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The	 spontaneous	 rise	of	 a	wetting	 liquid	 in	a	 capillary	 tube	 is	 classically	described	by	

Washburn’s	law:	the	meniscus	height	increases	as	the	square	root	of	time,	a	law	singular	

at	short	time,	where	the	velocity	diverges.	We	focus	here	on	the	early	dynamics	of	the	

rise	of	viscous	liquids,	and	report	an	initial	regime	of	constant	velocity	contrasting	with	

Washburn’s	prediction.	This	 is	explained	by	considering	the	contact	 line	friction	at	the	

liquid	front,	and	confirmed	by	the	influence	of	prewetting	films	on	the	tube	walls,	whose	

presence	 is	 found	 to	 speed	 up	 the	 rise	 and	 more	 generally	 to	 provide	 an	 ideal	

framework	for	quantifying	the	friction	at	contact	lines.		
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Washburn’s	 law	 classically	 describes	 the	 dynamics	 of	 wetting	 liquids	 inside	 porous	

media	[1].	It	predicts	that	the	position	of	the	liquid	front	increases	as	the	square	root	of	

time,	as	long	as	gravity	can	be	neglected.	As	also	discussed	by	Bell	and	Cameron	[2],	and	

by	Lucas	[3],	this	law,	first	established	in	the	simple	geometry	of	capillary	tubes,	results	

from	a	balance	between	the	driving	capillary	force	and	viscous	friction	along	the	walls.	

Denoting	 the	meniscus	 position	 and	 velocity	 as	 z	 and	𝑧,	 the	 tube	 radius	 as	 r	 and	 the	

liquid	surface	tension	and	viscosity	by	𝛾	and	𝜂,	these	two	forces	respectively	scale	as	𝛾r	

and	𝜂z𝑧,	whose	balance	leads	to	Washburn’s	equation:	

	
	

𝑧 𝑡  ~  
𝛾𝑟𝑡
𝜂

!/!
	 (1)	

	
In	 the	 case	 of	 partial	wetting	 (characterized	by	 the	 contact	 angle	𝜃0		 >	 0	made	by	 the	

liquid	on	the	tube	wall),	the	driving	force	is	weakened	by	a	factor	cos 𝜃0,	which	yields	a	

dynamics	 slowed	 down	 by	 a	 factor	 cos1/2 𝜃0,	 compared	 to	 eq.	 (1).	 Washburn’s	 law	 is	

famous	for	many	reasons:	(1)	Beyond	the	simple	case	of	tubes,	it	generally	describes	the	

impregnation	 of	 much	 more	 complex	 media	 such	 as	 paper,	 fabrics,	 sand	 and	 rough	

surfaces	 [4–7].	 (2)	 It	 allows	 in	 principle	 to	 deduce	 a	 characteristic	 radius	 of	 invasion	

from	 impregnation	 dynamics,	 or,	 if	 the	 latter	 quantity	 is	 already	 known,	 the	 contact	

angle	 inside	 the	 porous	 medium	 [8–9].	 (3)	 It	 clearly	 highlights	 the	 efficiency	 of	

impregnation	 at	 small	 distance	 z,	 as	 qualitatively	 observed	 when	 a	 liquid	 (ink	 for	

instance)	contacts	porous	structures	(paper	for	instance).	

	

The	dynamics	at	short	time	and	short	scale	must	be	questioned,	since	eq.	(1)	predicts	an	

unphysical	 diverging	 velocity	 in	 this	 limit.	 As	 first	 discussed	 by	 Bosanquet	 [10],	 the	

viscous	 dynamics	 is	 preceded	 by	 an	 inertial	 regime	 during	which	 liquid	 is	 brought	 in	

motion.	Neglecting	the	liquid	viscosity	and	the	influence	of	gravity,	the	dynamics	in	this	

regime	 results	 from	 a	 balance	 between	 inertia	 (scaling	 as	𝜌𝑟!𝑧!)	 and	 capillary	 force	

(scaling	as	𝛾r),	which	yields	a	constant	meniscus	speed	c	~	(𝛾/𝜌𝑟)!/!	[11],	a	velocity	of	

typically	 10	 cm/s	 in	 millimetric	 tubes.	 The	 transition	 towards	 the	Washburn	 regime	

happens	when	both	dynamics	cross,	that	is,	after	a	time	𝜏	~	𝜌r 2/𝜂 [12].	This	time	can	be	

reinterpreted	as	the	time	necessary	for	the	viscous	boundary	layer	to	diffuse	across	the	

tube	width,	and	it	is	easily	observable	for	wide	tubes	(at	least	millimetric,	or	even	larger	

as	found	in	microgravity	environment)	and	for	liquids	of	low	viscosity	such	as	water	and	
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light	oils.	Conversely,	we	expect	 the	 inertial	 regime	 to	be	almost	 invisible	 in	very	 thin	

tubes	and/or	for	viscous	liquids.	In	a	millimetric	tube,	for	instance,	with	an	oil	300	times	

more	viscous	than	water,	the	time	𝜏	is	3	ms,	and	the	corresponding	spatial	extension	c𝜏	

is	 only	 a	 fraction	 of	 a	 millimeter	 –	 making	 this	 regime	 undistinguishable	 from	 the	

establishment	of	the	meniscus	at	the	onset	of	the	rise.		

