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We calculate the relative permittivity of a cold atomic gas under weak probe illumination, up to
second order in the density. Within the framework of a diagrammatic representation method, we
identify all the second order diagrams that enter into the description of the relative permittivity for
coherent light transmission. These diagrams originate from pairwise position correlation and recur-
rent scattering. Using coupled dipole equations, we numerically simulate the coherent transmission
with scalar and vector waves, and find good agreement with the perturbative calculations. We ap-
plied this perturbative expansion approach to a classical gas at rest, but the method is extendable
to thermal gas with finite atomic motion and to quantum gases where non-trivial pair correlations
can be naturally included.

I. INTRODUCTION

Cold atomic systems have been used to study various
phenomena related to the scattering and coherent trans-
port of light in disordered diluted media such as radiation
trapping [1, 2], coherent backscattering [3, 4], random las-
ing [5], and (super)flash effect [6–9]. A lot of experimen-
tal efforts have also been initiated to understand wave
transport in dense atomic media, when the light scatter-
ing mean free path becomes comparable or even smaller
than the wavelength of light. In this case, the indepen-
dent scattering approximation (ISA) is expected to break
down and complex collective or cooperative mechanisms
emerge. As such, signatures of light localization [10, 11],
collective emission of light like superradiance and subra-
diance [12–15] have been reported.

In parallel to experimental progresses, numerous the-
oretical models and numerical simulations has been de-
veloped to understand the scattering and transmission of
light in dense media [16–20]. Those approaches aim to go
beyond the mean-field model developed earlier by Fried-
berg and co-authors [21]. Indeed, while the mean-field
model successfully predicted the Lorentz-Lorenz shift and
the cooperative Lamb shift observed in a thin atomic va-
por cell [22], it fails to explain the observations in cold
atomic systems [23–25]. It seems, indeed that dipole-
dipole interaction, which is not considered in the mean
field approach, become a dominant mechanism when
Doppler broadening is absent [18, 26, 27]. Numerical
simulations of microscopical models, as coupled dipole
equations, are now commonly used to address those prob-
lems [18, 23, 26, 28, 29]. They are useful in taking account
of the sizes and shapes of the atomic clouds encountered
experimentally. Those numerical methods are usually in
fair agreement with experiments, but unfortunately do
not always give a clear understanding of the basic phys-
ical mechanisms at play.

In this paper, we develop a perturbative model of the
coherent transmission of light through an atomic medium
where the scatterers are classical particle and considered
at rest. Using configuration averaging in a slab geome-
try, we calculate the relative permittivity for an atomic
medium at zero temperature, up to 1/k20ℓ

2
0, by expand-

ing the self-energy operator of light scattering in scat-
tering diagrams. Here, k0 is the resonant wave vector
of the transition, and ℓ0 is the resonant ISA mean free
path. Even though the perturbative method is limited to
a density that is not too large, it gives analytical expres-
sions with clear physical origins of the modifications to
the refractive index. In particular, recurrent scattering
of light [30–33] (which arises from dipole-dipole interac-
tions) and position correlation of the atoms [34] are two
main physical mechanisms that modify the refractive in-
dex of an atomic cloud. Similar approaches were done
in the past for quantum gas [35–37]. Our theoretical re-
sults are in agreement with those previous works when
they are taken at the classical limit. In addition, our per-
turbative expansion method allows an extension to cases
where the atoms are moving [38]. This latter point might
be of particular importance to understand how the tem-
perature acts as a dephasing mechanism in a collective
scattering regime.

We compare the theoretical results to coupled dipole
simulations of light transmission through the atomic
medium. In principle, the coupled dipole simulations can
be performed in the dense regime. However, a large num-
ber of atoms is required to correctly simulate the bulk be-
havior, which requires a lot of computational resources
and time. We are limited to a highest number density
that corresponds to k0ℓ0 = 9.1. Although this is still far
from the dense regime of k0ℓ0 ∼ 1, modifications to the
ISA can already be observed.

This article is organized as follows. In Sec. II, we
present the theoretical formulation of the relative permit-
tivity up to the second order term proportional to 1/k20ℓ

2
0.
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We introduce the scalar wave formulation – neglecting
the near field and light polarization – before going to
the more complex vector wave formulation. We discuss
in detail the three contributions: ISA, pairwise positions
correlation and recurrent scattering in both formulations.
Some technical aspects of the calculation are given in the
appendices. In Sec. III, the results are compared to a nu-
merical simulation of the transmission of light using the
coupled dipole equations. We find good agreement with
the perturbative calculations as far as the quantity k0ℓ0
remains larger than unity.

II. THEORETICAL FORMULATION

We consider a large scattering medium of volume V
containing randomly-positioned motionless atomic scat-
terers. The number of atoms inside the medium is de-
noted by Na, with Na ≫ 1. We assume a uniform distri-
bution for the position of the scatterers, where the single-
scatterer probability density to find a scatterer at rj is
given by P1(rj) = 1/V .

In general, each atomic scatterer carries an exclusion
volume around it, i.e., a second scatterer cannot be found
within a distance less than dmin from the first one. This
assumption is useful for the numerical simulations, as it
avoids possible divergences. Finally, the limit dmin → 0
may be taken to describe the experimental results.

The two-scatterer probability density for a scatterer at
rp and a second one at rq is [34]

P2(rp, rq) = P1(rp)P1(rq)
[

1 + h(rp, rq)
]

, (1)

where the function h(rp, rq) is the pair correlation func-
tion between the p-th and q-th scatterers. For a statisti-
cally homogeneous and isotropic medium, the pair corre-
lation function depends only on the separation |rp − rq|
of the two scatterers. For “hard sphere” atoms with the
exclusion volume, h(d) is a complicated function of the
inter-particle distance d [39, 40]. However, at a suffi-
ciently low scatterer density, such as the one we consider
here, we can approximate:

h(d) =

{

−1 if d < dmin

0 otherwise.
(2)

The formulation discussed in the following actually works
for an arbitrary pair correlation function, including those
describing the quantum statistics of Bose and Fermi
gases. It allows experimental studies of the effect of pair
correlation function, as has been demonstrated in Ref. 41.

The atomic scatterers are treated as two-level atoms
with a resonance frequency ω0. There is no absorption of
light in the medium; all of the energy is elastically rescat-
tered by the atoms. We consider only the case where
the intensity of the incident wave is much smaller than
the saturation intensity of the transition, discounting any

nonlinear effect. The polarizability of the scatterers, in
the rotating wave approximation [42], is given by

α = −α0

2

Γ

ω − ω0 + iΓ/2
, (3)

where k0 = ω0/c. For scalar waves, α0 = 4π/k30 . For
vector waves, α0 = 6π/k30.

