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GLOBAL DYNAMICS OF A PIECEWISE SMOOTH SYSTEM FOR

BRAIN LACTATE METABOLISM

J.-P. FRANÇOISE1 , HONGJUN JI1, DONGMEI XIAO2, JIANG YU2

Abstract. In this article, we study a piecewise smooth dynamical system inspired by a
previous reduced system modeling compartimentalized brain metabolism. The piecewise
system allows the introduction of an autoregulation induced by a feedback of the extra-
cellular or capillary Lactate concentrations on the Capillary Blood Flow. New dynamical
phenomena are uncovered and we discuss existence and nature of two equilibrium points,
attractive segment, boundary equilibrium and periodic orbits depending of the Capillary
Blood Flow.

1. Introduction

The nonlinear system of ODEs defined as follows:

(.)

dx

dt
= J − T (

x

k + x
− y

k′ + y
) T, k, k′, J > 0,

dy

dt
= F (L− y) + T (

x

k + x
− y

k′ + y
) F, L > 0,

where (x, y) ∈ R2
+ was first proposed and studied as a model for coupled energy metabo-

lism between Neuron-Astrocyte and Capillary by [Costalat, Françoise, Guillevin, Lahutte-
Auboin] (see [4, 10, 11, 12]). In this context, x = x(t) and y = y(t) correspond to the
Lactate concentrations in an interstitial (i.e. extra-cellular) domain and in a Capillary do-
main, respectively. Furthermore, the nonlinear term T ( x

k+x−
y

k′+y ) stands for a co-transport

through the Brain-Blood Boundary (see [9]). The forcing term J represents the Lactate flux
in the intracellular domain. Furthermore the input F stands for the Capillary Blood Flow
through capillaries from arterial to venous, and L represents arterial Lactate. In these pre-
vious articles, different time scales were considered on the evolution of the two variables and
the asymptotics of fast-slow dynamical systems was used (see also a more recent reference
[6]). Here, our results are independent of this scaling. Recently, in [13, 7], a PDE’s system
obtained by adding diffusion of Lactate was introduced. The authors proved existence and
uniqueness of nonnegative solutions and obtained linear stability results. In system (.)
the forcing term J and input terms F are assumed frozen.

In [12], the physiological domain was discussed in terms of bounds on the Lactate con-
centrations x and y. It is natural to push further this study with the introduction of a
kind of autoregulation of the system induced by a feedback (for instance of Astrocytes on
the Capillary) of the two concentrations (x or y) on the Capillary Blood Flow F . This is
discussed in this article where the autoregulation is represented by a piecewise variation of
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F such as

F (x, y) =

{
F+ when (x, y) ∈ Ω+

F− when (x, y) ∈ Ω−

We suppose that F+ and F− are different positive real numbers and Ω+ ∪ Ω− = R2
+,

Ω+ ∩ Ω− = ∅. We further denote the system VF :

(.)

dx

dt
= J − T (

x

k + x
− y

k′ + y
),

dy

dt
= F (x, y)(L− y) + T (

x

k + x
− y

k′ + y
).

If Ω+ = R2
+ and Ω− = ∅ (i.e F = F+ everywhere), we denote system (.) as VF+ . If

Ω− = R2
+ and Ω+ = ∅ (i.e F = F− everywhere), we denote system (.) as VF− . System

VF+ and system VF− are the two special cases of system (.) and they have same topological
properties of trajectories as system (.). From a modeling point of view, the relevance of
considering a piecewise constant function is a first step/approximation to analyze more
general inputs considered in experimental protocols (Hu and Wilson [8]).

The article is organized as follows: we discuss two different choices of domains in (.)
and (.). In section 2, we give some general properties of system (.) which are common
to systems VF± . In sections 3 and 4, we show our main theorems from a point of view
of dynamics. Usual terminology adopted in the field of Piecewise Smooth Dynamical Sys-
tems (PWS) are used here (including Pseudo Equilibrium, Sliding Section, Sawing Section,
Boundary Equilibrium). See for instance the textbook [3].