	

However,	the	beginning	of	the	rise	of	a	viscous	wetting	liquid	in	a	millimetre-wide	tube	

is	 far	 from	obeying	Washburn’s	 law.	The	experiment,	sketched	in	figure	1a,	consists	 in	

following	the	meniscus	height	z	(defined	between	the	bath	level	and	the	bottom	of	the	

rising	meniscus)	after	making	a	vertical	glass	tube	(inner	radius	r	=	0.5	mm)	contact	a	

bath	of	viscous	silicone	oil	(𝛾	=	21	mN/m,	𝜌	=	980	kg/m3,	𝜂	=	350	mPa.s	and	𝜃0		=	0).	As	

seen	 in	 figure	1b	(red	curve),	 the	rise	 is	slow	(two	minutes	are	necessary	to	reach	the	

equilibrium	 height	 of	 8	 mm),	 but	 it	 constantly	 deviates	 from	 Washburn’s	 law.	 The	

beginning	 of	 the	 rise,	 specifically,	 is	 observed	 to	 take	 place	 at	 a	 finite	 and	 constant	

velocity	(of	~1.7	mm/s)	in	contradiction	with	the	prediction	of	eq.	(1).	This	observation	

is	confirmed	by	plotting	the	same	data	in	logarithmic	scales	(inset	in	the	figure):	the	first	

second	of	the	rise	indeed	obeys	a	scaling	law	with	exponent	1,	as	highlighted	by	a	dotted	

line,	confirming	the	existence	of	a	regime	of	constant	speed	at	short	time.	Interestingly,	

Washburn	briefly	noted	in	his	original	paper	that	he	needed	to	precoat	the	tubes	with	a	

thin	 liquid	 film	 to	 get	 a	 satisfactory	 agreement	 between	 data	 and	 theoretical	

expectations.	Such	films	can	be	deposited	by	moving	a	slug	of	oil	inside	the	tube	with	a	

well-defined	 velocity,	 allowing	 us	 to	 control	 the	 film	 thickness	 [13]	 (see	 the	

supplementary	 information).	 If	 performing	 the	 same	 capillary	 rise	 experiment	 as	

previously,	yet	 in	a	 tube	precoated	by	a	 film	of	silicone	oil	with	a	 thickness	ε	=	24	µm	

(much	smaller	than	the	tube	radius	r),	we	observe	an	impressively	enhanced	dynamics	

of	the	rise	at	all	scales	(blue	data	in	figure	1b):	after	one	second,	the	meniscus	is	about	

twice	higher	than	in	a	dry	tube,	and	the	final	equilibrium	is	reached	in	about	40	s,	that	is,	

three	times	quicker.	However,	the	same	data	plotted	in	logarithmic	scales	reveal	that	the	

very	beginning	of	the	rise	still	(yet	more	briefly)	takes	place	at	a	constant	speed,	but	this	

speed	 is	 now	 7.2	mm/s,	 larger	 by	 a	 factor	 ~4	 than	 previously.	 In	 both	 cases,	 the	

Washburn	 regime	 is	 not	 observed,	 because	 the	 linear	 rise	 brings	 the	 meniscus	 at	 a	

height	 such	 that	 gravity	 becomes	 significant,	 another	 source	 of	 deviation	 from	eq.	 (1)	

where	it	is	neglected.	This	can	be	circumvented	by	using	a	thinner	tube,	as	reported	in	
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figure	1c,	where	we	report	the	rise	of	a	silicone	oil	with	viscosity	𝜂	=	50	mPa.s	in	a	tube	

twice	thinner	(r	=	0.23	mm)	either	dry	(red	data)	or	prewet	by	a	film	of	thickness	𝜀	=	4	

µm	 (blue	 data).	 Dynamics	 remains	 quicker	 in	 the	 prewet	 tubes,	 but	 the	 log-log	 plot	

displayed	in	the	inset	reveals	that	the	regime	of	constant	speed	has	significantly	shrunk	

in	the	dry	case,	and	even	became	invisible	in	the	wet	case,	so	that	Washburn’s	law	(the	

dashed	line	with	slope	1/2	drawn	in	the	figure)	can	now	be	observed.	

	

	

 
Figure	1.	Rise	dynamics	in	vertical	tubes	invaded	by	a	viscous	wetting	oil.	Tubes	are	either	dry	(red	data)	
or	prewet	(blue	data).	(a)	Sketch	of	the	experiment	with	a	wetting	liquid.	Blue	and	white	represent	liquid	
and	air,	respectively.	The	meniscus	at	a	height	z(t)	has	an	apparent	contact	angle	𝜃.	The	origin	of	time	is	
taken	when	the	tube	contacts	the	liquid.		(b)	The	oil	viscosity	𝜂 is 350 mPa.s, the tube	radius	is	r	=	0.5	mm	
and	the	thickness	of	the	prewetting	film	is	𝜀	=	24	µm.	The	insert	shows	the	data	in	logarithmic	scales,	and	
both	dotted	lines	have	a	slope	1.	(c)	Same	experiment	with	𝜂 = 50 mPa.s, r	=	0.23	mm	and	𝜀	=	4	µm.	In	the	
logarithmic	plot	of	the	insert,	the	prewet	tube	now	provides	a	Washburn	regime	with	slope	1/2	(dashed	
line)	while	the	initial	dynamics	in	the	dry	tube	remains	linear	(slope	1,	dotted	line).	
	

