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Abstract. Time-dependend evolution of hydrodynamic turbulence corresponding to

formation of a thermodynamic state at the large-scale part of the spectrum is studied

using the inviscid Leith model. In the wave vector space, the evolution leads to

shrinking of the zero-spectrum ”hole”—the so-called focusing problem. However,

in contrast with the typical focusing problem in the nonlinear filtration theory, the

focusing time is infinite for the Leith model. Respectively, the evolution is described

by a self-similar solution of the third kind (discovered in Nazarenko, Grebenev [Phys

A: Math. Theor. 50, 3, 2017]), and not the second kind as in the case of the

typical filtration problem. Using a phase-plane analysis applied to the dynamical

system generated by this type of similarity, we prove the existence of a new self-similar

spectrum to this problem. We show that the final stationary spectrum scales as the

thermodynamic energy equipartition spectrum, E ∼ k2.
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1. Introduction

The Leith model of turbulence [1] was extensively studied in [2]–[4] and [5]. This model

is represented by a nonlinear diffusion equation in which the energy spectrum E(k, t)

satisfies the equation

∂E

∂t
=

1

8

∂

∂k

(
k11/2E1/2 ∂

∂k
(E/k2)

)
− νk2E, (1)

where t is time, k is the absolute value of the wavenumber and ν is the kinematic viscosity

coefficient. For more details about the physical background, see [6], [7]. Discussion of

the Leith model in the context of other turbulence closures can be found in [8].

The energy flux in the Leith model is defined as

ε(k, t) = −1

8
k11/2E1/2 ∂

∂k
(E/k2). (2)

Notice that in the inertial range, when the viscosity term can be neglected, equation (1)

admits two fundamental stationary scaling solutions: the thermodynamic spectrum

E(k) ∼ k2 corresponding to zero flux, ε ≡ 0, and the Kolmogorov spectrum E(k) ∼ k−5/3

corresponding to a constant flux, ε = const > 0.

In [2], we studied transient solutions for the Leith model arising from an initial

spectrum compactly supported at low k-wavenumbers. It was shown that the evolution

becomes self-similar just before breaking of energy conservation at some finite time

t = t∗ at which the front of the spectrum reaches k = ∞. This is the so-called

self-similarity of the second kind [9] at pre-t∗ stage of the spectrum evolution. This

regime does not exhibit the scaling inherited from the Kolmogorov spectrum. Namely,

the transient spectrum behind the propagating front was found and asymptotes to a

power-law spectrum E ∼ k−x
∗

with x∗ which is greater than the Kolmogorov exponent,

x∗ ≈ 1.85 > 5/3. Previously, similar behaviour of a transient spectrum exhibiting an

anomalously steep power law was found numerically in MHD wave turbulence [10], [11].

We remind that, according to the Zeldovich-Raizer classification [9], a self-similar

solution is of the first kind if its similarity coefficients (a and b in the text below) are

completely determined by a conservation law. A self-similar solution is of the second

kind if its similarity coefficients can only be found by solving a nonlinear eigenvalue

problem. There is also a third possibility when the similarity coefficients are completely

determined by a scaling inherited from the preceding self-similar stage; this is the third

kind self-similarity (see below).

A more general Lie point symmetry analysis had been performed in [3] for both the

viscous and the inviscid versions of equation (1). We gave a complete group classification

of all invariant solutions of these equations.

In [4], we presented a comprehensive study and full classification of the stationary

solutions in Leith’s model with a generalised viscosity. The solutions obtained were

interpreted in terms of their physical meanings as low and high Reynolds number direct

and inverse energy cascades. These include the Kolmogorov, the thermodynamic and the
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mixed solutions which arise in this model with various types of the boundary conditions

as t→∞.

The question about the evolution in Leith’s model for t > t∗ was investigated

in [5] and this is the so-called post-t∗ stage of energy spectrum E(k, t). Numerical

simulations presented in [6] demonstrate that during this period of time there is a

reflected wave propagating from large to small k which replaces the steep power-law

with exponent x∗ with a shallower spectrum whose exponent is Kolmogorov’s 5/3. It

was shown that this post-t∗ stage is described by a self-similar solution of the inviscid

Leith equation (1) of the third kind [5]. Nonstationary solutions corresponding to ”warm

cascades” [6] characterized by a thermalised spectrum at large wavenumbers were also

observed. Transition from the Kolmogorov to the thermalised range is characterized

by the presence of a range with a depleted spectrum. The depletion on the spectrum

is especially pronounced in the case of strong reflections which occur for very abrupt

dissipation functions at high wave numbers, e.g. hyperviscosity. A similar effect was

observed in the numerical simulations of the Fourier-truncated Euler equation in [12].