2. Qualitative analysis of system (.)

In this section, we study dynamics of system (.) in R2
+ for a given constant F [12, 4, 5].

In particular, we investigate the existence of some orbits of systems VF± in R2
+ for given

two constants F+ and F−, respectively. This will help us to study global dynamics of the
piecewise system (.) in R2

+.

Proposition 1. System (.) is cooperative in R2
+ and all solutions of system (.) are

positive if the initial points are in the interior of the first quadrant R2
+.

Proof. Let
f1 := J − T ( x

k+x −
y

k′+y ),

f2 := F (L− y) + T ( x
k+x −

y
k′+y ).

Then the Jacobian matrix A of the vector field of system (.) is

A =

(
− Tk

(x+k)2
Tk′

(y+k′)2

Tk
(x+k)2

−F − Tk′

(y+k′)2

)
.

The off-diagonal entries of matrix A are nonnegative. Such a matrix is called a Metzler
matrix. A vector field such that its Jacobian matrix is a Metzler matrix is said to be
cooperative (see [16]). Note that system VF is defined in R2

+ and satisfies the following
condition: ∀(x, y) ∈ bd(R2

+): f1(0, y) ≥ 0 and f2(x, 0) ≥ 0. Hence system VF is positive. �

Lemma 1. System (.) has at most an equilibrium point in R2
+ denoted s0(x0, y0) if and

only if T > J [1 + 1
k′ (L+ J

F )], where x0 = k( JT + y0

k′+y0 )/(1− ( JT + y0

k′+y0 )) and y0 = L+ J
F .

And the unique equilibrium s0(x0, y0) of system (.) is a global asymptotically stable node
in R2

+ if T > J [1+ 1
k′ (L+ J

F )], otherwise, all orbits of system (.) are positively unbounded

in R2
+.
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Proof. The existence of equilibrium points of system (.) in R2
+ is given by nonnegative

solutions of f1 = 0 and f2 = 0. An elementary computation yields that equations f1 = 0
and f2 = 0 have at most one solution (x0, y0), and both x0 > 0 and y0 > 0 if and only if
T > J [1 + 1

k′ (L+ J
F )], where

x0 =
k( JT + y0

k′+y0 )

1− ( JT + y0

k′+y0 )
, y0 = L+

J

F
.

Consider the Jacobian matrix of system (.) at equilibrium point s0(x0, y0), denoted by

A|s0 =

−
Tk

(x0 + k)2

Tk′

(y0 + k′)2

Tk

(x0 + k)2
−F − Tk′

(y0 + k′)2

 .

It is easy to check that the matrix A|s0 has two real distinct eigenvalues λ1 and λ2 which
satisfy

λ1 + λ2 = − Tk
(x0+k)2

− F − Tk′

(y0+k′)2 < 0,

λ1λ2 = FTk
(x0+k)2

> 0,

δ = [F + Tk
(x0+k)2

+ Tk′

(y0+k′)2 ]2 − 4F Tk
(x0+k)2

> 0.

Hence, the unique equilibrium point s0(x0, y0) of system (.) is a locally stable node.
Note that the divergence of system (.) is

− Tk

(x+ k)2
− F − Tk′

(y + k′)2
< 0, ∀(x, y) ∈ R2

+.

By Bendixson’s criterion, we know that system (.) has no limit cycle in R2
+ for any positive

parameters F .
To prove that the unique equilibrium point s0(x0, y0) of system (.) is globally stable in

R2
+, we only need to prove that all solutions of system (.) are bounded in R2

+.
Given a sufficiently large positive number M ,M > x0, we construct a trapezoidal area

ΩM ( see Fig.1(b)) surrounded by four line segments:

`1 = {(x, y)|x = 0, 0 ≤ y ≤M + y0},
`2 = {(x, y)|x = M, 0 ≤ y ≤ y0},
`3 = {(x, y)|0 ≤ x ≤M,y = 0},
`4 = {(x, y)|0 ≤ x ≤M,y = −(x−M) + y0}.