	

Our	experiments	 thus	 show	 that	dry	 tubes	of	millimetre-size	diameter	are	 invaded	by	

viscous	 liquids	 at	 a	 constant	 velocity	 V,	 which	 corrects	 the	 singular	 character	 of	

Washburn’s	law	at	short	time,	yet	without	influence	of	inertia	–	always	negligible	at	the	

scale	 of	 our	 experiments.	 This	 regime	 appears	 more	 clearly	 in	 the	 case	 of	 dry	 tubes	

(where	 it	 concerns	 typically	 the	 first	 millimetre	 of	 the	 rise),	 even	 if	 it	 can	 also	 be	

observed	at	smaller	scales	in	prewet	tubes,	which	makes	us	suspect	a	viscous	origin	for	

the	effect.	This	is	confirmed	in	figure	2,	where	we	plot	the	meniscus	velocity	V	at	short	

time	(deduced	from	plots	such	as	figure	1)	as	a	function	of	the	oil	viscosity	𝜂	varied	by	a	

(a) (b) (c)
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factor	20,	between	50	mPa.s	and	1000	mPa.s,	keeping	the	surface	tension	at	a	constant	

value	𝛾 = 21.0 ± 0.2 mN/m.	

 
 

 
	
Figure	2.	Initial	velocity	V	of	a	viscous	wetting	liquid	invading	a	capillary	tube	as	a	function	of	its	viscosity	
𝜂.	The	surface	tension	of	the	silicone	oils	used	in	this	experiment	is	𝛾	=	21.0	±	0.2	mN/m	and	the	colours	
indicate	the	radius	of	the	tube.	The	black	line	is	a	fit	with	slope	−1.	
 

	

The	meniscus	velocity	V	decreases	as	the	oil	becomes	more	viscous,	from	~11	mm/s	(for	

𝜂	=	50	mPa.s)	to	~0.5	mm/s	(for	𝜂	=	1000	mPa.s).	The	corresponding	Reynolds	numbers	

defined	 at	 the	 scale	 of	 the	 tubes,	 Re	 =	 𝜌Vr/𝜂,	 range	 between	 5.10−4	 and	 10−1,	 which	

confirms	 that	 inertia	 can	 be	 neglected.	 Conversely,	 the	 logarithmic	 scales	 in	 figure	 2	

evidence	that	V	decreases	as	1/𝜂,	confirming	that	the	capillary	action	is	opposed	in	this	

regime	by	a	viscous	force.	Interestingly,	data	obtained	at	a	given	viscosity	with	tubes	of	

radii	 varying	 between	 0.13	 and	 0.70	mm	 nearly	 superimpose,	 which	 suggests	 a	 local	

viscous	 dissipation	 instead	 of	 the	 global	 one	 assumed	 in	 Washburn’s	 law	 (eq.	 1).	

Dissipation	 indeed	 also	 happens	 close	 to	 the	 moving	 contact	 line,	 at	 the	 scale	 of	 the	

meniscus,	 whose	 motion	 is	 accompanied	 by	 a	 deformation	 so	 as	 to	 form	 a	 dynamic	

contact	angle	𝜃(V),	as	sketched	in	figure	1a.	Illuminated	with	white	light	from	below,	the	

meniscus	 is	 observed	 in	 the	 time-lapse	 photograph	 of	 figure	 3a	 to	 rise	 at	 constant	

velocity	 with	 a	 flattened	 shape	 whose	 stationary	 nature	 is	 evidenced	 by	 its	 identical	

apparent	thickness.	We	subtracted	in	this	image	the	outside	meniscus	that	may	mask	the	

field	 of	 interest,	 and	 highlighted	 the	 tube	walls	with	 red	 lines.	 At	 larger	 scale,	 that	 is,	

later	(figure	3b),	the	meniscus	slows	down	markedly	(the	constant	spacing	in	the	figure	
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is	 obtained	 by	 increasing	 the	 time	 interval	 between	 successive	 images)	 and	 it	

simultaneously	thickens,	a	consequence	of	the	relaxation	of	the	dynamic	contact	angle	θ	

towards	 its	 equilibrium	 value	𝜃0	=	0.	 Hence,	 the	meniscus	 shape	 in	 figures	 3a	 and	 3b	

allows	us	to	distinguish	the	two	successive	viscous	regimes	of	invasion.	

 

 
Figure	3.	(a)	Time-lapse	evolution	of	a	viscous	oil	(𝜂	=	50	mPa.s)	rising	in	a	dry	glass	tube	(r	=	0.23	mm).	
The	 picture	 represents	 the	 meniscus	 at	 t	=	36,	 48,	 60	 and	 72	ms	 (from	 bottom	 to	 top).	 The	 outside	
meniscus	was	masked	for	clarity.	(b)	Time-lapse	evolution	of	a	viscous	oil	(𝜂	=	350	mPa.s)	rising	in	a	glass	
tube	 (r	=	0.7	mm).	The	picture	 shows	 the	meniscus	at	 t	=	1.4,	4.2,	11	and	92	s	 (from	bottom	 to	 top).	 In	
figures	 (a)	 and	 (b),	 the	 light	 source,	 placed	 under	 the	 bath,	 highlights	 the	 curvature,	 which	makes	 the	
meniscus	appear	in	white.		
	
 

In	 the	 linear	 regime,	 the	 local	 balance	 of	 forces	 determines	 θ,	 which	 in	 turn	 sets	 the	

meniscus	velocity	V	–	both	found,	consistently,	to	be	constant	in	this	regime	(figure	3a).	