They called such a spectrum depletion a ”secondary dissipation”.

The previous studies of the evolving spectrum mostly concentrated on the range of

wave numbers greater than the initial wave numbers, k > k0. This is the range where

the turbulent cascade occurs and the Kolmogorov spectrum forms. In the present paper,

we consider the range of small wave numbers, k < k0, for which we expect evolution

towards a thermodynamic steady state with equipartition of energy. Such an evolution

corresponds to the so-called focusing problem: the spectral front propagation from

the initial to the small wavenumbers thereby filling the ”hole” centered at k = 0. In

section 2, we consider the focusing problem for the inviscid Leith model and overview the

focusing problem settings. In section 3, we show that the self-similar ansatz of the second

kind for the inviscid Leith equation is broken. Therefore the focusing time S is infinite for

this model. It means that the evolution corresponds to similarity of the third kind which

is studied in section 4. We do it by analysing the behavior of trajectories of the dynamical

system derived and demonstrate the existence of a trajectory which corresponds to a

solution of the focusing problem. The results of numerical simulations of the forced-

dissipated Leith model which conform stability of the analytical self-similar solution

obtained and the fact that it is reached asymptotically for large time are presented in

section 5.

2. The focusing problem: overview of the problem settings

We consider the inviscid Leith model,

∂E

∂t
=

1

8

∂

∂k

(
k11/2E1/2 ∂

∂k
(E/k2)

)
. (3)

In the focusing problem, it is assumed that initially at time t = t0 there is a nonempty

compact set D = {[0, d] ⊂ R} such that the spectrum E(k, t0) ≡ 0 and E(k, t0) > 0 for

a non-zero measure subset of R \D. As the time evolves, the spectrum front will enter
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D and eventually reach all points of D \ 0 at some non-zero time S. We will call S the

focusing time; it can be finite or infinite. Of considerable interest here is the behavior of

E(k, t) near the focusing time S, especially its asymptotics at k → 0 which often takes

form of a power law. This formulation is following a general approach in the theory of

the porous medium equations [13].

Typically, the focusing solution of the porous medium equation

∂u

∂t
= ∆um (4)

is a self-similar solution of the second kind for the ”slow” diffusion case m > 1. There

is quite a different situation for the linear diffusion case m = 1, and the ”fast” diffusion

case m < 1 [13]. The focusing time is zero for these cases and the self-similar ansatz is

broken.

In turbulence, the focusing problem can be associated with studying a front

propagation from large to small wavenumbers k. We will be concerned with the case

where energy is continuously pumped into the system at some high wavenumbers around

k0 and dissipated by viscosity at even higher wave numbers kd � k0 so that a steady state

is eventually forming which is, according to the results of [4], with the thermodynamic

spectrum Es(k) ∼ k2 at k → 0. Thus we impose a condition that

E(k, t)→ k2, as t→ S, k → 0. (5)

Note that this formulation is very general, because choosing a different constant

prefactor in (5) can be considered by a simple rescaling of the solution.

3. Self-similar ansatz of the second kind is broken

A priory, it is not clear if the focusing time S is finite, zero or infinite and, therefore, it

is not clear what kind of the self-similarity is relevant. Let us first consider a possibility

that S is finite and consider the self-similar anzatz of the second kind. Thus, we will

seek solutions of equation (3) in the following form,

E = (S − t)aF (η), η = k/k∗, k∗ = (S − t)b, (6)

where a and b are constants satisfying the dimensional condition

a = −2− 3b. (7)

Equation for F (η) reads:

−aF + bη
dF

dη
=

1

8

d

dη

(
η11/2F 1/2 d

dη
(η−2F )

)
. (8)

According to the focusing problem setting, we look for a solution of (8) such that

F (η) ≡ 0 for η ≤ 1 . (9)

Note that setting the hole boundary to be at η = 1 does not restrict generality, because

any other value can be considered by rescaling of the considered problem. We are

interested in solutions with the boundary k∗(t) moving toward smaller wave numbers,
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thus b > 0. We also impose the condition that the shape of F (η) at η → ∞ must

correspond to a stationary (time-independent) spectrum E(k) = k2. This fixes a/b = 2.

But together with (7), this condition is incompatible with b > 0. Thus the self-similar

ansatz of the second kind is broken, i.e. there exist no self-similar solution of the

second kind corresponding to the focusing problem where the stationary thermodynamic

spectrum E(k) = k2 forms in a finite time.