Clearly, the restriction of the vector field (.) on the boundary of ΩM is d(`1)
dt |(.) > 0,

d(`3)
dt |(.) > 0, furthermore,

d(`2)

dt
|(.) = J − T (

M

k +M
− y

k′ + y
) ≤ J − T (

M

k +M
− y0

k′ + y0
) < 0,

d(`4)

dt
|(.) = F (L− y) + T (

x

k + x
− y

k′ + y
) +

(
J − T (

x

k + x
− y

k′ + y
)

)
= J + F (L− y) ≤ J + F (L− y0) = 0.

Thus, ΩM is a positively invariant subset of the system (.) in R2
+, and all solutions of

system (.) in R2
+ enter the convex set ΩM as t tends to +∞ as system (.) has a unique

equilibrium point in R2
+.
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On the other hand, if system (.) has no equilibrium points in R2
+, then all solutions of

system (.) are unbounded as t tends to +∞ since the direction of vector field of system
(.) on the positive x-axis (y-axis) is from down (left, resp.) to up (right, resp.) and system
(.) has no closed orbits in R2

+.
Below, Fig.1(a) is a preliminary sketch of orbits of system (.) when s0 ∈ R2

+.

(a) Orbits of system (.) when s0 ∈ R2
+ (b) The convex set ΩM

Figure 1

�

Lemma 2. When the system (.) has a unique equilibrium point s0 ∈ R2
+, there exist two

characteristic directions at s0, denoted v1 and v2, where

(.)
v1 =

(
1
2a(F + b− a)− 1

2a

√
(F + b− a)2 + 4ab, 1

)
,

v2 =
(

1
2a(F + b− a) + 1

2a

√
(F + b− a)2 + 4ab, 1

)
,

with a = Tk
(x0+k)2

and b = Tk′

(y0+k′)2 . In addition, all the orbits tend to s0 along characteristic

direction v2 except two orbits along characteristic direction v1.

Proof. Define

A|s0 =

−
Tk

(x0 + k)2

Tk′

(y0 + k′)2

Tk

(x0 + k)2
−F − Tk′

(y0 + k′)2

 :=

(
−a b
a −F − b

)
,

where a = Tk
(x0+k)2

and b = Tk′

(y0+k′)2 . Hence

λ1 = −1

2
(a+ b+ F )− 1

2

√
(a+ b+ F )2 − 4aF ,

λ2 = −1

2
(a+ b+ F ) +

1

2

√
(a+ b+ F )2 − 4aF ,

and
v1 =

(
1
2a(F + b− a)− 1

2a

√
(F + b− a)2 + 4ab, 1

)
,

v2 =
(

1
2a(F + b− a) + 1

2a

√
(F + b− a)2 + 4ab, 1

)
.
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Clearly, we have:

1
2a(F + b− a)− 1

2a

√
(F + b− a)2 + 4ab < 0,

1
2a(F + b− a) + 1

2a

√
(F + b− a)2 + 4ab > 0.

Furthermore, |λ1| > |λ2|, this implies that v2 is the strong characteristic direction. As s0

is a globally asymptotically stable after Lemma 1, then we can conclude that all the orbits
tends to s0 along characteristic direction v2 except two orbits along characteristic direction
v1. �

In the following we consider two systems VF+ and VF− . From Lemma 1, we know that
system VF+ (or system VF−) has a unique equilibrium at s+(x+, y+) (s−(x−, y−), resp.) in
R2

+ if T > J [1 + 1
k′ (L+ J

F+ )] (T > J [1 + 1
k′ (L+ J

F− )], resp.), where

x± =
k( JT + y±

k′+y± )

1− ( JT + y±

k′+y± )
,

y± = L+
J

F±
.