Approximating	 the	 contact	 line	 region	 by	 a	 wedge	 with	 (small)	 apparent	 angle	 𝜃,	 as	

sketched	 in	 figure	 4a,	 the	 shear	 stress	 scales	 as	𝜂V/𝜃x,	where	 x	 is	 the	 distance	 to	 the	

wedge	tip.	Integrating	the	latter	formula	with	respect	to	x	and	along	the	tube	perimeter	

yields	a	friction	Fw	≈	𝜂rV/𝜃	ln	r/𝜀,	where	the	macroscopic	and	microscopic	cutoff	lengths	

r	and	𝜀	in	the	logarithmic	term	respectively	correspond	to	the	meniscus	size	and	to	the	

thickness	of	the	film	on	which	the	wedge	advances	[14].	The	way	the	dynamic	angle	𝜃	in	

Fw	depends	on	V	is	classically	obtained	by	balancing	Fw	by	the	capillary	force	Fc	≈	𝛾r	(1	−	

cos	𝜃)	 opposing	 the	 viscous	 deformation	 of	 the	wedge.	 At	 small	 angle	𝜃,	 this	 balance	

yields	Cox-Voinov-Tanner	law	[15–17],	that	is,	𝜃3	≈	𝜂V/𝛾	ln	r/𝜀,	which	makes	explicit	the	

viscous	 friction	 in	 the	 wedge,	 Fw	 ≈	 r	𝛾1/3(𝜂V	 ln	 r/𝜀)2/3,	 and	 highlights	 its	 non-linear	

character	in	velocity.	

1 mm

(b)(a)

-
2 mm-
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Figure	4.	Simplified	(a)	and	more	realistic	(b)	shapes	of	a	wetting	meniscus	advancing	at	a	speed	V	in	a	
tube	of	radius	r.	𝜀 denotes	the	thickness	of	the	film	on	which	the	meniscus	progresses,	θ	 is	the	apparent	
(dynamic)	contact	angle	and	x	is	the	vertical	distance	from	the	tip	of	the	wedge.	
 

 

We	 have	 two	 ways	 of	 expressing	 the	 macroscopic	 balance	 of	 forces	 governing	 the	

dynamics	of	the	rising	column.	(1)	On	the	one	hand,	a	consequence	of	the	wedge	friction	

Fw	is	to	modify	the	Laplace	pressure	responsible	for	the	rise,	owing	to	the	generation	of	

a	dynamic	contact	angle	𝜃	 at	 the	 front,	 as	 sketched	 in	 figure	1a.	The	modified	Laplace	

force	 𝛾r	cos 𝜃	 can	 then	 be	 balanced	 by	 the	 Poiseuille	 friction	 in	 the	 column	 FP	 ≈	 𝜂z𝑧,	

which	yields	 an	equation	 for	 the	 rise	dynamics.	 (2)	On	 the	other	hand,	 an	elementary	

jump	of	the	stationary	meniscus	by	a	quantity	dz	in	figure	4a	suppresses	a	surface	area	

of	 liquid	 scaling	 as	 rdz,	 corresponding	 to	 a	decrease	of	 surface	 energy	𝛾rdz	 –	 hence	 a	

driving	force	scaling	as	𝛾r.	Conversely,	we	have	to	consider	two	viscous	frictions,	that	in	

the	 wedge,	 Fw,	 and	 that	 in	 the	 column,	 FP	 ≈	 𝜂z𝑧,	 and	 the	 force	 balance	 on	 the	 liquid	

column	 can	 be	written:	 γr	≈	Fw	+	FP.	 Since	 the	wedge	 friction	 is	 itself	 balanced	 by	 the	

capillary	force	Fc	≈	𝛾r	(1	−	cos	𝜃),	we	recover	the	expression	derived	in	(1).	

	

Assuming	that	the	wedge	friction	dominates	the	global	Poiseuille	 friction	at	short	time	

(Fw	 >>	FP),	 the	balance	of	 forces	becomes:	𝛾r	 ≈	Fw	≈	r	𝛾1/3(𝜂V	ln	r/𝜀)2/3,	which	provides	

the	initial	meniscus	velocity:	

	

	 𝑉 ≈
𝛾

𝜂 ln 𝑟/ε  (2)	
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A	dominant	dissipation	 in	 the	meniscus	 leads	 to	a	 constant	velocity	of	propagation,	 in	

agreement	with	 the	observations	 in	 figures	1,	 2	 and	3.	 For	 an	 initially	dry	 tube	 and	 a	

wetting	liquid,	the	film	is	typically	a	precursor	film	propagating	ahead	of	the	meniscus,	

hence	with	a	molecular	thickness	(𝜀	≈	a	≈	1	nm)	[18].	In	such	conditions,	the	coefficient	

ln	r/𝜀	ranges	from	12	to	13	as	the	tube	radius	varies	between	0.13	mm	and	0.7	mm	and	

its	 logarithmic	nature	makes	it	quite	insensitive	to	the	size	chosen	for	its	thickness	(in	

the	range	of	a	few	Angströms).	This	term	lowers	the	visco-capillary	speed	𝛾/𝜂	in	eq.	(2)	

by	about	one	order	of	magnitude.	For	a	silicone	oil	with	a	viscosity	𝜂	=	350	mPa.s,	our	

scaling	argument	predicts	V	to	be	typically	5	mm/s,	comparable	(yet	slightly	larger)	than	

reported	in	figures	1b	and	2.	

	

Equation	(2)	also	explains	why	the	meniscus	will	 initially	move	faster	in	prewet	tubes.	

