, °; 50 s, 90-150 °; 100 s), converted in count per second and merged References, vol.25, pp.50-90

J. J. Pitha, A. L. Smith, and R. Ward, The Preparation of Lanthanum Oxysulfide and Its Properties as a Base Material for Phosphors Stimulated by Infrared 1, J. Am. Chem. Soc, vol.69, issue.8, pp.1870-1871, 1947.

W. H. Zachariasen, Crystal Chemical Studies of the 5f-Series of Elements. VII. The Properties, J. Mater. Chem. B, vol.2013, issue.11, p.1561

C. Rosticher, B. Viana, M. Fortin, J. Lagueux, L. Faucher et al., Gadolinium Oxysulfide Nanoprobes with Both Persistent Luminescent and Magnetic Properties for Multimodal Imaging, RSC Adv, vol.6, issue.60, pp.55472-55478, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346010

L. Lei, S. Zhang, H. Xia, Y. Tian, J. Zhang et al., Controlled Synthesis of Lanthanide-Doped Gd2O2S Nanocrystals with Novel Excitation-Dependent Multicolor Emissions, Nanoscale, vol.2017, issue.17, pp.5718-5724

Y. Ding, J. Gu, J. Ke, Y. W. Zhang, and C. H. Yan, Sodium Doping Controlled Synthesis of Monodisperse Lanthanide Oxysulfide Ultrathin Nanoplates Guided by Density Functional Calculations. Angew. Chemie -Int, vol.50, pp.12330-12334, 2011.

C. Sourisseau, R. Cavagnat, R. Mauricot, F. Boucher, and M. Evain, Structure and Bondings in Cerium Oxysulfide Compounds I -Electronic, Infrared and Resonance Raman Spectra of Ce2.0O2.5S, J. Raman Spectrosc, vol.28, issue.12, pp.965-971, 1997.

C. Sourisseau, M. Fouassier, R. Mauricot, F. Boucher, and M. Evain, Structure and Bonding in Cerium Oxysulfide Compounds. II-Comparative Lattice Dynamics Calculations on Ce2O2S and Ce2.0O2.5S, J. Raman Spectrosc, vol.28, issue.12, pp.973-978, 1997.

J. Dugué, D. Carré, and M. Guittard, Etude Structurale Des Oxysulfures de Cérium

, Cérium(IV). I. Structure Cristalline de l'Oxysulfure de Cérium Ce4O4S3, Acta Crystallogr, vol.34, pp.3564-3568, 1978.

J. Dugué, D. Carré, and M. Guittard, Etude Structurale Des Oxysulfures de Cérium

(. Cérium, . Iv), and . Ii, Structure Cristalline de l'Oxysulfure de Cérium Ce6O6S4, Acta Crystallogr, vol.35, pp.1550-1554, 1979.

J. Flahaut, M. Guittard, and M. Patrie, Les Oxysulfures Me2O2S Des Éléments Du Groupe Des Terres Rares, Bull. Soc. Chim. Fr, vol.7, pp.990-994, 1958.

G. Quezel, R. Ballestracci, and J. Rossat-mignod, Proprietes Magnetiques Des Oxysulfures de Terres Rares, J. Phys. Chem. Solids, vol.31, issue.4, pp.669-684, 1970.

C. Larquet, A. Nguyen, M. Ávila-gutiérrez, L. Tinat, B. Lassalle-kaiser et al., Synthesis of Ce2O2S and Gd2(1-y)Ce2yO2S Nanoparticles and Reactivity from in Situ X-Ray Absorption Spectroscopy and X-Ray Photoelectron Spectroscopy, Inorg. Chem, vol.2017, issue.22, pp.14227-14236

M. Mikami and S. Nakamura, Electronic Structure of Rare-Earth Sesquioxides and Oxysulfides, J. Alloys Compd, pp.687-692, 2006.

C. Larquet, D. Hourlier, A. Nguyen, A. Torres-pardo, A. Gauzzi et al., Thermal Stability of Oleate-Stabilized Gd 2 O 2 S Nanoplates in Inert and Oxidizing Atmospheres, vol.5, pp.539-546, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02017819

P. Kubelka and F. Munk, Ein Beitrag Zur Optik Der Farbanstriche, Zeitschrift für Tech. Phys, vol.12, pp.593-601, 1931.

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium. Phys. status solidi, vol.15, pp.627-637, 1966.

M. Mikami and A. Oshiyama, First-Principles Band-Structure Calculation of Yttrium Oxysulfide, Phys. Rev. B, issue.15, pp.8939-8944, 1998.

S. Som, A. Choubey, and S. K. Sharma, Spectral and Trapping Parameters of Eu 3+ in Gd 2 O 2 S Nanophosphor, J. Exp. Nanosci, vol.10, issue.5, pp.350-370, 2015.

A. Bagheri, K. Rezaee-ebrahim-saraee, H. R. Shakur, and H. Zamani-zeinali, Synthesis and Characterization of Physical Properties of Gd2O2S:Pr3+ Semi-Nanoflower Phosphor, Appl. Phys. A Mater. Sci. Process, vol.122, issue.5, pp.1-8, 2016.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu et al., Compositional Engineering of Perovskite Materials for High-Performance Solar Cells, Nature, vol.2015, issue.7535, pp.476-480

H. Ye, W. Liao, C. Hu, Y. Zhang, Y. You et al.,

, Adv. Mater, vol.28, issue.13, pp.2579-2586, 2016.