(.)

We consider the following problem of the initial value

dx

dt
= J − T (

x

k + x
− y

k′ + y
),

dy

dt
= F+(L− y) + T (

x

k + x
− y

k′ + y
),

x(0) = x−, y(0) = y−.

(.)

Then there exists a unique orbit ϕ+(t; s−) of system (.) passing through the point s−.
If T > J [1 + 1

k′ (L+ J
F+ )], then

lim
t→+∞

ϕ+(t; s−) = s+

by Lemma 1. Similarly, we can consider the problem of system VF− with the initial values
x(0) = x+, y(0) = y+, which has a unique orbit ϕ−(t; s+) passing through the point s+. If
T > J [1 + 1

k′ (L+ J
F− )], then

lim
t→+∞

ϕ−(t; s+) = s−.

The following proposition gives the tangential direction of the orbit ϕ+(t; s−) (ϕ−(t; s+))
at the point s− (s+, resp.), which is important to qualitative analysis of system (.).

Proposition 2. (i) The tangential direction of orbit ϕ+(t; s−) at the point s− is d1 =

(0, J(F−−F+)
F− ), which is vertical.

(ii) The tangential direction of orbit ϕ−(t; s+) at the point s+ is d2 = (0, J(F+−F−)
F− ), which

is vertical.

Proof. We substitute s− into system VF+ and obtain

dx

dt
= J − T (

x−

k + x−
− y−

k′ + y−
),

dy

dt
= F+(L− y−) + T (

x−

k + x−
− y−

k′ + y−
).
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Notice that T ( x−

k+x− −
y−

k′+y− ) = J and y− = L + J
F− by the expression of s−. An

elementary computation yields that

dx

dt
= 0,

dy

dt
=
J(F− − F+)

F−
.

This leads to the conclusion (i). Using the similar arguments, we can obtain the conclusion
(ii). �

From Lemma 1 and the expressions (.), we can obtain the relative position of points
s+ and s− in R2

+.
In the following, we only discuss the cases where the orbits are bounded in R2. Therefore,

the conditions T > J [1 + 1
k′ (L+ J

F± )] always hold in the next two sections.

3. Global dynamics of system (.) when F depends on the Lactate
concentration of Capillary domain

In this section we consider that the piecewise input function F (x, y) depends only on y,
the concentration inside the Capillary domain , and F follows:

(.) F (x, y) =

{
F+ y < h

F− y ≥ h

Here h is a positive threshold and the Capillary blood flow F changes between F+ and
F−. So Ω+ = R+× [0, h) and Ω− = R+× [h,+∞). We call Ω+∩Ω− = {(x, y)|x ≥ 0, y = h}
the separator line.

Theorem 1. Suppose F+ > F− (F− > F+, respectively) and F (x, y) follows (.), then
the piecewise system (.) displays one equilibrium point in R2

+ if h 6 L+ J
F+ or h > L+ J

F− .

(i) When h 6 L + J
F+ (h 6 L + J

F− , respectively), s− (s+, respectively) is the unique
globally stable equilibrium point of the piecewise system (.).

(ii) When h > L + J
F− (h > L + J

F+ , respectively), s+ (s−, respectively) is the unique
globally stable equilibrium point of the piecewise system (.).

Proof. For h 6 L+ J
F+ , we know that the orbits of the piecewise system in Ω+ tend to the

equilibrium points s+ but s+ is in Ω−. On the other hand, the orbits in Ω− tend to the
point s−. Therefore, all orbits in R2

+ tend to s−. Combining Proposition 2 and Lemma 4,
we draw a rough phase portrait where the piecewise system has one equilibrium point for
F+ > F− and T > J [1 + 1

k′ (L+ J
F± )]. Fig.2(a) is the case when h 6 L+ J

F+ and Fig.2(b)

is the case when h > L+ J
F− .