The	prewetting	film	can	be	seen	as	a	thick	precursor	of	the	meniscus,	which	lowers	the	

logarithmic	factor	and	thus	increases	the	speed.	For	a	film	whose	thickness	is	typically	

20	µm,	the	term	ln	r/𝜀	is	reduced	by	a	factor	4	(compared	to	ln	r/a),	which	multiplies	the	

speed	V	by	the	same	amount,	in	agreement	with	the	observations	in	figure	1.	In	any	case,	

the	velocity	V	remains	much	smaller	than	the	inertial	velocity	(𝛾/𝜌r)1/2		≈	10	cm/s,	which	

underlines	once	again		the	negligible	role	of	inertia	in	our	experiments.	

	

The	 range	 of	 the	 viscous	 linear	 regime,	 before	 the	Washburn	 behavior,	 can	 finally	 be	

discussed.	The	global	Poiseuille	force	FP	≈	𝜂z𝑧	is	negligible	compared	to	the	line	friction	

Fw	 ≈	r	𝛾1/3(𝜂V	ln	r/𝜀)2/3	 as	 long	as	 the	 travelled	distance	z	 is	 smaller	 than	L	≈	r	ln	r/𝜀,	 a	

length	 sensitive	 to	 the	 state	 of	 the	 tube	 (dry	 or	 prewet),	 and	 typically	 of	 millimetric	

amplitude,	as	found	experimentally	(insert	in	figure		1b).	L	is	roughly	proportional	to	r,	

which	explains	why	the	 linear	regime	 is	significantly	 longer	 in	 figure	1b	than	 in	 figure	

1c.	Moreover,	 these	 arguments	 justify	why	Washburn	 did	 not	 observe	 this	 regime,	 in	

experiments	where	tubes	were	thin	(r	=	0.15	mm)	and	prewet	–	making	the	distance	L	

smaller	than	here	by	one	order	of	magnitude.	More	generally,	the	radius	r	is	micrometric	

in	many	 experiments	 reported	 in	 the	 literature	 (especially	 those	with	 porous	media),	

which	makes	the	linear	viscous	regime	macroscopically	unobservable.	

	

We	expect	from	eq.	(2)	an	initial	capillary	number	Ca	=	𝜂V/𝛾	≈	1/	ln	r/𝜀,	ranging	between	

0.07	and	0.09,	about	3	times	larger	than	the	value	measured	in	figure	2	(Ca	=	0.03).	We	
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can	 describe	 the	 moving	 meniscus	 in	 a	 more	 accurate	 way	 (figure	 4b).	 As	 originally	

performed	by	Voinov	 [16],	 it	 is	 obtained	 by	 balancing	 the	 capillary	 pressure	with	 the	

normal	 stress	 exerted	 by	 the	 flow	 on	 the	 free	 surface.	 The	 bending	 of	 the	 interface	

induces	 a	 Laplace	 pressure	 in	 the	 fluid	 pc	=	𝛾	sin	𝛼	d𝛼/dy	 where	 𝛼(y)	 is	 the	 angle	

between	the	liquid-gas	interface	and	the	solid	at	a	distance	y	from	the	tube	walls	(figure	

4b).	As	shown	by	Moffatt	[19],	the	motion	in	a	 liquid	wedge	induces	a	pressure	on	the	

free	surface	pf		=	2𝜂V/y	sin2𝛼/(𝛼	− sin𝛼	cos𝛼)	(see	also	the	SI).	The	balance	pc	=	pf	can	be	

integrated	between	𝛼	=	0	for	y	=	𝜀	(at	the	top	of	the	meniscus)	and	𝛼	=	𝜃 for y = h, the 

local thickness of the dynamical meniscus. We deduce an equation relating 𝜃 and h for a 

given velocity V:	

 

	
𝑉 =  

𝛾
𝜂 ln ℎ/ε   

α− sinα cosα
2 sinα  dα

!

!
	 (3)	

 

In the limit of small 𝜃, eq. (3) reduces to the classical Cox-Voinov law: 𝜃3	≈	9𝜂V/𝛾	ln		h/𝜀, 

an approximation that holds up to 𝜃	<	3𝜋/4 [17].  In the geometry of a tube, we can plug 

the condition 𝜃(r) = 𝜋/2 in eq. (3), which provides an analytical expression for the 

velocity V: 

 

	
𝑉 𝜀 ≈  

𝜋!

72  
𝛾

𝜂 ln 𝑟/ε 	 (4)	

 

We recover the scaling expression (2) with a numerical coefficient ∼0.43, so that the 

capillary number 𝜂V/𝛾 of the initial rise is expected to range between 0.032 (for r = 0.70 

mm) and 0.037 (for r = 0.13 mm), as typically observed in figure 2. In these 

experiments, the	tube	radius	is	roughly	varied	by	a	factor	5,	which,	according	to eq. (4),	

only	modifies	the	rising	velocity	by	15%,	– in agreement with the very small variations 

observed in figure 2 and found to highlight the local character of the dissipation in this 

regime. Put	together,	eqs.	(3)	and	(4)	yield	𝜃 ≈ 𝜋/2 (ln h/𝜀 / ln r/𝜀)1/3, which depicts	that	