R. Zhou, L. Wan, H. Niu, L. Yang, X. Mao et al., Tailoring Band Structure of Ternary CdS x Se 1?x Quantum Dots for Highly Efficient Sensitized Solar Cells, Sol. Energy Mater. Sol. Cells, vol.155, pp.20-29, 2016.

C. Malerba, F. Biccari, C. L. Azanza-ricardo, M. Valentini, R. Chierchia et al., CZTS Stoichiometry Effects on the Band Gap Energy. J. Alloys Compd, vol.582, pp.528-534, 2014.

T. Tinoco, C. Rincón, M. Quintero, and G. S. Pérez, Phase Diagram and Optical Energy Gaps for CuInyGa1?ySe2 Alloys. Phys. Status Solidi, vol.124, pp.427-434, 1991.

S. S. Farvid, T. Wang, and P. V. Radovanovic, Colloidal Gallium Indium Oxide Nanocrystals: A Multifunctional Light-Emitting Phosphor Broadly Tunable by Alloy Composition, J. Am. Chem. Soc, issue.17, pp.6711-6719, 2011.

A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara et al., Oxysulfides Sm2Ti2S2O5 as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation, J. Am. Chem. Soc, vol.124, issue.8, p.13547, 2002.

W. H. Strehlow and E. L. Cook, Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators, J. Phys. Chem. Ref. Data, vol.1973, issue.1, pp.163-200

Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang et al., Zn 1-XCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity, ACS Catal, vol.2013, issue.5, pp.882-889

W. H. Zachariasen, Crystal Chemical Studies of the 5 f -Series of Elements. X. Sulfides and Oxysulfides, Acta Crystallogr, vol.1949, issue.5, pp.291-296

Y. Ding, J. Gu, J. Ke, Y. Zhang, and C. Yan, Sodium Doping Controlled Synthesis of Monodisperse Lanthanide Oxysulfide Ultrathin Nanoplates Guided by Density Functional Calculations, Angew. Chemie Int. Ed, vol.50, issue.51, pp.12330-12334, 2011.

T. Zhang, J. Gu, Y. Ding, Y. Zhang, and C. Yan, Experimental and Theoretical Studies on the Controlled Synthesis of Alkali-Metal-Doped Rare-Earth Oxysulfide Nanocrystals, vol.78, pp.515-521, 2013.

R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. Sect. A, vol.32, issue.5, pp.751-767, 1976.

J. Xu, S. Tanabe, A. D. Sontakke, and J. Ueda, Near-Infrared Multi-Wavelengths Long Persistent Luminescence of Nd 3+ Ion through Persistent Energy Transfer in Ce 3+ , Cr 3+ Co-Doped Y 3 Al 2 Ga 3 O 12 for the First and Second Bio-Imaging Windows

, Appl. Phys. Lett, issue.8, p.81903, 2015.

J. Fu, J. M. Parker, R. M. Brown, and P. S. Flower, Compositional Dependence of Scintillation Yield of Glasses with High Gd2O3 Concentrations, In Journal of NonCrystalline Solids, pp.335-338, 2003.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao et al., High Light Yield Ce3+-Doped Dense Scintillating Glasses, J. Alloys Compd, vol.581, pp.801-804, 2013.

C. Maheu, L. Cardenas, E. Puzenat, P. Afanasiev, and C. Geantet, UPS and UV Spectroscopies Combined to Position Energy Levels of TiO 2 Anatase and Rutile Nanopowders, Phys. Chem. Chem. Phys, vol.2018, pp.25629-25637
URL : https://hal.archives-ouvertes.fr/hal-01916673

P. Juhás, T. Davis, C. L. Farrow, and S. J. Billinge, PDFgetX3 : A Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions, J. Appl. Crystallogr, vol.46, issue.2, pp.560-566, 2013.

C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bo?in et al., PDFfit2 and PDFgui: Computer Programs for Studying Nanostructure in Crystals, J. Phys. Condens. Matter, vol.19, issue.33, p.335219, 2007.

C. L. Farrow and S. J. Billinge, Relationship between the Atomic Pair Distribution Function and Small-Angle Scattering: Implications for Modeling of Nanoparticles

, Acta Crystallogr. Sect. A Found. Crystallogr, vol.65, issue.3, pp.232-239, 2009.

B. Gilbert, Finite Size Effects on the Real-Space Pair Distribution Function of Nanoparticles, J. Appl. Crystallogr, vol.41, issue.3, pp.554-562, 2008.

V. I. Anisimov, J. Zaanen, O. K. Andersen, M. Band-theory, and . Insulators, Hubbard U Instead of Stoner I. Phys. Rev. B, issue.3, pp.943-954, 1991.

M. Cococcioni and S. De-gironcoli, Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA+U Method, Phys. Rev. B, issue.3, p.35105, 2005.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys. Condens. Matter, vol.21, issue.39, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno-nardelli et al., Advanced Capabilities for Materials Modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, vol.2017, issue.46, p.465901
URL : https://hal.archives-ouvertes.fr/cea-01634887

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, p.3865, 1996.

, Phys. Rev. Lett, vol.78, issue.7, pp.1396-1396, 1997.

A. Dal-corso, Pseudopotentials Periodic Table: From H to Pu, Comput. Mater. Sci, vol.95, pp.337-350, 2014.

X. Li, Z. Zhang, and V. E. Henrich, Inelastic Electron Background Function for Ultraviolet Photoelectron Spectra, J. Electron Spectros. Relat. Phenomena, vol.63, issue.3, pp.253-265, 1993.