The system is illuminated by a monochromatic plane
wave at frequency ωL, with a wave-vector kL. The de-
tuning of the incident wave is δ = ωL − ω0 ≪ ω0.

A. Scalar waves

In the scalar wave formulation, we disregard the light
polarization and describe the wave by a scalar “electric
field”. In the frequency domain, the incident electric field
at position r is denoted by

Ein(r) = E0 exp(−ikL · r) (4)

where E0 is the amplitude.
The electric field at any position r is given by the co-

herent superposition between the incident field and the
field radiated by all the atomic dipoles:

E(r) = Ein(r) + µ0ω
2
L

Na
∑

i=1

G0(r− ri)p(ri) (5)

where µ0 is the vacuum permeability, p(ri) the dipole
moment of an atom at ri and G0(r − ri) the free space
scalar Green function that connects a point source dipole
to its radiated field. It is given by

G0(r− r
′) =

1

4π|r− r′| exp(ikL|r− r
′|), (6)

where kL = |kL|. In the literature [43], the Green func-
tion is sometimes defined with a minus sign compared
to Eq. (6). As a consequence, the self-energy computed
later is also modified by a minus sign. The sign conven-
tion has of course, no consequence, for physically mea-
surable quantities such as the permittivity. The dipole
p(ri) induced on atom i is given by

p(ri) = ǫ0αEex(ri) (7)

where ǫ0 is the vacuum permittivity and Eex(ri) the field
exciting the atom (i.e. the field shining on the atom). It is
given by the coherent superposition between the incident
field and the field radiated by all other atoms:

Eex(ri) = Ein(ri) + µ0ω
2
L

Na
∑

l=1
l 6=i

G0(ri − rl)p(rl). (8)

Thus, combining Eq. (5) and Eq. (8) with Eq. (7) leads
to a set of equations, which allows us to compute the
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electric field at any position

E(r) = Ein(r) + αk2L

Na
∑

i=1

G0(r− ri)Eex(ri), (9)

Eex(ri) = Ein(ri) + αk2L

Na
∑

l=1
l 6=i

G0(ri − rl)Eex(rl). (10)

The coherent electric field, in the forward direction,
is given by the average electric field denoted by 〈E(r)〉.
This average is computed over all the possible configura-
tions of the positions of the atomic scatterers. In prac-
tice, this ensemble average is carried out by averaging the
positions of the scatterers according to their probability
distribution. Experimentally, for a cold atomic cloud, the
average is performed by a time integration of the signal
collected in the forward direction by a CCD camera, with
a small numerical aperture.

The coherent field obeys the following equation known
as the Dyson equation [44, 45],

〈E(r)〉 = Ein(r)+

∫∫

G0(r−r
′)Σ(r′−r

′′)〈E(r′′)〉d3r′d3r′′.
(11)

where Σ(r′ − r
′′) is the electromagnetic wave analogue

of the self-energy for the scattering of quantum parti-
cles [43]: The self-energy here contains all scattering pro-
cesses between a scatterer at r

′ and another at r
′′, that

cannot be broken up into two or more independent scat-
tering processes. In a statistically homogeneous medium,
the Green function in the Fourier space obeys the follow-
ing equation:

〈G〉(k) = G0(k) +G0(k)Σ(k)〈G〉(k), (12)

where 〈G〉 is the average Green function of light in the
atomic medium, a diagonal operator in k-space. The free
space Green function in k-space is given by the following
Fourier transform,

G0(k) =

∫

G0(r
′) exp(−ik · r′)d3r′ = 1

k2 − k2L
. (13)

Thus, from Eq. (12), the average Green function is given
by

〈G〉(k) = 1

k2 − k2L − Σ(k)
. (14)

For a statistically homogeneous medium, we expect
that the average Green function takes the same form
as Eq. (13), that is

〈G〉(k) = 1

k2 − k2eff
, (15)

where keff is the effective wavevector associated to the
relative permittivity ǫr = k2eff/k

2
L. Comparing Eqs. (14)

and (15), we have k2eff = k2L +Σ(k). In the most general

case, the effective wavevector is non-local (i.e., its mag-
nitude depends on k). Nevertheless, if Σ(k) ≪ k2L which
is usually the case, the average Green function is very
peaked around kL and the self-energy Σ(k) can be ap-
proximated by Σ(kL). This is the so-called on-shell ap-
proximation. Therefore, the relative permittivity is [46],

ǫr ≡
(

keff

kL

)2

= 1 +
Σ(kL)

k2L
. (16)

Note that, in general, the relative permittivity is a
complex quantitiy. The index of refraction, given by

n =
√
ǫr ≈ 1 +

Σ(kL)

2k2L
(17)

is also complex. Its imaginary part describes the ex-
ponential attenuation of the coherent beam through the
disordered medium thanks to scattering.

From the above equations, the calculation of the self-
energy is needed to find an expression for ǫr. In general,
computing the exact form of the self-energy is very com-
plicated, but perturbative diagrammatic methods exist,
which expand the self-energy in special kinds of diagrams
that represent the scattering processes in the medium.
Additional details of this approach can be found in nu-
merous references, for example in Refs. 34, 46, and 47.
The self-energy is written as a sum of irreducible dia-
grams, namely those that cannot be separated into two
sub-diagrams by cutting one of the lines in the diagram.
Position averaging is implied in these diagrams. In Fig. 1,
we write out all the contributing diagrams up to the order
of 1/k20ℓ

2
0 for the self-energy. The open circles in the di-

agrams represent scattering events. There are two types
of solid lines in the diagram. Those that join adjacent
scattering events represent the propagation of the wave
between two scattering events; the other solid lines join
two scattering events that occur at the same scatterer.
Finally, the dashed lines between two scatterers indicate
that they are correlated in their positions. Here, this is
due to the exclusion volume around each atom.

The lowest order diagram in Fig. 1 consists of just one
scattering event. It describes the situation where each
atomic scatterer scatters light independently of one an-
other. This is the ISA contribution. The second term
contains two scattering events involving distinct scatter-
ers that are correlated in their positions. This gives a sec-
ond order contribution to the self-energy. The diagrams
in the second line of Fig. 1 give all the contributions in
second order from pure recurrent scattering between two
scatterers. The diagrams in the third line includes in re-
current scattering, the effect of correlation in scatterer
positions. For convenience, we separate the self-energy
into three terms,

Σ = ΣISA +Σcor +Σrec, (18)

where ΣISA is the first order term that gives us the ISA,
Σcor is the second order term with pair correlation in the
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positions (the second diagram in first line of Fig. 1) and
Σrec includes all the remaining diagrams arising from re-
current scattering. We discuss each of these contributions
separately in the following.

Σ = +

+ + + + . . . . . . 