𝜃 quickly approaches 𝜋/2 even at small thicknesses h. For	instance,	we	expect	𝜃 ≈ 0.4𝜋 

for h = 1 µm	in	a	dry	tube	(𝜀 ≈ 1 nm)	with	radius	r	=	0.5	mm. Hence we understand the	

meniscus	flatness	observed	in	figure	3a to	be	a	hallmark	of	the	early	viscous	regime.		
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We can be more quantitative by looking at the way the meniscus velocity depends on the 

thickness 𝜀 of the prewetting film, which is expected from eq. (4) to be a	 logarithmic	

variation.	The	thickness	𝜀	can	be	varied	much	more	broadly	than	the	tube	radius,	firstly	

between	 dry	 tubes	 (for	 which	we	 expect	 a	 nanoscopic	 precursor	 film	 𝜀	 ≈	 1	 nm)	 and	

prewet	 tubes	 (𝜀	≈	10	µm);	 secondly,	 in	 the	wet	 regime	where	𝜀	 can	be	easily	 tuned	by	

changing	 the	 inclination	 of	 the	 tube	 during	 precoating:	 by	 modifying	 the	 advancing	

speed	of	the	prewetting	slug,	we	could	vary	the	coating	film	thickness	𝜀	from	1 µm	to	24	

µm	 (see	 the	 SI).	 For	 each	 thickness	 𝜀,	we	 can	measure	 the	 initial	 speed	V	 of	 the	 rise,	

which	is	displayed	in	figure	5.		

	

	

 
	
Figure	5.	 Initial	velocity	V	of	a	silicone	oil	(𝜂 = 350 mPa.s,	𝛾 = 21 mN/m)	rising	 in	a	tube	of	radius	r = 0.5 

mm	 as	 a	 function	 of	 the	 thickness	 𝜀	 of	 the	 oil	 film	 on	 which	 the	 meniscus	 rises.	 Dots	 show	 the	
experimental	data	for	dry	(red)	and	prewet	(blue)	tubes.	Equation	3	is	drawn	with	a	black	line,	without	
any	adjustable	parameter.		
	
	

We	observe	two	main	facts:	(1)	The	meniscus	velocity	V	 jumps	from	1.7	mm/s	for	dry	

tubes	(red	dots)	to	3.7	mm/s	for	the	thinnest	coating	(𝜀	≈	1	µm),	in	agreement	with	our	

model	 that	predicts	 that	 the	velocity	 should	double	when	 the	 film	 thickness	 increases	

from	1	nm	(precursor	film	on	a	dry	tube)	to	1 µm	(prewetting	film).	(2)	The	meniscus	

velocity	 is	 a	 slowly	 increasing	 function	 of	 the	 coating	 thickness	 that	 roughly	 doubles	

when	multiplying	 the	coating	 thickness	by	a	 factor	of	25,	again	 in	 full	agreement	with	

expectations:	without	any	adjustable	parameter,	eq.	(3)	is	observed	in	figure	5	to	nicely	

describe	the	slow	rise	of	the	velocity	V	as	a	function	of	𝜀,	even	if	it	slightly	overestimates	
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it	 at	 large	𝜀.	 In	 this	 limit,	 as	 stressed	earlier,	 the	 range	of	 the	 viscous	 linear	 regime	 is	

limited,	and	the	accuracy	of	the	measurements	consequently	decreases:	the	transition	to	

the	Washburn	 regime	 occurs	 early,	which	might	 explain	why	 the	 observed	 velocity	 is	

found	in	this	limit	to	be	systematically	(slightly)	below	the	expectations.	

	

In	 summary,	we	 showed	 in	 this	 paper	 that	 the	 capillary	 rise	 of	 viscous	 liquids	 is	 first	

linear	 in	 time.	We	 interpreted	 this	observation	by	considering	 the	 friction	close	 to	 the	

moving	 contact	 line,	 whose	 local	 character	 explains	 the	 existence	 of	 an	 initial,	 finite	

speed	 of	 rise.	 This	 system	 offers	 a	 unique	 opportunity	 to	 test	 a	 specificity	 of	 the	

hydrodynamic	model	of	line	friction,	that	is,	its	celebrated	logarithmic	divergence	(eqs.	2	

and	3).	By	varying	the	thickness	of	the	film	on	which	the	meniscus	progresses,	we	could	

probe	 the	 logarithmic	 factor	 of	 Voinov’s	 model	 –	 a	 factor	 treated	 here	 not	 as	 an	

adjustable	 parameter	 (as	 it	 is	most	 often	 in	 the	 literature)	 but	 as	 a	 physical	 quantity	

whose	 content	 can	 be	 varied	 and	 tested.	 The	 agreement	 between	 the	model	 and	 the	

experiments	was	found	to	be	quantitative	–	a	valuable	information	in	a	field	where	such	

direct	observations	are	rare.	
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Supplementary	Information	
	
	
	
	
1.	Derivation	of	the	viscous	friction	in	the	meniscus		

	

Here,	we	 briefly	 recall	 the	 derivation	 by	Moffatt	 of	 the	 pressure	 exerted	 by	 a	 viscous	

fluid	moving	in	a	corner,	a	situation	sketched	in	figure	SI1	[18].	

	

	
Figure	SI1.	Sketch	of	a	liquid	wedge	(blue)	with	apparent	angle	𝛼	moving	on	a	solid	surface	(black	line)	at	
a	velocity	V,	in	the	reference	frame	of	the	wedge.	ur	and	u𝜃  are the fluid velocity in the coordinates (r, 𝜃).	
	

	

Denoting	the	wedge	angle	as	𝛼 and its	speed	as	V,	the	flow	is	described	in	the	reference	

frame	of	 the	moving	wedge	by	a	 stream	 function	𝜓,	 that	 verifies	ur	=	1/r(∂𝜓/∂𝜃),	 and	

u𝜃	=	-∂𝜓/∂r,	where	ur	and	u𝜃	are	the	radial	and	tangential	velocities	in	coordinates	(r,	𝜃).	

