessed or processed with expressive
changes, and asked to evaluate whether these were examples of
the SV.

The accuracy of self-other discrimination was greater in OVs
than in SVs (main effect of speaker identity: F(1, 22) = 80.7,
P < 0.001), which is easily explained by the fact that it is easier
to misattribute sounds from the self to (an infinite possibility
of) other identities than the other way around. There was also
a main effect of expressive tone on discrimination accuracy
(F(2, 44) = 19.2, P < 0.001) and an identity × expressive tone
interaction (F(2, 44) = 20.7, P < 0.001), showing that manipulated
SVs were more easily confused for other identities than
non-manipulated voices. Self-other discrimination was more
accurate than chance for both neutral and expressive OVs
(ts(22) > 19, Ps < 0.001), more accurate than chance in the neu-
tral (t(22) = 9.66, P < 0.001) and sad SVs (t(22) = 2.60, P < 0.05),
but not in happy SVs (t(22) = −1.07, P > 0.05; Figure 3, left). When
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Fig. 4. Grand average ERPs to the self (solid lines) and other (dashed lines)

standard and deviant stimuli. Shaded area represents bootstrap SEM.

taking only the /ba-ba/ stimulus into account, two participants
did not recognize their voice in the neutral condition. The happy
and sad transformations of the SV were not recognized by 11 and
9 participants, respectively. Overall, nine participants correctly
identified the self-produced /ba-ba/ in all three conditions
(for difference waves of these participants, see Supplementary
Figure S2).

In the additional categorization task of the expressive trans-
formations, accuracy was greater in SV than in OV (main effect
of speaker identity: F(1, 18) = 15.14, P < 0.01). We also found a
main effect of expressive tone (F(2, 36) = 20.59, P < 0.001), as
well as an identity × expressive tone interaction (F(2, 36) = 5.31,
P < 0.05). Follow-up paired sample t-tests revealed that the
happy transformation was better recognized on the SV than
on the OV: t(18) = 4.03, P < 0.01 (Bonferroni corrected;
Figure 3, right).

Standards

The cluster-based permutation test and rmANOVAs did not
reveal any differences between Self and Other standards (Ps >

0.05; Figure 4).

Difference waves

Difference waves showed a relatively small (-2μV) fronto-central
negativity peaking at 280 ± 20 ms, compatible with an MMN
(Figure 5). The difference waves were also re-referenced to the
nose reference to ensure the typical polarity inversion between
Fz/Cz and the mastoid electrodes. However, because mastoid-
referenced averages typically show a better signal-to-noise ratio
than the nose-referenced averages, the former were used in all
subsequent analyses (Kujala et al., 2007, Martínez-Montes et al.,
2013).

We found a significant cluster when testing for a main effect
of identity (Monte Carlo P < 0.05; Figure 5D) but none for a
main effect of expressive tone or an interaction. Parametric

analyses with the jackknife procedure revealed that this differ-
ence was driven by the onset of the MMN rather than its peak.
There was a main effect of identity on the MMN onset latency
(Fcorrected(1,22) = 10.14, P < 0.01), with the OV onset latency at
190 ms, compared to 236 ms in the SV condition, a considerable
difference of 46 ms (see Figure 5A–C for the difference waves
and topographies). There were no effects of expressive tone,
electrode antero-posterior location or lateralization on onset
latency, nor was there a significant interaction between any of
the factors. In contrast, no main effects of identity or expressive
tone were observed on the amplitude (-2μV) or the latency (280
± 20 ms) of MMN peak, and no interaction effects were observed
on the MMN peak latency. The rmANOVAs on the mean MMN
amplitude showed only an identity × lateralization interaction
effect (F(2, 44) = 7.04, P < 0.01), but follow-up analyses at
each antero-posterior site (frontal, frontocentral, central) did not
reveal an effect of identity (all Ps > 0.05).

Sources

ROIs identified using source activation maps across all con-
ditions in the 190–230 ms window (spanning the difference
between other- and self- MMN onset latencies) included bilateral
regions in the precentral gyri, large insulo-temporal regions in
the right hemisphere and large fronto-parietal regions in the left
hemisphere. Source activations for OV vs SV in these ROIs were
stronger in the left precentral gyrus/sulcus (47 vertices) and the
left postcentral gyrus (16 vertices; Figure 6).

Discussion
Changes in vocal cues can communicate a person’s social atti-
tude or emotional state and are thus important to process in
social interactions. The present study investigated whether the
same expressive changes (pitch variations, inflections, and tim-
bre) are processed differently on the SV compared to a stranger’s
voice.