+ + + + . . . . . . 

FIG. 1. The self-energy expanded in the diagrammatic rep-
resentation method. The first line consists of the diagrams
representing ISA and pairwise correlation in the scatterer po-
sitions. The second line consists of diagrams that arise from
pure recurrent scattering of varying orders. The third line
consists of diagrams that include contributions from position
correlation and recurrent scattering. Each diagram here con-
tains an average over the positions of all the atomic scatterers.
See the text for the meanings of the open circles and lines in
these scatterings diagrams.

1. Independent scattering approximation

We calculate now the first diagram in Fig. 1, which
is the ISA contribution. The self-energy is computed as
follows:

ΣISA(r− r
′) =

Na
∑

i=1

∫

αk2Lδ(r− r1)P1(r1)d
3
r1δ(r− r

′).

(19)
Evaluating the above integral, we find in the k-space,

ΣISA

k2L
= ρα. (20)

Here, we have denoted the scatterers density as ρ =
Na/V . Thus, in the ISA regime, the relative permittivity
is

ǫISA = 1 + ρα. (21)

It is also possible to write the above expression in terms
of the strength of the disorder k0ℓ0. For this purpose,
we can rewrite the two-level atomic polarizability as α =
α0α̃, where α̃ contains the δ dependence of α:

α̃ = − Γ/2

ω − ω0 + iΓ/2
=

i

1− 2iδ/Γ
(22)

The scattering cross section at resonance is given by
σs = k0α0. Additionally, the mean free path at res-
onance is given by ℓ0 = 1/(ρσs). We finally obtain
ρα0 = 1/(k0ℓ0), connecting the density to k0ℓ0. Hence,
the contribution in the ISA regime is first order in 1/k0ℓ0
(or equivalently the first order in ρ),

ǫISA = 1 +
1

k0ℓ0
α̃. (23)

2. Position correlations

The other diagrams in Fig. 1 are second order dia-
grams. The second diagram is related to the position
correlation between pairs of atoms. Its contribution to
the self-energy is calculated to be

Σcor(r − r
′) =

Na
∑

i=1

Na
∑

j=1
j 6=i

∫∫

αk2Lδ(r− r1)G0(r1 − r2)

× αk2Lδ(r2 − r
′)P1(r1)P1(r2)h(|r1 − r2|)d3r1d3r2.

(24)

We use the pair correlation function of Eq. (2) to evaluate
the integral. We then perform the Fourier transform to
finally arrive at the following equation in k-space:

Σcor

k2L
= − 1

(k0ℓ0)2
α̃2

[

1

4

(

1− e2id̃min

)

+
i

2
d̃min

]

(25)

where d̃min = kLdmin. We have made the on-shell ap-
proximation k ≈ kL, with k = |k|. The details of this
derivation is found in Appendix A. We note from Eq. (25)
that in the limit of dmin → 0, Σcor goes to zero, as ex-
pected in the scalar approximation.

3. Recurrent scattering

The two-atom recurrent scattering diagrams in the sec-
ond and third lines of Fig. 1, come in different orders
with varying number of scattering events. For example,
the first diagrams in the second and third lines contain
three scattering events. This is the simplest possible re-
current scattering between two distinct scatterers. We

will denote the sum of these two diagrams as Σ
(n)
rec . The

number in the superscript denotes the number of scat-
tering events, n = 3 in this case. Now, we sum over all
orders,

Σrec =

∞
∑

n=3

Σ(n)
rec , (26)

with each Σ
(n)
rec terms containing one diagram from the

second line and one diagram from the third line of Fig. 1.
We can further distinguish two different types of recur-
rent scattering diagrams. The first type consists of dia-
grams where the first and last scattering events happen

at the same scatterer. All Σ
(n)
rec terms with an odd value of

n falls under this category. These diagrams are known as
the loop diagrams (see Ref. [30]). The simplest example
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is Σ
(3)
rec:

Σ(3)
rec(r− r

′) =

Na
∑

i=1

Na
∑

j=1
j 6=i

∫∫∫

αk2Lδ(r− r1)

×G0(r1 − r2)αk
2
LG0(r2 − r3)αk

2
Lδ(r3 − r

′)

× P2(r1, r2)d
3
r1d

3
r2d

3
r3δ(r− r

′). (27)

The second type of diagrams have the first and last scat-
tering events occurring at two different scatterers; they

consists of Σ
(n)
rec terms with even value of n. They are

classified as the boomerang diagrams in Ref. [30]. The

simplest example is Σ
(4)
rec:

Σ(4)
rec(r− r

′) =

Na
∑

i=1

Na
∑

j=1
j 6=i

∫

· · ·
∫

αk2Lδ(r− r1)G0(r1 − r2)

× αk2LG0(r2 − r3)αk
2
LG0(r3 − r4)αk

2
Lδ(r4 − r

′)

× P2(r1, r2)δ(r− r3)δ(r2 − r
′)d3r1 . . . d

3
r4. (28)

Summing up all the diagrams with recurrent scattering,
we obtain in k-space,

Σrec(k) = (ρα2
0)k

4
L

∞
∑

l=0

(

α0k
2
L

)2l+1
α̃2l+3

×
[

∫

V −Vex

G2l+2
0 (R′)d3R′ +

(

α0k
2
L

)

α̃

×
∫

V −Vex

G2l+3
0 (R′)e−ik ·R′

d3R′

]

(29)

where Vex represents the exclusion volume. There are two
integrals inside the summation. The first integral is asso-
ciated with the loop diagrams, while the second integral
is associated with boomerang diagrams. The summations
clearly have the structure of geometric series, making it
possible to resum the infinite number of terms, see Ap-
pendix B for the details of the calculation. Similarly to
the case of Σcor, we approximate k ≈ kL. Evaluating the
above integral results in

Σrec

k2L
=

1

(k0ℓ0)2
iα̃3

2

(

e2id̃min + α̃Is

)

, (30)

with

Is =

∫

∞

d̃min

e2ix
(

1− (1 + 2iα̃) e2ix
)

x2 − α̃2e2ix
dx. (31)

The integral Is is computed numerically using a cut-off
on the upper limit of the integral. We found that a cut-
off at x = 80000 is sufficient for the integral to converge.
The numerical integration is performed using an adaptive
algorithm for oscillating integrand.