4. Infinite-time focusing: self-similar solution of the third kind

Taking into account that the self-similar ansatz (6) is broken, we will look for a solution

to the focusing problem in the following self-similar form

E(k, t) = taF (η), η = ktb. (10)

With this ansatz, the self-consistency condition takes the form

a = −2 + 3b. (11)

We consider

a = − 2x

x− 3
and b =

−2

x− 3
(12)

with x < 0 and therefore the self-consistency condition (11) holds. Then the equation

for F (η) reads:

− 2

x− 3

(
η
dF

dη
+ xF

)
=

1

8

d

dη

(
η11/2F 1/2 d

dη
(η−2F )

)
. (13)

We complement this equation by three conditions corresponding to the focusing setup:

(i) F (η) ≡ 0 for 0 ≤ η ≤ 1. (ii) We require that the flux of energy ε turns into zero at

the points where η = 0. This rules out nonphysical solutions with a finite sink moving

in the wavenumber space. (iii) F (η) at η → ∞ is such that the spectrum E(k) is time

independent, specifically, corresponds to the stationary (time-independent) spectrum

E(k) = k2 i.e. F (η) ∼ η2 for η � 1. We emphasize that the stationarity of spectrum

E(k) = k2 implies that our turbulence is continuously forced. The fact that the forcing

wavenumber k0 is fixed means that the corresponding value of the similarity variable

tends to infinity, η0(t)→∞. Hence there is a range of the self-similar solution which is

simultaneously far from the front and from the forcing scale, 1 � η � η0, and this is

the range where we impose the stationary thermodynamic spectrum.

With a = 3b− 2 we have a one-parametric family of self-similar solutions,

E(k, t) = t3b−2F (ktb). (14)

The value of parameter b is to determined by the asymptotic of F (η) as η → ∞ that

corresponds to a time independent spectrum. Therefore, the above-mentioned focusing

setup leads to a self-similarity of the third kind i.e. the similarity coefficients a and

b are not determined by dimensional analysis of the equation under consideration or

conservation laws but rather from the post self-similar stage as here. With this, the
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self-similar exponent b has to be equal to 2/5 to satisfy the condition (iii). Interestingly,

this choice of b coincides with the Saffman similarity law [14].

The easiest way to understand the main features of the self-similar ansatz (10) is

to consider the phase space plot of the respective dynamical system associated with

equation (13). Equation (13) can be transformed into an autonomous system by the

same substitutions as in [5]. The resulting autonomous dynamical system is:

dρ

dτ
=

3

2
ρ(ρ+ σ), (15)

dσ

dτ
=

1

3

(
5ρ2 + 6ρσ − 9σ2 − 10

x− 3
(3σ + xρ)

)
(16)

where x = a/b and equals −2 for b = 2/5. Here we use the notations

ρ(τ) = f(s), σ(τ) = g(s), s = ln η, ds = f(s)dτ (17)

and

F =
1

25
η−3f 2,

dF

dη
=

3

25
η−4fg. (18)

The phase portrait of this system for x = −2 is shown in Figures 1.

Fixed points of the system (15), (16) in the semi-plane ρ ≥ 0 for x = −2 are

P1 = (ρ1, σ1) = (0, 0) and P2 = (ρ2, σ2) =

(
0,

2

3

)
. (19)

The classification of P1 and P2 was done in [5]. Namely, P1 is an unstable saddle-node

with its stable manifold along the σ-axis, the fixed point P2 is a saddle with its unstable

manifold along the σ-axis. A heretoclinic orbit H connects P1 and P2 along the σ-axis.

The slow (central) manifold of the equilibrium of P1 is directed into the first quadrant

with the slope 2/3. More specifically, σ = (2/3)ρ and the dynamics of ρ(τ) on this

central manifold is governed by the equation

dρ

dτ
=

5

2
ρ2 (20)

which can be easily integrated:

ρ(τ) =
1

C − 5
2
τ

(21)

where C is a positive constant. On this orbit, denoted by U1, we have:

ρ(τ) ∼ 1

C − 5
2
τ
, σ(τ) ∼ 3

2C − 5τ
(22)

as τ → −∞. It corresponds to the power law scaling

F (η) ∼ η2. (23)

This is the same as it has been done in [2], see the formula (11) there. Notice

that F (η) = η2 is an exact solution of equation (13) corresponding to the stationary

thermodynamic spectrum E ∼ k2. However, this solution does not satisfy the condition