For	a	viscous	flow,	𝜓	 is	a	solution	of	the	Stokes	equation,	∇4𝜓	=	0,	whose	solutions	can	

be	decomposed	as	𝜓 = V r 𝜆 f(𝜃). Close	to	the	tip	of	the	wedge,	the	solutions	must	verify	

𝜆 = 1	to	obtain	a	non-trivial,	finite	velocity	for	r→0. The boundary conditions are ur = V 

and u𝜃 = 0 at the liquid-solid interface, and u𝜃 = 0 and a shear stress 𝜎𝜃r = 0 at the 

V

!
"

r u"

ur
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liquid-gas interface, which implies f’(0) = 1,  f(0) = 0, f(𝛼) = 0 and f’’(𝛼) − f(𝛼) = 0. 

Solving the Stokes equation with these boundaries conditions for 𝜓 = V r f(𝜃) yields: 	

 	

	
𝜓 =  𝑟𝑉

𝛼 sin𝜃 − 𝜃 sin𝛼 cos 𝜃 − α
𝛼 −  sin𝛼  cos𝛼 ≡ 𝑟𝑉.𝑔! 𝜃 	 (SI.1)	

 
	

where	we	introduced	the	function	g𝛼	for	clarity.	The	pressure	gradient	obeys	∇p	=	𝜂∆u,	

and	its	projection	along	the	radial	coordinate	is:	

 

	 !"
!"
=  𝜂 !!!!

!!!
+ !

!!
 !
!!!
!!!

+ !
!
!!!
!"
− !

!!
!!!
!!
− !!

!!
 = !"

!!
[𝑔!

! 𝜃 + 𝑔!! 𝜃 ]  		 (SI.2)	

	 	 	

Integrating	along	r	at	the	liquid-air	boundary	(𝜃	=	𝛼)	gives	the	pressure	induced	by	the	

fluid	motion	on	the	moving	interface:		

	

	 𝑝! 𝛼 =  − !"
!
𝑔!

! 𝛼 + 𝑔!! 𝛼 = !!!
!

!"#!!
!!!"#!  !"#!

  		 (SI.3)	

	

where	y	=	r/sin	𝛼 represents	the	local	thickness	of	liquid	as	defined	in	figure	4b.		

	

	

2.	Prewetting	the	tubes	
	

In	order	to	prewet	the	tube	walls,	we	place	a	slug	of	oil	with	centimetric	length	l	and	tilt	

the	tube	by	an	angle	𝛽 with respect to the vertical.	The	slug	reaches a steady state as its	

weight	~𝜌r2lg	cos	𝛽 is balanced by the viscous friction	~𝜂lU,	where	U	is	the	slug	velocity	

that	 can be controlled by the inclination of the tube (figure SI.2 (a)). For each 

experiment with prewet tubes, we measure the velocity U by timing the descent in tubes 

of known length. The	 thickness	 𝜀	 of	 the	 deposited	 film	 is	 then	 calculated	 using	

Bretherton’s	 formula	𝜀 = 1.34 r (𝜂U/𝛾)2/3 [13]. As seen in figure SI.2 (b), 𝜀 can also by 

deduced from the shortening ∆l	of	 the	 liquid	 slug	 along	 its	 descent.	 In	 this	 case,	 we	

measure	 𝜀 = r ∆l/2U∆t = 21 µm, in good agreement with the value expected using 

Bretherton’s formula, that is, 22 µm. When the drop reaches the end of the tube, we 
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remove it gently by absorbing the oil with a paper, and then perform the experiment 

presented in figure 1 with the other side of the tube.  

 

	

	

	
	

Figure	SI2.	(a)	Sketch	of	an	oil	slug	(in	blue)	of	initial	length	l	advancing	at	a	constant	speed	U	in	a	tube	of	
radius	r	inclined	by	an	angle	𝛽	to	the	vertical.	As	it	moves,	the	slug	deposits	a	liquid	film	of	thickness	𝜀 on 
the tube walls. (b)	Pictures	of	a	drop	advancing	in	a	tube	with	r	=	0.5	mm	and	𝛽 =	50°.	In	the	left	picture,	
the	drop	length	is	l	=	16.7	mm.	In	the	right	picture,	that	is,	∆t	=100s	later,	the	drop	has	progressed	by	∆z	=	
37	mm,	at	velocity	U	=	0.37	mm/s,	and	its	length	has	become	l	=	13.5	mm.	The	thickness	of	the	deposited	
film	deduced	from	the	slug	shortening	is	21	µm.	
 

 

3.	Meniscus	shape	and	macroscopic	contact	angle		
	

	
Eq. 3 is an implicit equation between h and 𝜃 = dh/dx that we can integrate using a 

numerical solver (such as ode15i with MATLAB). The shape of the meniscus depends on 

its velocity, whose initial value is given by eq. 4: V ≈ 𝛾𝜋3 / (72 ln r/𝜀). Later, the meniscus 

speed 𝑧 decreases during the rise because of bulk viscous dissipation and gravity. We 

sketch the meniscus in figure SI3, where we highlight the coexistence of dynamic and 

static parts drawn with solid and dashed lines, respectively. 
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Figure	SI3.	Sketch of the matching between the static and dynamical part of the meniscus. On the left part 
of the sketch, the static meniscus is a portion of sphere with radius of curvature r* while the dynamic 
meniscus is described in SI1. The matching between the two menisci is done for y = h and 𝛼 = 𝜃, when the 
two curvatures balance.	
	