B. Vector waves

For the case of vector waves, the incident field in the
frequency domain is given by

Ein(r) = E0 exp(−ikL · r). (32)

The free space Green function is now a dyadic given
by [48]

↔
G0(r− r

′) =
kL
4π

[

β(kL|r− r
′|)P

↔

+ γ(kL|r− r
′|)

↔
U

]

− I
↔

3k2L
δ(r − r

′), (33)

where
↔
U = u⊗ u with u = (r− r

′)/|r− r
′|,

P
↔

= I
↔
−

↔
U,

β(x) =
eix

x

(

1− 1

ix
− 1

x2

)

,

γ(x) =
2eix

x

(

1

ix
+

1

x2

)

,

and I
↔

is the identity dyadic. In contrast with the scalar
case where the Green function has a 1/r divergence at
the origin, the vector wave case contains near field effects
with additional 1/r2 and 1/r3 singularities.

In the Fourier space, the Green function is given by

↔
G0(k) =

1

k2 − k2L
P
↔

k −
1

k2L

↔
K. (34)

The dyadic
↔
K = k ⊗ k/k2, is the projector along the

direction of k. The dyadic P
↔

k = I
↔

−
↔
K projects onto

the space orthogonal to k. The longitudinal part of the

Green function (proportional to
↔
K) does not propagate

much further than one wavelength. Thus, only the trans-

verse component (proportional to P
↔

k) is relevant for the
coherent transmission of light through a medium much
thicker than the wavelength. However, one must carefully
keep the full spatial dependence of the Green function –
including both the longitudinal and the transverse parts
– when computing the effect of position correlations and
recurrent scattering. The average Green function also
splits into longitudinal and transverse components:

〈
↔
G〉(k) = 1

k2 − k2L − Σt(k)
P
↔

k −
1

k2L +Σl(k)

↔
K, (35)

where the dyadic self-energy
↔
Σ is also separated into

↔
Σ = Σl

↔
K+ΣtP

↔

k. (36)

Comparing the transverse components of Eqs. (34)
and (35), which are relevant in the coherent transmis-
sion of light, we have

ǫr = 1 +
Σt

k2L
. (37)
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Thus, for a statistically homogeneous and isotropic scat-
tering medium under consideration here, the relative per-
mittivity ǫr in the vector wave case, is still a scalar quan-

tity. The self-energy
↔
Σ, in the vector case, is also given

by the diagrams in Fig. 1, with the same interpretation.
Following the case of scalar waves, we separate the self-
energy into three terms representing the ISA contribu-
tion, the positions correlations contribution and the re-
current scattering contribution:

↔
Σ =

↔
ΣISA +

↔
Σcor +

↔
Σrec. (38)

1. Independent scattering approximation

Since the diagrams and their interpretations are the
same as in the scalar case, we can write an integral for
the ISA contribution of vector waves, similar to Eq. (19).
We get

↔
ΣISA

k2L
=

1

k0ℓ0
α̃ I
↔
, and

Σt,ISA

k2L
=

1

k0ℓ0
α̃, (39)

which is similar to Eq. (20). Σt,ISA is the transverse

component of
↔
ΣISA. The ISA relative permittivity is also

given by Eq. (23).

2. Position correlations

For the position correlation contribution, we solve the
dyadic version of Eq. (24), using the dyadic Green func-
tion for vector waves. The details of the calculations are
given in Appendix C. The resulting expression of the
transverse component Σt,cor is

Σt,cor

k2L
=

(

1

k0ℓ0

)2

α̃2C
(

d̃min

)

, (40)

where

C
(

d̃min

)

=
2i+ 2id̃2min − d̃3min − 2id̃4min

4d̃3min

−

(

2i+ 4d̃min − 2id̃2min − d̃3min

)

e2id̃min

4d̃3min

. (41)

It is interesting to note that Σt,cor/k
2
L is nonzero when

dmin → 0, unlike in the case of scalar waves. In fact,

Σt,cor

k2L
=

1

(k0ℓ0)2
α̃2

3
, (42)

when dmin → 0. This is due to the δ(r− r
′) term in the

free Green function in Eq. (33) being absent in the scalar
case. This term is responsible for the so-called Lorentz-
Lorenz shift [49, 50].

3. Recurrent scattering

Similarly to the case of scalar waves, the following se-
ries has to be summed for the recurrent scattering con-
tribution,

↔
Σrec =

∞
∑

n=3

↔
Σ

(n)
rec , (43)

where
↔
Σ

(n)
rec is computed from the two recurrent scatter-

ing diagrams having n scattering events. They can be
expressed in the same way as in Eqs. (27) and (28), with
the dyadic Green function being used instead. This leads
to a dyadic version of Eq. (29). The transverse compo-

nent of
↔
Σrec is found to be:

Σt,rec

k2L
=

1

(k0ℓ0)2
α̃3

2
Iv, (44)

where

Iv =

∫ ∞

d̃min

2x2
[

β(x)2 + 9
4 α̃(ω)β(x)

3 {j0(x) − j1(x)/x}
]

1− 9
4 α̃(ω)

2β(x)2

+ x2 γ(x)
2 + 9

2 α̃(ω)γ(x)
3j1(x)/x

1− 9
4 α̃(ω)

2γ(x)2
dx. (45)

j0(x) and j1(x) are the zeroth- and first-order spherical
Bessel functions. The integral Iv is evaluated numeri-
cally. Details of this calculation are given in Appendix D.

III. NUMERICAL STUDIES

A. Setup for the numerical studies

To check the validity of the theoretical expressions, a
numerical study is carried out to simulate the coherent
transmission of light through a slab of atomic medium.
The relative permittivity of the medium is extracted from
the transmitted field. In the following, we discuss the
coupled dipole method that is used to perform the simu-
lation. We discuss in detail the case of scalar waves. The
same method is applicable to the vector waves, with just
a few differences. These differences are pointed out as we
encounter them.

The atomic scatterers in our simulations are dis-
tributed randomly within a cylinder of thickness L
(see Fig. 2) at fixed positions. The radius R of the cylin-
der is chosen such that it is larger than the thickness
L, thereby making sure that the geometry is as close as
possible to a slab. The scatterers are distributed uni-
formly with density ρ0 within a diameter of 2a in the
plane perpendicular to the propagation axis. Beyond
this distance, the density of the scatterers linearly de-
creases until it becomes zero when it reaches the edge
of the cylinder. Configurations where any two scatterers
are separated by less than dmin are rejected. Within the
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FIG. 2. Setup for the system studied numerically. It consists
of a cylinder of thickness L under normal incidence of a Gaus-
sian beam laser (waist w0). The probe beam is focused at the
geometric center of the cylinder. The density of the cylinder is
distributed symmetrically around the axis, with two distinct
regions. Within a radius a, the density of scatterers has a uni-
form value of ρ0. Outside this region, the density decreases
linearly until it becomes zero at the outer edge. The radial
distribution of the density is plotted in the top right figure.
The scatterers are motionless and are distributed randomly
inside the cylinder according to this density distribution. We
keep an exclusion volume of a sphere of radius dmin around
each scatterer. The coherently transmitted field is computed
on the propagation axis through the cylinder, at a distance z
away from the origin, which is at the center of the cylinder.
The position P , where the coherent field is computed, ranges
from a few wavelengths beyond the outgoing surface to 500
wavelengths away.

range of parameters that we consider, we check that the
approximate expression of h in Eq. (2) is valid.