Behavior

Self/other discrimination rates for transformed versions of the
SVs were lower than for the neutral SVs, which suggests that
our manipulations of expressive tone, and notably the happy
effect, affected identity perception to a certain extent. While it
is difficult to relate such subsequent, explicit recognition scores
to the implicit processes occurring during the earlier oddball
procedure (see, e.g., Candini et al., 2014), it remains possible that
some of the participants processed deviants in SV sequences as
differing both in expressive tone and speaker identity. However,
it appears implausible that such misattributed deviants in SV
sequences should drive the greater MMN onset latencies seen
in these sequences compared to OV sequences. First, deviants
misattributed as OVs in sequences of SVs have been traditionally
associated with greater, rather than lower saliency [e.g. greater
P3a amplitude in (Graux et al., 2015), such that misattributions
of identity in SV sequences should reduce, rather than accen-
tuate the effect found here. Second, while behavioral data show
speaker identity is affected to a larger extent by the happy effect
than the sad effect, EEG responses to happy and sad deviants did
not differ.

In other auditory tasks, a sound’s increased emotional or
social relevance often creates perceptual biases that make
them appear louder or more intense (Asutay and Västfjäll, 2012,
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Fig. 5. (A) Differences waves of the happy (red) and sad (green) transformations on the self (light) and other (dark) voice. (B) Differences waves of the pooled happy

and sad deviants of the self (light) and other (dark) voice. Shaded area represents bootstrap SEM, **P < 0.01. (C) Topographies of the pooled happy and sad deviants of

the SV and OV at MMN onset and peak. (D) Significant cluster of the contrast between the ‘other’ and ‘self’ difference waves represented in four 10 ms time windows

between 180 and 220 ms. Highlighted channels belong to the cluster and were significant across the whole time 10 ms window.

Neuhoff, 1998). Here, expressive changes on SV and OV did not
differ in their perceived emotional intensity (see Supplementary
Figure S3). However, while manipulated expressions were
categorized well above chance level for both SVs and OVs, happy
(and to a lesser extent, sad) manipulations were categorized
more accurately when participants heard them on their own
voice rather than on an unfamiliar stranger’s voice. This pattern
of results is in line with a number of studies showing better
recognition or prediction accuracy when one observes one’s
own actions than when one observes another person’s actions
(Knoblich and Flach, 2001, Tye-Murray et al., 2015) and can
also be explained by better sensory resolution for the familiar
sounds of one’s own voice, similarly perhaps to the language
familiarity effects seen with native vs foreign language speaker
discrimination (Fleming et al., 2014).

N onset latency Across all conditions, the MMN peak latency
was a relatively late 280 ms. MMN usually peaks at 150–250 ms
from change onset, with this peak latency getting larger with
the decreased magnitude, or increased processing difficulty, of
stimulus change (Garrido et al., 2009). It is possible that the late
peak latency observed here reflects a late onset of observable

stimulus change in our two-syllable words. In particular, spectral
changes associated with happy or sad deviants may only become
manifest on the vowel portion of the first syllable (onset ca. 100
ms, see Figure 1). In similar studies of two-syllable emotional
words with a variety of changes (e.g. consonant duration, omis-
sion of second syllable, etc.), Pakarinen et al. (2014) report MMN
peak latencies ranging between 126–355 ms post stimulus-onset
and Chen et al. (2016) a peak MMNm of 265 ms; in contrast, with
single-vowel stimuli involving more immediate timbre changes
and no initial consonant, Carminati et al. (2018) report MMN
latencies ˜200 ms. Future work should better document the
temporal profile of physical information available in the signal to
discriminate deviants from standards, in order to more precisely
determine the chronometry of their auditory processing.

We observed no difference in MMN amplitude and peak
latency, but an earlier MMN onset for expressive deviants on
the OV compared to the SV. This MMN onset latency effect was
seen in both expressive transformations and amounted to a
considerable difference of 46 ms. Because we did not find any
significant difference between the self and other conditions on
the waveform of the standard stimuli, and because both self and

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article-abstract/14/5/559/5482399 by BIU

SJ (Paris 6) user on 26 June 2019

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsz030#supplementary-data


566 Social Cognitive and Affective Neuroscience, 2019, Vol. 14, No. 5

Fig. 6. (A) Source localizations across all conditions in the 190–230 ms showing maxima of activation (¿60%, z-scores) to determine ROIs. (B) Modulations of cortical

activity as a function of speaker identity in the 190–230 ms time window. Only clusters containing at least 10 contiguous vertices with P < 0.05 in this time window were

considered statistically significant. The source activations are color-coded only for t-values corresponding to P < 0.05. (C) Time courses of the grand mean amplitude

of the current sources in each activated region for self and other conditions. Shaded areas represent the standard deviation; the grey area represents the 190–230 ms

time window in which the analyses took place.

other deviants were generated from the standards with identical
algorithmic procedures, it is unlikely that such a large onset
effect results from the differential processing of the standards
or differences in refractory states (Jacobsen and Schröger, 2001).