(i) in the left boundary and, therefore, is not the self-similar solution we are looking for.
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Near the fixed point P2, along its stable manifold U2, we have

ρ ∼ exp(τ + C), σ ∼ 2/3 (24)

as τ → −∞. Orbit U2 which expands into the first quadrant. It corresponds to the

scaling

F (η) ∼ (η − 1)2 (25)

for η− 1� 1 or τ → −∞. With the formulas (18) and (24), we get that F (η) together

with dF (η)/dη vanishes at η = 1. Further and similar to [6], the formula (25) follows by

expanding F (η) into the Taylor series with respect to a small η− 1 taking into account

equation (13). In the leading order it gives exactly (25). Let us consider the orbit

Uf = U2 ∪ H. With the inverse time τ̂ = −τ , the orbit U2 will reach small values of

ρ such that ρ � 1 and ρ � σ and terminates at P2. With this, ρ → 0, η → 1 as

τ̂ →∞ and F (η) ∼ (η−1)2, η−1� 1. Further, the dynamics is determined by moving

along the heteroclinic orbit H towards P1. The motion along H-orbit gives F (η) ≡ 0

for η ≤ 1. Thus we see that the Uf -orbit looks like a suitable solution to the focusing

problem for equation (13). It only remains to verify the conditions (ii) and (iii) from

the focusing setup. For this, we investigate the behavior of U2-orbit as τ → ∞. We

notice that the thermodynamic line U2 is

σ = −x
3
ρ ≡ 2

3
ρ, forx = −2. (26)

It is the phase-plane realization of the thermodynamic spectrum E(k) = k2 and the

function (26) is an exact solution of the dynamical system (15). It is easy to see

that the unstable orbit U2 goes from equilibrium P2 to infinity and asymptotes the

thermodynamic line. Indeed, Ux-orbit cannot asymptote to neither the σ-axis because,

according to the first equation of (15), ρ(τ) is a non-decreasing function. Also, orbit U2

does not asymptote to the ρ-axis because it lies above U1. Further, orbit U2 does not

asymptote to a line ρ = const > 0 or a line σ = const > 0 as it would contradict the

first equation of (15). Therefore, the U2-orbit goes to infinity in both ρ and σ by the

Poincaré-Bendixon theorem. Further, for ρ � 1 and σ � 1 the dynamics of U2-orbit

in the leading order is governed by

dρ

dτ
=

3

2
ρ(ρ+ σ), (27)

dσ

dτ
=

1

3

(
5ρ2 + 6ρσ − 9σ2

)
.

The system (27) corresponds exactly to the thermodynamic line. Therefore, U2-orbit

asymptotes the thermodynamic line. With this, we obtain F ∼ η2 as η → ∞ which is

the condition (iii).

Consider the spectrum E(k, t) = t−4/5F (kt2/5). The final profile is easily calculated.

For a fixed k we have η = kt2/5 →∞ as t→∞ and

E(k, t)→ k2. (28)

The convergence of E(k, t) follows from the monotone convergence of F (η) → η2 as

η → ∞. Function k0(t) = t−2/5 represents a sharp left boundary of the support of
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Figure 1. Phase portrait of the dynamical system for x = −2 plotted on the (ρ, σ)-

plane. The thermodynamic line is shown by red line. The separatrix U2 is shown in

green and the heteroclinic orbit H is the blue line.

E(k, t) corresponding to η = 1. We get that k0(t) → 0 as t → ∞ i.e. shrinking of the

zero-spectrum ”hole” of the energy spectrum E(k, t) occurs in an infinite time.

It is easy to see that the Uf -orbit is different from the other orbits of the dynamical

system (15),(16) in that it represent a unique solution to the focusing problem. Indeed,

orbits below the U2-separatrix are connected to P1 moving backward in time along

the central (slow) manifold σ = (2/3)ρ + O(ρ). With this, the behavior of ρ and σ is

described by the formulas (22) which leads to the power scaling F ∼ η2 for η � 1. This

behavior of F (η) is ruled out in the focusing problem. Orbits of the phase space above

the U2-separatix correspond to the inverse-cascade solutions: they end at a finite wave

number (front) with an infinite negative derivative, such that the energy flux experiences

a finite jump. This would imply the presence of a finite time-dependent energy sink at

the moving front, which is nonphysical. Indeed, at ρ → 0 and σ → ∞ these orbits

asymptotically behave as F = Cη−3(ln η)2/3, η → 1, where C = const > 0, and for

the derivative dF/dη we have dF/dη = (2C/3)η−4(ln η)−1/3 at η → 1. The energy

dissipation in the similarity variable η reads

ε = −t
−11/5

8

(
−2η5/2F 3/2 + η15/2F 1/2dF

dη

)
. (29)

Substituting the above-mentioned formulas for F and dF/dη into (29), we get that the

energy flux actually experience a finite jump at the front: ε|η=1 = −C3/2t−11/5

12
. Thus,

the only correct relevant solution of the focusing problem corresponds to the Uf -orbit.