The incident Gaussian beam has a waist of w0. The
value of the waist is chosen to be smaller than the lat-
eral dimension of the cylinder. The linearly decreasing
density close to the edges of the cylinder, reduces the
diffraction of the incident beam at the edges. This also
ensures that, along the propagation axis, we are always in
the shadow of the cylinder. However, the waist is large
enough such that its Rayleigh length, zR = πw2

0/λL is
larger than L, where λL = 2π/kL is the laser wavelength.
Thus, we have a well-defined direction of the wave vec-
tor along kL inside the cylinder. The incident beam is
focused at the geometrical center of cylinder, which is
chosen as the origin of our coordinate system. The inci-

dent electric field for the numerical studies is given by

Ein(r) = E0(z) exp(ikL ·R) exp

[

− x2 + y2

w2
0(1 + iz/zR)

]

,

(46)

where z = kL · r/kL is the distance along the propagation
axis, and x, y are the transverse coordinates. E0(z) is the
amplitude of the field along the central propagation axis,
and is given by

E0(z) =
1

1 + iz/zR
. (47)

For vector waves, the polarizations of the coherently
transmitted beam and the incoming beam are identical,
and can be disregarded. Therefore, Eq. (46) remains true
for the vector waves. For the simulation of the vector
waves, we choose for simplicity a linear polarization for
the incident field. In general, the field can be computed
at any arbitrary position, however, we only calculate the
field on the propagation axis (x = 0 and y = 0). The
incident field amplitude E0(z) is used to normalize the
coherently transmitted field 〈E(z)〉, at a distance z along
the propagation axis.

Our theoretical calculation of the relative permittiv-
ity, assumed a statistically translational invariant sys-
tem. This approach is not strictly valid near an interface
where the density varies abruptly. The depth of the skin
layer is typically of the order of 1/kL. If the thickness of
the medium is sufficiently large – such that kLL ≫ 1 –
the index of refraction can be taken inside the medium as
if it was infinite. Consequently, the average field in the
medium varies like exp(ikLnz), where the refractive in-
dex is given by Eq. (17), n =

√
ǫr. Because the refractive

index is not unity, there is an index mismatch both at the
ingoing and outgoing interfaces. This leads to partial re-
flections of the incoming beam, which can be calculated
using standard formula [19, 51]. The transmitted field
from a slab of thickness L becomes

〈E(z)〉/E0(z) =
4n exp[ikL(n− 1)L]

(n+ 1)2 − (n− 1)2 exp(2ikLnL)

≡F (n) exp[ikL(n− 1)L]. (48)

From the above equation, it is not straightforward to ob-
tain the value of n from the numerically calculated value
of 〈E(z)〉. Nevertheless, since we are in a regime where
the perturbative expansion in terms of atomic density is
valid, we can also expand F (n) up to second order in the
density, to find

〈E(z)〉/E0(z)

=

[

1 +
1

16

(

α̃

k0ℓ0

)2
(

e2iknISAL − 1
)

]

exp[ikL(n−1)L],

(49)

with nISA = 1 + α̃/(k0ℓ0)/2, the refractive index in the
ISA regime. The equation above can now be solved for
n, from which ǫr is obtained.
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Strictly speaking, Eq. (49) holds only for a slab under
plane wave illumination. Since the parameters for the
numerical studies are chosen to approximate the case of
plane wave illumination on a medium with a slab geom-
etry, Eq. (49) can be applied in our studies.

Note also that, the number of atoms in the cylinder has
to be large, Na ≫ 1, since the theoretical expressions in
the previous section are obtained in this limit.

B. Coupled dipole simulation

The coupled dipole simulation is carried out by solv-
ing Eqs. (9) and (10) in the frequency domain. The corre-
sponding vector equations are used when computing the
coherent transmission of vector waves.

The calculation is performed in two stages. The first
stage consists in computing the external fields Eex(rj)
for j = 1, 2, . . . , Na. This is achieved by solving Eq. (10),
which is a coupled linear system with Na equations, to
find the Na values of Eex(rj). In the case of vector waves,
we have 3Na equations involving 3Na variables. Once all
the values of Eex(rj) are known, Eq. (9) is used to com-
pute E(r). The total field E(z) is computed on the prop-
agation axis through the cylinder by varying the value of
z. By far, the most CPU intensive stage is the solution
of the coupled linear equations, scaling like N3

a .

C. Coherent transmission

The calculation described above is repeated for dif-
ferent independent realizations of the scatterers posi-
tions inside the cylinder. The ensemble-averaged field
〈E(z)〉 at a point P that is sufficiently far away along
the scattering medium gives us the coherently transmit-
ted field [see Fig. 3 for one example of the position de-
pendence of the normalized coherent intensity Icoh(z) =
|〈E(z)〉/E0(z)|2 and phase θ(z) of 〈E(z)〉/E0(z)]. Close
to the cylinder, at a distance comparable to the average
inter-atomic distance, the calculated field displays large
statistical fluctuations.

D. Computational errors

In Fig. 3, we show the statistical error bars at few
points on the curves. We now describe how the error
associated with each point is calculated. The number
of configurations used to compute the coherent field is
denoted as Nconf. In order to compute the errors, we
divide the number of realizations into Npart partitions.
The mean electric field 〈Ep(z)〉 is calculated for each par-
tition. Here, p is the index of the partitions. From the
Nconf/Npart values of averaged fields computed for each
partition, we compute their standard deviation σf . Simi-
larly, the phase shift of the transmitted field with respect
to the incident field is also calculated for each partition.

0 100 200 300 400 500

0.58

0.585

0.59

0.595

0.6

0.605

0.61

-0.084

-0.082

-0.08

-0.078

-0.076

-0.074

-0.072

FIG. 3. Curves showing the position dependence (along the
propagation axis) of the coherently transmitted intensity Icoh
(blue solid curve), and the phase difference θ between the
coherent field and the incident field (red dashed curve). This
example is shown for the vector wave case. The error bars
are calculated for all points on the curves but only shown at
selected points. The parameters in the calculation are k0ℓ0 =
36.4 and δ = 0.5Γ; see also the text for other computation
parameters.

The standard deviation is denoted as σp. The errors are

then given by σf/
√

Npart and σp/
√

Npart, respectively,
for the coherent field and the phase difference. The er-
ror in the values of ǫr is then calculated by propagating
the error accordingly. With large enough partitions, the
error calculated is independent of Npart.