The shorter MMN onset latency in the OV condition rather
suggests that changes on a stranger’s voice are highly prioritized
in auditory processing. This is in contrast with the increased
saliency of self-stimuli in the visual domain (Apps and Tsakiris,
2014, Sel et al., 2016), but consistent with the idea that other-
stimuli are more socially relevant (Pinheiro et al., 2017b, Schirmer
et al., 2005). In a recent study, effects of emotion were seen
earlier in a communicative context when compared to a non-
communicative context (Rohr and Abdel Rahman, 2015). It there-
fore appears possible that our design of other-deviants in a
sequence of other-standards is implicitly treated as a context
akin to social communication (‘other speaking to self’), more so
than changes embedded in a sequence of self-sounds.

It should be emphasized that only female participants were
included in this study. While both women and men typically
show an MMN response to emotional deviants, previous work
has showed that this preattentive response can be amplified in
women, possibly because of a greater social relevance of emo-
tional information for women (Schirmer et al., 2007). Importantly,
this amplification seems to be specific to vocal sounds and has
not been found in nonvocal sounds (Hung and Cheng, 2014). As
such, it remains to be determined whether male participants
show a similar difference in MMN onset latency as what we
report here.

Source activations

Source estimations during the MMN onset temporal window
(190–230 ms) across all conditions showed activations in the

right insulo-temporal region and the left fronto-parietal region.
Right-lateralized temporal activations are in line with previous
MMN studies that reported right activations for pitch deviants in
tones and voice (Jiang et al., 2014, Lappe et al., 2016). In addition,
the right anterior insula is involved in processing vocal emotions
(Belin et al., 2004) and has also been associated with MMN
responses to emotional syllable deviants (Chen et al., 2016).

The interpretation of EEG source analysis should remain
conservative. Here, activity discriminative of self and other mis-
matches did not occur within the typical supra-temporal or
frontal MMN generators (Garrido et al., 2009), which suggests
that processing OV stimuli was accompanied neither by any
detectable enhancement of sensory processes nor by any switch
of attention. Neither did activity discriminative of self and other
occur within the predominantly right-lateralized regions previ-
ously associated with speaker identity tasks, such as the right
temporoparietal junction (Schall et al., 2015) and right inferior
frontal gyrus (Kaplan et al., 2008) or with MMN sources associated
with emotional vocal stimuli such as the right anterior insula
(Chen et al., 2016). Instead, when contrasting responses to ‘self’
and ‘other’ deviants within the above ROIs, we found increased
activations in the left precentral gyrus/sulcus and the left post-
central gyrus for deviants on the OV.

These regions suggest that vocal expression deviants recruit
a network of motor and somatosensory areas that are increas-
ingly thought to be involved in mapping heard speech onto
articulatory representations (Scott and Johnsrude, 2003, Evans
and Davis, 2015, Skipper et al., 2017). The left somatomotor cortex
in particular has been associated with phoneme discrimination
tasks (Sato et al., 2009) and appears to be especially recruited
for more effortful conditions involving noisy (D’Ausilio et al.,
2012, Hervais-Adelman et al., 2012) or non-native speech (Wilson
and Iacoboni, 2006), in which articulatory representations
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may provide a processing advantage. In the visual modality,
left somatosensory areas have also been associated with
unpredicted deviations from the self-face (Sel et al., 2016), or
facial emotion recognition in the other (Sel et al., 2014), both
of which are also believed to involve processes of embodied
simulation or predictions. Earlier activity in this network of
regions for the OV deviants is therefore compatible with a
greater recruitment of resources for less internally predictable
signals such as speech produced by an unfamiliar stranger, for
which listeners may lack an adequate internal template—a fact
that can also explain that categorizing the expressive tone in a
separate explicit task was more difficult on non-self voices.

In sum, expressive changes on a stranger’s voice are highly
prioritized in perceptual processing compared to identical
changes on the SV. OV deviants generate earlier MMN responses
and involve activity in a left motor/somatosensory network
suggestive of greater recruitment of resources for less internally
predictable, and therefore perhaps more socially relevant,
signals.

Supplementary data
Supplementary data are available at SCAN online.
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