For the case when h > L+ J
F+ , using the the same arguments for statement (ii), we finish

the proof.
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(a) The case when h 6 L + J
F+ and F+ > F− (b) The case when h > L + J

F− and F+ > F−

Figure 2. Piecewise system (.) has one globally asymptotically stable
equilibrium point in R2

+

�

Lemma 3. For system VF±, there exists a unique tangent point c± with the separator

line y = h, denoted by c± = ( kβ±

1−β± , h), where β± = h
k′+h −

F±(L−h)
T . In addition, if

h ∈ (h±1 , h
±
2 ), where h±1 = −1

2(k′−L− T
F± ) + 1

2

√
(k′ − L− T

F± )2 + 4Lk′ and h±2 = −1
2(k′−

L) + 1
2

√
(k′ − L)2 + 4(Lk′ + Tk′

F± ), then c± ∈ R2
+.

Proof. Compute

(.) F+(L− h) + T (
x

k + x
− h

k′ + h
) = 0,

we obtain

x =
k(F

+(L−h)
T + h

k′+h)

1− (F
+(L−h)
T + h

k′+h)
:=

kβ+

1− β+
,

which is the abscissa of tangent point with separator line y = h for subsystem with F = F+.
The abscissa of the tangent point c+ is positive if and only if 0 < β+ < 1. That requires

0 <
h

k′ + h
+
F+(L− h)

T
< 1,

which is equivalent to: {
h2 + (k′ − L− T

F+ )h− Lk′ < 0,

h2 + (k′ − L)h− Lk′ − Tk′

F+ > 0.

A straightforward calculation further shows that

η+
1 < h < η+

2 ,

where η+
1 = min{h+

1 , h
+
2 } and η+

2 = max{h+
1 , h

+
2 } with

h+
1 =

1

2
(k′ − L− T

F+
) +

1

2

√
(k′ − L− T

F+
)2 + 4Lk′,
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and

h+
2 = −1

2
(k′ − L) +

1

2

√
(k′ − L)2 + 4(Lk′ +

Tk′

F+
).

Hence, for h ∈ (η+
1 , η

+
2 ), then c+ ∈ R2

+. Similar calculus for system VF− , we can find η−1
and η−2 . �

Theorem 2. Suppose F+ > F− and F (x, y) follows (.), Assume that L + J
F+ < h 6

L+ J
F− , then the piecewise system (.) displays two equilibrium points s+ and s− in R2

+. In

addition, there exist two non intersecting invariant domains A+ and A− which are separated
by a boundary curve in R2

+; all the orbits of system (.) in A+ (A− respectively) tend to
s+ (s− respectively). In other words, A+ (A− respectively) is the basin of attraction of the
attracting node s+ (s− respectively).

Proof. By lemma 1 and 2, under the conditions F+ > F− and L+ J
F+ < h 6 L+ J

F− , there

exist two equilibrium points s+ and s− in R2
+ such that s+ � s− . By lemma 3, there is

a tangent point c− ∈ R2
+ if y+ = L + J

F+ < h 6 h+
2 see Fig.3(a) and the tangent point

c+ /∈ R2
+ if h+

2 < h 6 y− = L + J
F− see Fig.3(b). In Fig.3, A− is the region above the

boundary curve in R2
+ and A+ is the region under the boundary curve in R2

+. It is clear
that s+ ∈ A+ and s− ∈ A−.

Furthermore, s+ and s− are both stable node in each domain by lemma 1. Hence, A+

and A− are the two invariant regions. Finally, if y+ < h 6 h+
2 , c− and c+ are on the

boundary line and c− is on the left side of c+. If h+
2 < h 6 y−, then c− is on the boundary

line and c+ does not exist. So there are two types of boundary curve as showed in Fig.3.
In case y+ < h 6 h+

2 , the boundary is a union of a segment of the tangent solution to c−,
the segment c− < x < c+ on the line y = h, and a segment of the tangent solution to c+.
In case h+

2 < h 6 y−, the boundary is a union of a segment of the tangent solution to c−

and of the semi-line c− < x < +∞ on the line y = h.