E. Scalar waves

Using the numerical method described above, we study
numerically the coherent light transmission at k0ℓ0 = 9.1,
18.2 and 36.4, for the case of scalar waves. In this
study, we set 2R = 35 µm, 2a = 22 µm, w0 = 4.5 µm,
Nconf = 3200, Npart = 40, d̃min = 0.455 and the sample
thickness L is 1, 2 and 4 µm for the 3 cases studied. The
corresponding values of the rescaled density ρ0/k

3
0 is sum-

marized in Table I. The wave vector used in the numer-
ical simulation corresponds to the strontium 1S0 →3P1

intercombination transition, i.e., k0 = 9.1 × 106 m−1.
This means that the scaled diameters of the cylinder are
2k0R = 637 and 2k0a = 400.4, respectively. The scaled
waist of the beam is k0w0 = 41. The number of atoms
used in the numerical simulation is Na = 4277. With
these parameters, we approximate as closely as possible
a uniform slab of density ρ0 used in the theoretical study.
Note that the results depend only on the scaled parame-
ters: changing the wavevector k0 while keeping the same
values of k0R, k0a, k0w0, k0ℓ0 produces exactly the same
set of equations, and thus the same solutions.

The range of detuning computed in our study is −3Γ ≤
δ ≤ 3Γ. For each value of the detuning, we compute the
coherent field. The relative permittivity ǫr is calculated
using Eq. (49). We first compare the numerical results
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TABLE I. Values of k0ℓ0 and ρ0/k
3

0 for the cases studied nu-
merically. The values are tabulated for both the scalar and
vector waves. Here, we set b0 = 1, and hence, L = ℓ0.

k0ℓ0 ρ0/k
3

0 (scalar) ρ0/k
3

0 (vector)
9.1 8.8× 10−3 5.8× 10−3

18.2 4.4× 10−3 2.9× 10−3

36.4 2.2× 10−3 1.5× 10−3

to the ISA prediction for the case k0ℓ0 = 9.1 (see Fig. 4).
This is the value where we expect the largest deviation
from the ISA prediction. At first sight, the numerical re-
sults agree very well with the ISA prediction. However, a
close inspection shows there are indeed small deviations,
particularly, around δ = 0.

FIG. 4. Real and imaginary parts of the relative permittiv-
ity for scalar waves extracted from the numerical simulation
results (blue and red dots for real and imaginary parts respec-
tively). The ISA prediction for the real part of ǫr is shown as
the blue solid curve, while the imaginary part is shown as the
red dashed curve. The numerical results are shown only for
the case of k0ℓ0 = 9.1, where deviations from the ISA predic-
tion – although obviously rather small – are expected to be
the largest among the k0ℓ0 values computed.

In order to better compare our numerical results to
the theoretical prediction, we calculate the scaled second
order contribution (k0ℓ0)

2(ǫr − ǫISA). This quantity is
calculated from the numerical results, and compared to
the theoretical prediction in Fig. 5. We find an excellent
agreement between the numerical and theoretical results.
The (k0ℓ0)

2(ǫr − ǫISA) values at different k0ℓ0 fall on the
same curve, meaning that the dominant contribution af-
ter ISA indeed scales as 1/k20ℓ

2
0.

F. Vector waves

For the vector waves, we set 2a = 22.5 µm (2k0a =
409.5), 2R = 35 µm (2k0R = 637), w0 = 4.5 µm (k0w0 =

41), Nconf = 3200, Npart = 40, d̃min = 0.455 and the
cylinder thickness is L=1, 2 and 4µm. The corresponding
scaled density of the cylinder is given in Table I, for the

FIG. 5. (a) Real part and (b) imaginary part of
(k0ℓ0)

2 (ǫr − ǫISA) for scalar waves. The theoretical curve is
shown as the black solid line. The numerical results at three
different k0ℓ0 values agree perfectly with the theoretical pre-
diction.

three values of k0ℓ0. Generally, the numerical simulation
is performed at b0 = 1 or equivalently k0L = k0ℓ0, with
Na = 2897. A case at b0 = 2 is also studied, where
k0L = 2k0ℓ0 and Na = 5795. In Fig. 6, we compare
the relative permittivity obtained by the numerical study
at k0ℓ0 = 18.2 to the theoretical prediction using ISA,
finding small but significant differences.

1. 1/k2

0ℓ
2

0 dependence

We also compare the scaled second order contribution
(k0ℓ0)

2 (ǫr − ǫISA) of the numerical result to the theoreti-
cal prediction. This is shown in Fig. 7, where the numer-
ically calculated second order contribution at k0ℓ0 = 9.1,
18.2 and 36.4, are scaled by multiplication with (k0ℓ0)

2.
Note that the numerical results for different values of k0ℓ0
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FIG. 6. Real part and imaginary part of ǫr for the vector
waves calculated from the numerical simulations at k0ℓ0 =
18.2. The blue dots are the numerical results for the real
part, while the red dots are the imaginary part. The ISA
prediction for the real part is shown as the blue solid curve.
The ISA prediction for the imaginary part is shown as the
red dashed curve. The agreement is very good, but small
deviations are visible and studied in Fig. 7.

agree very well with each other, confirming the 1/k20ℓ
2
0 de-

pendence of ǫr−ǫISA. The agreement with the theoretical
curve is not perfect, with small deviations visible in the
real part at negative detuning and in the imaginary part
at small positive δ/Γ. Overall, the agreement is very good
and the theoretical prediction nicely reproduces the com-
plicated frequency dependence, validating the theoretical
approach.

The discrepancy between the numerical result and the-
oretical prediction is larger for k0ℓ0 = 18.2 at certain val-
ues of δ especially around δ/Γ = 0.25. It seems unlikely
to come from correction terms proportional to 1/k30ℓ

3
0.

The actual cause of this discrepancy remains to be un-
derstood. One reason could be the failure of the bulk ap-
proximation in our numerical studies, since we are using
the bulk permittivity for a medium where the thickness
is not much larger than the wavelength of the light. In
the scalar case, the asymptotic expression of the Green
function is in fact valid at any distance [see Eq. (6)]. In
the vector case, we speculate that corrections at short
distance [see Eq. (34)] might lead to a less accurate bulk
approximation.