Summarising the results above, we get:

Theorem 4.1 There exists a unique solution to the focusing problem for the equation

(3) having the self-similar form the third-kind in the form (10) with boundary conditions
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(i)–(iii). In terms of the orbits of the dynamical system (15),(16), this solution

corresponds to the orbit Uf = U2 ∪ H. The interface k0(t) of the self-similar energy

spectrum E(k, t) behaves as k0(t) ∼ t−2/5 so that the hole of E(k, t) is filled in infinite

time with E(k, t)→ k2 at any fixed k as t→∞.

5. Numerical simulations

A priori, there is no guaranty that the found self-similar solution is stable and that

it is reached asymptotically for large time when an initial value problem is considered.

Establishing these properties analytically is a hard task. However, numerical simulations

could provide us with a reliable tool to study stability and asymptotic behaviour.

We have simulated numerically the Leith model (1) in which we have included a

forcing term so that the system has a non-zero steady state,

∂E

∂t
=

∂

∂k

(
k11/2

√
E
∂

∂k

(
E

k2

))
− νk2E + f , (30)

where ν = 4 × 10−5 and f ≡ f(k) is a time-independent forcing. A logarithmic

subdivision of the k-axis is used with ki = 2i/10 and i an integer varying between 0

and 249. The forcing excites modes i = [119−11, 119+11] which corresponds to forcing

wavenumbers kf ∈ [1783, 8192]. The forcing is f(k) ∼ exp(−k2i /k2119) for i ≥ 119 and

f(k) ∼ exp(−k2119/k2i ) for i ≤ 119. A Crank-Nicholson numerical scheme is implemented

for the nonlinear term and an adaptive time-step is used [16].

Figure 2 shows the time evolution (every 2000 time-steps) of the energy spectrum.

We clearly see the shape of the forcing because it gives its imprint to the initial

spectrum (in magenta). The Kolmogorov spectrum k−5/3 is quickly formed (it appears

at t = 2 × 10−6) while the k2 scaling needs much longer time to develop: at the final

time of the simulation, t = 2× 10−3, the thermodynamics solution spans over a decade

but it still continues to extend toward the smallest wavenumbers. Note that when the

Kolmogorov spectrum is formed the energy of the system is around
∫
E(k)dk ∼ 3000

and at the end of the simulation it is around 7000, which means that large portion of

the energy is accumulating in the thermodynamic part.

Figure 3 shows the temporal evolution of the spectral energy flux ε(t, k) during the

same time period as for the energy spectrum shown in Figure 2. We clearly see that the

Kolmogorov spectrum corresponds to a constant positive flux (ε ∼ 4×109). Interestingly,

this plot reveals that the plateau is formed at t = 3× 10−6, which is slightly later than

the time needed to form the k−5/3 spectrum. As expected, the thermodynamics solution

corresponds to a wavenumber range with nearly zero flux (we find ε ∼ 10−43).

As we see, the thermodynamic spectrum does form in the forced-dissipated Leith

model in the range of small wavenumbers at large times and, therefore, the found

analytical self-similar solution is stable and provides correct large-t, small-k asymptotics

for the initial value problem. This inviscid solution appears to be insensitive to the

presence of viscosity if ν is small enough so that the viscous effects are strong at high

wavenumbers only.
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Figure 2. Time evolution of the energy spectrum E(k, t). The Kolmogorov k−5/3

spectrum is quickly formed while the large-scale k2 scaling needs a much longer time.

Figure 3. Time evolution of the spectral energy flux ε(k, t). The Kolmogorov k−5/3

spectrum (see Fig. 2) corresponds to a positive flux while the large-scale k2 scaling

corresponds to a zero flux.

6. Conclusions

We have studied the focusing problem for the inviscid Leith model representing a

propagation of the hydrodynamic turbulence spectrum E(k, t) from a forcing scale

towards small wave numbers k. In the Fourier space, this process corresponds to

shrinking of an initial ”hole” in the spectrum as time proceeds. This problem was
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Figure 4. Time evolution of the energy E(t) =
∫
E(k, t)dk.