(a) The case y+ < h 6 h+
2 (b) The case h+

2 < h 6 y−

Figure 3. Basins of attraction separated by the boundary curve

�

Lemma 4. (i) If F+ > F− > 0 and T > J [1 + 1
k′ (L + J

F− )], then 0 � s+ � s−, i.e.

0 < x+ < x− and 0 < y+ < y−.
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(ii) If F− > F+ > 0 and T > J [1 + 1
k′ (L+ J

F+ )], then 0� s− � s+, i.e. 0 < x− < x+

and 0 < y− < y+.

In xy-plane we draw the orbits ϕ+(t; s−) and ϕ−(t; s+) depending on Lemma 2. There
would be a loop which links the points s+ and s− by ϕ±, that we call pseudo-loop since
it is not an orbit of system VF for any constant F . However, this pseudo-loop play an
important role on qualitative analysis of system (.). There exist two types of pseudo-loop
according to the relative values of F− and F+ as shown below in Fig.4.

(a) Pseudo loop when F− > F+ (b) Pseudo loop when F+ > F−

Figure 4

Theorem 3. Suppose F− > F+ and F (x, y) follows (.), and assume furthermore that
L + J

F− < h ≤ L + J
F+ , then the piecewise system (.) displays a sliding section on line

y = h, which is a attracting set. In this case, s+ and s− are pseudo equilibrium points and
the system has no periodic orbits in R2

+.

Proof. First, noticing from Lemma 4 that s+, s− are located at the different side of the
separator line y = h for L+ J

F− < h ≤ L+ J
F+ , we claim that the pseudo-loop transversally

intersect y = h. Otherwise, ϕ+(t; s−) or ϕ−(t; s+) has to be double tangent to y = h, which
is a contradiction with Lemma 3. Hence, the tangent points c± of the vector fields VF± on
y = h are outside of the pseudo-loop. Moreover, c+ is at the left side of ϕ+(t; s−), while c−

is at the right side of ϕ−(t; s+). In fact, observing the stable node s+ = (x+, y+), we can
deduce from (.) that ẏ|s+ = 0 and there is a unique point c+ near s+ on y = h = y+ − ε,
where ε is a small positive number, such that ẏ|c+ = 0. Obviously, c+ is at the left side of
ϕ+(t; s−). Then we get a tangent-point curve of c+ for L+ J

F− < h ≤ L+ J
F+ , which does

not intersect ϕ+(t; s−). Similarly, it can be checked for c−.
Next, by a simple qualitative analysis, we obtain that there is a sliding section [c+, c−]

on y = h, which is an attractor set of the piecewise system (.).
Finally, if there is a piecewise periodic orbit of (.), then it has to go around the section

[c+, c−] and the pseudo-loop, but it is impossible because ϕ−(t; s+) tends to a infinity
singular point as t→ −∞. See following Fig.5:

�
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Figure 5. Piecewise system (.) has non equilibrium point but an attract-
ing set in R2

+ with F− > F+

4. Global dynamics of system (.) when F depends on the Lactate
concentration of the interstitial domain

We consider in this section the case where the input function F (x, y) depends only on
the concentration of the interstitial domain x. Here h is a real positive value and F follows

(.) F (x, y) =

{
F+ x < h

F− x > h

Here Ω+ = [0, h)×R+ and Ω− = [h,+∞)×R+. So {(x, y)|x = h, y ≥ 0} is the separator
line in this section.

Theorem 4. Suppose F+ > F− (F− > F+, respectively) and F (x, y) follows (.), then the
piecewise system (.) has one equilibrium point in R2

+ if h 6 x+ or h > x−. In addition,

(i) When h 6 x+ (h 6 x−, respectively), s− (s+, respectively) is the unique globally
stable equilibrium point of the piecewise system (.).