2. Optical thickness

To check for possible finite size effect, we study the de-
pendence of the second order contribution with the thick-
ness L. To do this, we compare the relative permittivity
at the same value of k0ℓ0 = 18.2 for two different values
of the optical thickness b0 = L/ℓ0, that is b0 = 1 and
b0 = 2. The results are depicted in Fig. 8, showing good
agreement between the two cases. Hence, the thickness
used in the numerical simulation is sufficiently large and

FIG. 7. (a) Real part and (b) imaginary part of
(k0ℓ0)

2 (ǫr − ǫISA) for the case of vector waves. The theo-
retical curve is shown as the black solid curve. Numerical
results are shown for three different k0ℓ0 values indicated in
the legend.

finite size effects are not important. The excellent agree-
ment between theory and numerical studies in the case
of scalar waves, where the geometry of the cylinder is
similar, adds further weight to this conclusion.

3. Size of the exclusion volume

We also investigate the effect of the size of the exclusion
volume in the case k0ℓ0 = 18.2. We numerically study
the case of d̃min = 0.0455, where the radius of exclusion
volume is one order of magnitude smaller than the results
presented in Fig. 7. The exclusion volume is thus three
orders of magnitude smaller. In Fig. 9, the values of
ǫr for d̃min = 0.455 and d̃min = 0.0455 are compared.
The results show that the smaller exclusion volume does
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FIG. 8. Numerical results for vector waves and for the case
of k0ℓ0 = 18.2 at optical thickness b0 = 1 (blue open cir-
cles) and b0 = 2 (red stars). The theoretical prediction of
(k0ℓ0)

2 (ǫr − ǫISA) is shown as the black solid curve.

not significantly affect the numerical and the theoretical
results.

IV. CONCLUSION

We have computed the relative permittivity of a bulk
atomic cloud at zero temperature under illumination by
a weak probe beam, beyond the ISA. Using a diagram-
matic representation method, we have identified all di-
agrams that contribute to the self-energy up to second
order in 1/k0ℓ0. The first order term in the self-energy
gives rise to ISA, which is a good approximation for dilute
scattering media. The second order terms originate from
the pairwise correlation in the position of the scatterers,
and from the recurrent scattering between two scatterers,
which includes the well-known Lorentz-Lorenz shift. We

FIG. 9. Numerical results for vector waves at k0ℓ0 = 18.2,
with normalized cut-off radii of d̃min = 0.455 (blue open cir-

cles) and d̃min = 0.0455 (red stars). The theoretical curves for

d̃min = 0.455 is shown as the black solid curve and the curve
for d̃min = 0.0455 is shown as the red dashed curve.

have separately computed the contributions from ISA,
position correlation and recurrent scattering for both the
cases of scalar and vector waves.

This perturbative expansion method can be useful to
study non-trivial pair correlations. In Ref. 41, the exper-
imental measurement of the refractive index for a Bose
gas, was compared with two different models of bosonic
pair correlation functions [52], one for an ideal Bose gas,
and the other one calculated with the Hartree-Fock ap-
proximation. A similar study could be carried out for
Fermi gases.

From our calculations, we find that the peak opti-
cal thickness is shifted to the blue by 1.66ρk−3

0 Γ and
6.56ρk−3

0 Γ, for the scalar wave and vector wave cases,
respectively. A blue shift was also reported in Ref. 29,
for the case of quasi-2D atomic layers.
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The theoretical results are then compared with numer-
ical studies on finite-sized systems that approximate as
closely as possible the infinite ideal slab geometry, with
k0ℓ0 values down to 9.1. The agreement between the nu-
merical and theoretical results is almost perfect for the
scalar waves. In the case of vector waves, the overall
agreement between the numerical and theoretical results
is very good, although differences exist. Further work
is needed to understand these differences. Finally, our
theoretical framework and numerical tools can be easily
extended to study the effect of the atomic motion on the
coherent transmission of light beyond the ISA.
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Appendix A: Calculation of Σcor for scalar waves

Starting from Eq. (24), we perform the integrations
and summations to find

Σcor(r− r
′) =

Na(Na − 1)

V 2
G0(r− r

′)h(|r− r
′|). (A1)

Since Na ≫ 1, we can make the approximation that
Na(Na− 1) ≈ N2

a . The self-energy in k-space is given by
the following Fourier transform,

Σcor(k) = ρ2α2k4L

∫

G0(R
′)h(R′) exp(−ik ·R′)d3R′,

(A2)
where R

′ = r − r
′. Putting in the pair correlation func-

tion from Eq. (2), it is reduced to the following integral
over the exclusion volume Vex,

Σcor(k) = −ρ2α2k4L

∫

Vex

G0(R
′) exp(−ik ·R′)d3R′.

(A3)
The scalar Green function does not contain any angular
dependance, therefore it is possible to first carry out the
integral over the solid angle, leading to

Σcor(k) = −ρ2α2k4L

∫ dmin

0

exp(−ikLR
′)

R′

sin kR′

kR′
R′2dR′.

(A4)
We now make the on-shell approximation to put k ≈ kL.
We then perform the integration to arrive at Eq. (25).

Appendix B: Calculation of Σrec for scalar waves

In close analogy to Eqs. (27) and (28), we can write

Σ
(n)
rec for general values of n in the configuration space.

In the Fourier space, this is given by

Σ(n)
rec (k) = ρ2(αk2L)

n

×
{

∫

Gn−1
0 (R′)[1 + h(R′)]d3R′, odd n,

∫

Gn−1
0 (R′)[1 + h(R′)] exp(−ik ·R′)d3R′, even n,

(B1)

for n ≥ 3. We have used the fact that G0(R
′) =

G0(−R
′), which is also true for the dyadic Green func-

tion in the vector case. Note also that Na(Na − 1) ≈ N2
a

for large Na. Summing up Σ
(n)
rec and putting in the pair

correlation function of Eq. (2), we obtain Eq. (29).
To proceed from Eq. (29), we first carry out the angular

integration, with the on-shell approximation, to obtain
the following equation:

Σrec(k) = 4π(ρα0)
2k4L

∞
∑

l=0

(

α0k
2
L

)2l+1
α̃2l+3

×
[

∫ ∞

dmin

G2l+2
0 (R′)R′2dR′ +

(

α0k
2
L

)

α̃

×
∫ ∞

dmin

G2l+3
0 (R′)

sin kR′

kR′
R′2dR′

]

. (B2)

We also make the approximation kL ≈ k0, for δ ≪ ω0.
Thus, α0k

3
L = 4π, allowing us to simplify the equation,

and find

Σrec

k2L
=

1

(k0ℓ0)2

[

∞
∑

l=0

α̃2l+3

∫ ∞

d̃min

ei(2l+2)x

x2l
dx

+

∞
∑

l=0

α̃2l+4

∫ ∞

d̃min

ei(2l+3)x

x2l+2
sinxdx

]

. (B3)

Here, we have a summation of infinitely many integrals.
The first integral proportional to α̃3 can be computed
analytically,
∫ ∞

d̃min

exp(2ix)dx = lim
η→0+

∫ ∞

d̃min

exp[(2i− η)x]dx, (B4)

which evaluates to the value i exp(2id̃min)/2 for η > 0.
After reorganizing the summations, we have

Σrec

k2L
=

1

(k0ℓ0)2
iα̃3

2

[

e2id̃min

+

∞
∑

l=0

α̃2l+1

∫ ∞

d̃min

e(2l+2)ix

x2l+2
dx

− (1 + 2iα̃)

∞
∑

l=0

α̃2l+1

∫ ∞

d̃min

e(2l+4)ix

x2l+2
dx

]

. (B5)
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Finally, to obtain Eq. (30), we interchange the order of
the summation and the integration in the above equation.