	
The	 size	 h	 of	 the	 dynamical	 meniscus	 can	 be	 obtained	 from	 the	 matching	 of	 the	

curvatures	between	the	part	influenced	by	the	flow	and	the	static	part	of	the	meniscus	

(with	a	spherical	shape	of	radius	r*).	The	curvature	induced	by	the	flow	in	the	dynamical	

part	is	2Ca sin2(𝛼)/y(𝛼	−	cos	𝛼	sin 𝛼)	(see	SI1)	and	it	is	1/r* =  cos 𝜃/(r − h) in the static 

part of the meniscus, which yields: 

 

	 ℎ =  2 𝐶𝑎 𝑟 − ℎ !"#! !"#!
!!!"#!  !"#!

  		 (SI.4)	
	

Using	eq.	(3),	we	obtain	an	implicit	equation	between	h	and	𝜃	for	a	meniscus	advancing	

on	a	film	of	thickness	𝜀 in a tube of radius r.  

 

	
ℎ
!"!!
!!!

= !"#! !"#!
!!!"#!  !"#!

 !!!"#! !"#!
! !"#!

 dα!
!   		 (SI.5)	

 

Combined with eq. SI4, we obtain a relation between the angle 𝜃 and the thickness of the 

dynamical meniscus h with the velocity of the meniscus (figure SI4). 
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Figure	 SI4.	 (a)	 Thickness	 of	 the	 dynamical	 meniscus	 divided	 by	 the	 tube	 radius	 and	 (b)	 macroscopic	
contact	angle	as	a	function	of	the	meniscus	velocity	v	divided	by	the	initial	velocity	V	obtained	from	eq.	(4)	
for	a	meniscus	advancing	on	film	of	liquid	of	thickness	𝜀 = 1nm. 
 

 

The size of the dynamical meniscus h approaches r as the meniscus velocity 𝑧 is close to 

the initial velocity V (defined by eq. 4). As the meniscus slows down, the size h of the 

dynamical region rapidly becomes small whereas the angle 𝜃 is still rather large. For 

instance in a tube of radius 0.7 mm, when the velocity has decreased by a factor 2, the 

thickness of the dynamic meniscus is h ≈ 100 µm and the contact angle 𝜃 is above 𝜋/3 a 

consequence is that 𝜃 appears as a macroscopic contact angle, that depends on the 

meniscus velocity. We recover in figure SI5.a the shape of the dynamic meniscus with 

eq. 3 (y < h(𝑧), solid line), and the static part of curvature r* =  [r − h(𝑧)]/cos 𝜃(𝑧) 

(y > h(𝑧), dashed line). 

 

We can also retrieve the global behavior of the rising liquid column: the meniscus is 

driven by a force 2𝜋𝛾r	cos 𝜃(𝑧) and slowed down by viscous friction in the bulk (8𝜋𝜂z𝑧) 

and gravity (𝜋r2𝜌gz) which yields the differential equation SI.6: 

 

	 2𝑟𝛾 cos𝜃(𝑧)  =  8𝜂𝑧𝑧 + 𝑟!𝜌𝑔𝑧  		 (SI.6)	
 

We integrate equation SI.6 to recover the evolution of the meniscus height and compare 

the numerical integration to the data in figures SI5.b and SI5.c.  
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Figure	SI5.	(a)	Meniscus	shape	at	different	steps	of	the	rise	of	a	viscous	oil	(𝜂	=	350	mPa.s)	in	a	dry	tube	
(𝜀 = 1 nm)	 with	 radius	 r	 =	 0.7	mm	 (from	 bottom	 to	 top,	 t	=	0,	0.1,	0.2,	0.3,	0.4,	1.2,	3.5,	9.5,	75.5,	150	s,	
corresponding	 to	 a	 ratio	𝑧/V	 =	 1,	 0.96,	 0.89,	 0.76,	 0.51,	 0.24,	 0.09,	 0).	 The	 solid	 and	 dashed	 lines	
respectively	 represent	 the	meniscus	 part	 influenced	 by	 line	 friction	 and	 the	 static	 region	 (portion	 of	 a	
sphere).	 In	 (b)	 and	 (c),	 we	 compare	 the	 data	 from	 figures	 1.b	 and	 1.c	 (coloured	 lines)	 and	 the	
corresponding	 numerical	 integration	 (dashed	 black	 lines)	 of	 equation	 SI.6.	 (b)	 Silicone	 oil	 of	 viscosity	
𝜂 = 350 mPa.s	rising	in	capillary	tube	of	radius	r	=	0.5	mm	either	dry	(𝜀 = 1 nm) or prewet (𝜀 = 24 µm). 
(c)	Silicone	oil	of	viscosity	𝜂 = 50 mPa.s	rising	in	capillary	tube	of	radius	r	=	0.23	mm	either	dry	(𝜀 = 1 nm) 
or prewet (𝜀 = 4 µm). 
 
As	seen	in	the	figure	SI5,	the	numerical	 integration	(black	dashed	lines)	gives	accurate	

results	 for	both	dry	 (red)	and	prewet	 (blue)	 tubes,	without	any	adjustable	parameter.	

The	 small	 difference	 obtained	 between	 the	 numerical	 and	 experimental	 results	 could	

reflect	small	imperfections	of	the	preweting	or	precursor	film	thickness.	 
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