(ii) When h > x− (h > x+, respectively), s+ (s−, respectively) is the unique globally
stable equilibrium point of the piecewise system (.).

In both cases, the equilibrium point is an attractive node.

Proof. The proof follows the lines of the proof of Theorem 1. �

Lemma 5. System VF± displays a same unique tangent point c = (h, k
′α

1−α) with the sepa-

rator line x = h for h > 0, where α = h
k+h −

J
T . In addition, if h ∈ (max{η, 0},+∞) with

η = Jk
J−T , then c ∈ R2

+.
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Proof. The equation

J − T (
h

k + h
− y

k′ + y
) = 0,

yields

y =
k′( h

k+h −
J
T )

1− ( h
k+h −

J
T )
,

which is the ordinate of tangent point c with separator line x = h of both systems VF± .
The condition 0 < α < 1, which is equivalent to:

0 <
h

k + h
− J

T
< 1,

and is necessary and sufficient to the ordinate of the tangent point be positive. A straight-
forward calculation shows that

η < h < +∞,
where

η =
Jk

J − T
.

And we have also h > 0. So we can conclude that for h ∈ (max{h3, 0},+∞), then c ∈
R2

+. �

Theorem 5. Suppose F+ > F− and F (x, y) follows (.), then the piecewise system (.)
displays two equilibrium points s+ and s− in R2

+ if x+ < h 6 x−.
In addition, there exist two non intersecting invariant domains A+ and A− which are sep-
arated by a boundary curve in R2

+; all the orbits of system (.) in A+ (A−, respectively)
tend to s+ ( s−, respectively ). In other words, the invariant domains A+ and A− are the
basins of attraction of, respectively, the attracting nodes s+ and s−.

Proof. By lemma 4, since F+ > F−, we have s+ � s−. Under the conditions x+ < h 6 x−

and T > J [1 + 1
k′ (L+ J

F± )] , the equilibrium points s+ and s− are located at the different
side of the separator line x = h. By Lemma 5, there exists a unique tangent point c for both
the right and left subsystem, which is a point located at the boundary curve (the S-shaped
curve in Fig.6). In Fig.6, A− is the region above the boundary curve in R2

+ and A+ is the
region under the boundary curve in R2

+. Hence, A+ and A− are two basins of attraction
separated by the boundary curve. �

Theorem 6. Suppose F− > F+ and F (x, y) is the piecewise function given by (.), then

(i) the piecewise system (.) has no equilibrium in R2
+ for x− < h < x+, and a unique

boundary equilibrium c on x = h.
(ii) The segments (x = h) \ c are sawing sections. Inside the pseudo-loop, there exists a

ω-limit set given either by the boundary equilibrium point c or by an attractive limit
cycle.

Proof. First, under the conditions T > J [1 + 1
k′ (L + J

F± )], F− > F+ and x− < h ≤ x+,

we know that there are two pseudo-equilibria s+ and s− which are located at the different
side of the separator line x = h and s− � s+. We claim that the pseudo-loop transversally
intersect x = h. Otherwise, ϕ+(t; s−) or ϕ−(t; s+) would be double tangent to x = h,
which is a contradiction with Lemma 5. Furthermore, the unique tangent point c of the
vector fields VF± on x = h is inside the pseudo-loop. In fact, observing the stable node
s+ = (x+, y+), we can deduce from the characteristic directions (.) that ẋ|s+ = 0 and
there is a unique point (x, c(x)) near s+ on x = x+ − ε, where ε is a small positive number,
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Figure 6. F (x, y) is a piecewise function follows (.) with F+ > F−

such that ẋ|(x,c(x)) = 0. Obviously, c(x) is below the curve ϕ+(t; s−). Similarly, there is a

unique point (x, c(x)) near s− on x = x− + ε, 0 < ε � 1, such that ẋ|(x,c(x)) = 0. Clearly,

(x, c(x)) is above the curve ϕ−(t; s+), see Fig.7. Then we get a tangent-point curve (x, c(x))
for x− < x ≤ x+, which can not intersect the pseudo-loop. Hence c = (h, c(h)) is a unique
boundary equilibrium.