Appendix C: Calculation of
↔

Σcor for vector waves

As discussed in the text, we have to use the dyadic

version of Eq. (A3) to compute
↔
Σcor, which is,

↔
Σcor(k) = −ρ2α2k4L

∫

Vex

↔
G0(R

′) exp(−ik ·R′)d3R′.

(C1)
Putting in the dyadic Green function for vector waves,

↔
Σcor(k) = −ρ2α2k4L

[

kL
4π

∫

Vex

β(kLR
′)P
↔
e−ik ·R′

d3R′

+
kL
4π

∫

Vex

γ(kLR
′)

↔
Ue−ik ·R′

d3R′

−
∫

Vex

I
↔

3k2L
δ(R′)e−ik ·R′

d3R′

]

. (C2)

The last term can be computed easily using the proper-
ties of the Dirac delta function,

∫

Vex

I
↔

3k2L
δ(R′)e−ik ·R′

d3R′ =
I
↔

3k2L
. (C3)

Before we proceed to evaluate the two integrals involving
β(kLR

′) and γ(kLR
′), we note the following results for

the integration of P
↔

and
↔
U over the solid angle Ω. These

relations are useful in the computation of
↔
Σcor and

↔
Σrec.

∫

↔
UdΩ =

4π

3
I
↔
, (C4)

∫

P
↔
dΩ =

8π

3
I
↔
, (C5)

∫

↔
Ue−ik ·RdΩ =4π

j1 (kR)

kR
I
↔

+

[

4πj0 (kR)− 12π
j1 (kR)

kR

]

↔
K, (C6)

∫

P
↔
e−ik ·RdΩ =

[

4πj0(kR)− 4π
j1 (kR)

kR

]

I
↔

−
[

4πj0 (kR)− 12π
j1 (kR)

kR

]

↔
K. (C7)

Using these, we can perform the angular integration over
the solid angle of Eq. (C2). The following transverse
component of the mass operator is what matters to us

here,

Σt,cor(k) =
ρ2α2k2L

3
− ρ2α2k5L

×
[

∫ dmin

0

γ(kLR
′)
j1(kR

′)

kR′
R′2 dR′

+

∫ dmin

0

β(kLR
′)
kR′j0(kR

′)− j1(kR
′)

kR′
R′2 dR′

]

.

(C8)

Applying the on-shell approximation, and evaluating the
remaining integral over R′ leads us to Eqs. (40) and (41).

Appendix D: Calculation of
↔

Σrec for vector waves

1. Derivation

In order to calculate
↔
Σrec, we consider the following

equation which is the dyadic version of Eq. (29),

↔
Σrec(k) = (ρα0)

2k4L

∞
∑

l=0

(

α0k
2
L

)2l+1
α̃2l+3

×
[

∫

V −Vex

↔
G

2l+2
0 (R′)d3R′ +

(

α0k
2
L

)

α̃

×
∫

V −Vex

↔
G

2l+3
0 (R′)e−ik ·R′

d3R′

]

. (D1)

↔
U and P

↔
being orthogonal projectors, one has

↔
U

2 =
↔
U,

P
↔

2 = P
↔

and
↔
UP

↔
= P

↔↔
U = 0

↔
. It then follows that the

n-th power of the vector Green function is given by

↔
G

n
0 (R

′) =

(

kL
4π

)n
(

βn(kLR
′)P
↔
+ γn(kLR

′)
↔
U

)

. (D2)

We have neglected the Dirac delta term in
↔
G, since the

integration over the volume V − Vex excludes the origin.
The above relation is substituted into Eq. (D1). An in-
tegration over the solid angle is first performed, making
use of Eqs. (C4) to (C7). The transverse component of
the result is given by

Σt,rec(k) = ρ2α2
0k

5
L

∞
∑

l=0

(

α0k
3
L

4π

)2l+1

α̃2l+3

×
[

1

3

∫ ∞

dmin

[

2β2l+2(kLR
′) + γ2l+2(kLR

′)
]

R′2 dR′

+
α0k

3
L

4π
α̃

∫ ∞

dmin

β2l+3(kLR
′)
kR′j0(kR

′)− j1(kR
′)

kR′
R′2 dR′

+
α0k

3
L

4π
α̃

∫ ∞

dmin

γ2l+3(kLR
′)
j1(kR

′)

kR′
R′2 dR′

]

. (D3)
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We then assume that k ≈ kL and define x = kLR
′. For

vector waves, α0k
3
L = 6π, assuming k0 ≈ kL. This leads

us to

Σt,rec =ρ2α2
0k

2
L

∞
∑

l=0

(

3

2

)2l+1

α̃2l+3

×
{

1

3

∫ ∞

d̃min

[

2β2l+2(x) + γ2l+2(x)
]

x2 dx

+
3

2
α̃

∫ ∞

d̃min

β2l+3(x)x2 [j0(x) − j1(x)/x] dx

+
3

2
α̃

∫ ∞

d̃min

γ2l+3(x)xj1(x) dx

}

. (D4)

Next, we interchange the order of integration and sum-
mation, to arrive at Eqs. (44) and (45).

2. Numerical integration

A numerical integration is performed to compute Iv.
The same numerical algorithm used for the scalar case is

also used for the vector waves. First, Iv is separated into
two parts

Iv = I ′v + IMv , (D5)

with an large value of M . One part is given by the fol-
lowing integral

IMv =

∫ M

d̃min

2x2
[

β(x)2 + 9
4 α̃(ω)β(x)

3 {j0(x) − j1(x)/x}
]

1− 9
4 α̃(ω)

2β(x)2

+ x2 γ(x)
2 + 9

2 α̃(ω)γ(x)
3j1(x)/x

1− 9
4 α̃(ω)

2γ(x)2
dx. (D6)

which is calculated numerical using the adaptive algo-
rithm. The value of M is set at 10000. The remaining
part I ′v can be computed analytically for large value of
M , giving

I ′v ≈ lim
η→0+

∫ ∞

M

2e2ix−ηx dx = i exp(2iM). (D7)

The final result is of course almost independent of the
intermediate M value.
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