Figure 5. Time evolution of kf (t).

considered in a self-similarity formulation. The second-kind self-similarity was shown to

be broken: the correct setup must be built using self-similarity of the third kind for which

the similarity coefficients are fixed by boundary conditions arising from a preceding or a

subsequent self-similar stage. Specifically in the present case, the similarity coefficients

are determined by the subsequent steady-state thermodynamic spectrum E(k) = k2,

which dictates the boundary condition F (η) → η2 at η → ∞. This condition selects
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the Saffman scaling [14]. The condition at the left boundary, η = 1, is that both the

spectrum and the energy flux turn into zero: this corresponds to a shrinking hole. We

show that the shrinking time is infinite, and that there is a unique self-similar solution

of the focusing problem satisfying the specified boundary conditions.

Using numerical simulations of the forced-dissipated Leith model, we have

confirmed stability of our analytical self-similar solution and the fact that it is reached

asymptotically for large time.

Formation of the thermodynamic spectrum E(k) = k2 upscale of the forcing scale

is a rather universal phenomenon common for most reasonable turbulence models. It

was also observed in direct numerical simulations (DNS) of the forced Navier-Stokes

equations in [15], the authors of which interpreted the result in terms of equivalence

of the statistics upscale of the forcing to the equilibrium statistics in a truncated Euler

equation. However, the details of the evolution towards such an equilibrium state have

not yet been studied using DNS of the Navier-Stokes equations, and such a study would

be an interesting subject for future research.
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d’Azur, France (code 180 089 013 01682).

Bibliography

[1] Leith C 1967 Diffusion Approximation to Inertial Energy Transfer in Isotropic Turbulence Phys.

Fluids 10 1409 http://dx.doi.org/10.1063/1.1762300

[2] Grebenev V N, Nazarenko S V, Medvedev S B, Schwab I V and Chirkunov Y A 2014 Self-similar

solution in Leith model of turbulence: anomalous power law and asymptotic analysis J. Phys.

A: Math. Theor. 47 2 025501

[3] Chirkunov Y A, Nazarenko S V, Medvedev S B and Grebenev V N 2014 Invariant solutions for

the nonlinear diffusion model of turbulence J. Phys. A: Math. Theor. 47 18 185501

[4] Grebenev V N, Griffin A, Medvedev S B and Nazarenko S V 2016 Steady states in Leith’s model

of turbulence Phys A: Math. Theor. 49 36 365501

[5] Nazarenko S V and Grebenev V N 2017 Self-similar formation of the Kolmogorov spectrum in the

Leith model of turbulence J. Phys. A: Math. Theor. 50 3 035501

[6] Connaughton C and Nazarenko S 2004 Warm cascade and anomalous scaling in a diffusion model

of turbulence Phys. Rev. Letters 92 4 044501–506

[7] Connaughton C and Nazarenko S 2004 A model equation for turbulence, arXiv:physics/0304044

[8] Clark T T, Rubinstein R and Weinstock J 2009 Reassessment of the classical turbulence closures:

the Leith diffusion model J. Turbulence 10 1–23

[9] Zeldovich Ya B and Raizer Yu P 1966 Physiscs of Shock-waves and High-Temperature Phenomena

vol 2 (Academic Press) p 157

[10] Galtier S, Nazarenko S V, Newell A C and Pouquet A 2000 A weak turbulence theory for

incompressible MHD J. Plasma Phys. 63 447–488

[11] Nazarenko S V Wave turbulence 2011 (Berlin: Springer)



The focusing problem 13

[12] Cichowlas C, Bonaiti P, Debbasch F and Brachet M 2005 Effective dissipation and turbulence in

spectrally truncated Euler flows Phys. Rev. Lett. 95 26 264502

[13] Vázquez J L 2007 The Porous Medium Equation. Mathematical Theory (Oxford: Oxford Science

Publications) p 624

[14] Saffman P G 1967 Note on Decay of Homogeneous Turbulence Phys. Fluids 10 1349–1349

[15] Dallas V, Fauve S and Alexakis A 2015 Statistical equilibria of large scales in dissipative

hydrodynamic turbulence, Phys. Rev. Lett. 115 20 204501

[16] Galtier S, Nazarenko S V, Buchlin E and Thalabard S 2019 Nonlinear diffusion models for

gravitational wave turbulence Physica D in press; arXiv:1809.07623v1