Second, noticing that c is the unique tangent point of the vector fields VF± on x = h, it
follows that VF+ |x=h and VF− |x=h have the same component of x-axis. So {x = h} \ c are
sawing sections. Noticing the nodes s+ and s−, we can construct a Poincaré map on x = h
inside the pseudo-loop. Specially, the orbit starting from intersecting point p0 of x = h and
ϕ− has to go through point q0 on x = h following the vector field VF− , then it arrives at p1

on x = h following the vector field VF+ , as shown in Fig.7. By a simple qualitative analysis,
we obtain a series of points pn, n ∈ N, which is increasing on x = h and upper bounded.
Hence there is a limit point p∗ of pn. If p∗ = c, then c is a stable boundary focus. If p∗ 6= c,
then there is a stable limit cycle around c.

Finally, it follows from Lemma 1 that the pseudo-nodes s+ and s− are globally stable, which
implies that any orbit of (.) shall go through the separating line x = h, then tend to c or
a limit cycle as t→∞.

�

4.1. An example of numerical simulation. Here we give an example of numerical sim-
ulations in the case F− > F+ and F (x, y) is the piecewise function which follows (.) (see
Fig.9). We take F+ = 1, F− = 10, T = 10, J = F = L = k = k′ = ε = 1 and h = 2;
hence the separator line is x = 2 and also the condition T > J [1 + 1

k′ (L+ J
F± )] is satisfied.

In Fig.9(a) we draw one orbit which begins with the initial point s− = (1.658, 1.1) and in
Fig.9(b) we draw two orbits which begin with the two different intersection points between
the pseudo-loop and the separator line x = 2



GLOBAL DYNAMICS OF A PIECEWISE SMOOTH SYSTEM FOR BRAIN LACTATE METABOLISM 13

Figure 7. The piecewise system (.) displays a Poincaré mapping asso-
ciated to the sawing section {x = h} \ h surrounding the unique boundary
equilibrium point c inside the pseudo-loop.

Figure 8. Two orbits connecting the pseudo equilibrium points s+ and s−

with the boundary equilibrium
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(a) One orbit with initial point s−
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(b) Two orbits with two different initial points

Figure 9. Numerical simulation of orbits for F− > F+ and F (x, y) follows (.)
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5. Conclusions

In this article, we have introduced an autoregulation in the Neuron-Astrocyte-Capillary
system preceedingly studied as a mathematical reduction of a compartimentalized Brain
Lactate kinetics Model (cf. [1, 2, 4, 10, 12, 11]). This autoregulation looks natural and
can be thought as a feedback process induced by the Astrocytes to the Capillary when
the extra-cellular (or the Capillary) Lactate concentration is beyond the viability limits (cf
[12, 10]).

The mathematical tool which looks the most adapted for this context is the qualitative
analysis of Piecewise Smooth Dynamical Systems (PWS).

Our study uncovered several new phenomenon which where not present in the ODE
model.

Within the conditions of Theorem 2 and 5 the PWS displays a bistability with two at-
tracting nodes. The two basins of attraction are separated by a boundary that we can
explicitely determine.

With the conditions of Theorem 3, there exists an attracting set which is a sliding section.

With the conditions of Theorem 6, the system displays a pseudo-loop. Inside this pseudo-
loop, there is a Poincaré map associated to a sawing section. The qualitative analysis allows
to show the existence of a boundary equilibrium. There are two possibilities for the ω-limit
set of the orbits inside the pseudo-loop: either a limit cycle or the boundary equilibrium
which is then an attractive focus.
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