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Abstract. Recently, we characterized the complete phase transition diagram in the φ-Pe
parameter space for two models of active brownian particles in two dimensions. These models
are composed of hard disks and dumbbells, respectively, the former being isotropic and the latter
anisotropic. Here, we want to outline all the most significant features of these two paradigmatic
models and compare them.
Remarkably, the phase diagrams of the two models are affected differently by the introduction of
activity. Disks present a two-stage melting scenario from Pe=0 to about Pe=3, with a first order
phase transition between liquid and hexatic and a Berezinskii-Kosterlitz-Thouless transition
between hexatic and solid. At higher activities, the three phases are still observed, but the
transition between liquid and hexatic becomes a BKT transitions without a distinguishable
coexistence region. Dumbbells, instead, present a macroscopic coexistence between hexatically
ordered regions and disordered ones, over a finite interval of packing fractions, for all activities,
included Pe=0, without any observable discontinuity in the behavior upon increasing Pe.

1. Introduction
Active materials evolve out of thermal equilibrium because their constituents are able to extract
energy from the environment and inject it into the system, breaking detail balance [1]. Among
others, Active Brownian Particles (ABP) model constitutes a standard paradigmatic model to
study the impact of activity on soft matter [2, 3, 4]. For many of the active systems cited above,
self-propulsion is able to trigger a motility-induced phase separation (MIPS) between a low-
density gas-like phase and dense stable aggregates [5], reminiscent of the equilibrium liquid-gas
transition but in the absence of cohesive forces and without a thermodynamic framework to
support it [6, 7].

It is worth saying that the most intriguing phenomena induced by activity, as well as the most
promising experimental applications, concern systems confined in 2D layers. Being interested
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in further exploring aggregation phenomena and thermodynamic phases of passive and active
two-dimensional systems at any finite density [8, 9, 10] and trying to establish a reference
phase diagram for active matter, we naturally faced the long debated problem, still not fully
understood, of the melting transition in two dimensions. .

While phase transitions in 2D systems with short-range interactions do not involve any
spontaneous symmetry breaking mechanism [11], also ordered crystal-like phases have long been
known to exist [12]. A general scenario was proposed to explain solidification in two dimensions
by Halperin, Nelson and Young [13, 14, 15], according to which the ordering transition occurs
in two steps: one from the isotropic liquid to a hexatic phase, with short-range translational
order and quasi-long-range orientational order, and a second one from the hexatic to the
solid, characterized by quasi-long-range translational order and a true long-range hexatic one.
Both of this two transition are Berezinskii-Kosterlitz-Thouless (BKT) transitions, mediated
by the unbinding of topological defects. Very recently, numerical simulations [16, 17, 18] and
experimental results [19] reached a consistent understanding of the full melting transition for
hard disks, which is still a two-step transition, but with a first-order liquid-hexatic transition
and a BKT hexatic-solid one.

2. Methods
2.1. Active brownian disks
Active brownian disks constitute the simplest model of self-propelled brownian isotropic
particles. The stochastic equations of motion for N repulsively interacting hard disks of
mass m, self-propelled by an active force Fact constant in modulus and directed along ni =

Figure 1. (a) Phase diagram of active brownian disks evolving according to eq. 1. Figure
adapted from [20]. Symbols are used to point out the simulations performed. Black empty
circles are shown in the liquid phase, blue empty triangles in the hexatic one, orange empty
squares in the solid one. Filled symbols are used for the coexistence regions, circles for the
low-Pe liquid-hexatic coexistence, triangles for the MIPS. (b) Enlargement of the small activity
region across the coexistence. (c) Phase diagram of active brownian dumbbells (see eq. 2),
adapted from [21]. Filled blue triangles are used here in the whole connected coexistence region.
(d) Zoom of the coexistence region at low Pes.
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Figure 2. Color representation of the local hexatic parameter ψ6j for disks (left) and dumbbells
(right) and for cases given in the labels above the pictures. See the text for details about the
color code. The following regions of the phase diagram are shown for disks: (a) liquid-hexatic
coexistence at low Pe; (b) hexatic phase at intermediate Pe; (c) MIPS region at high Pe; and
for dumbbells: (d) coexistence region at low Pe; (e) MIPS at high Pe, in the middle of the
coexistence curve; (f) MIPS at high Pe, close to the lower limit of the coexistence region.

(cos θi(t), sin θi(t)), are:

mr̈i = −γṙi + Factni −∇∇∇i
N∑

j( 6=i)

U(rij) + ξξξi , θ̇i = ηi , (1)

with ri the position of the center of the i-th particle, rij = |ri − rj | the inter-particle
distance. The inter-particle potential is the short-range purely repulsive potential U(r) =
4ε[(σ/r)64 − (σ/r)32] + ε if r < σd = 21/32σ, and 0 otherwise, where σd is the diameter of
the disks.
The terms ξξξ and η are zero-mean independent Gaussian noises that verify 〈ξξξi(t)ξξξj(t′)〉 =
2γkBTδijδ(t − t′)1, 〈ηi(t) ηj(t′)〉 = 2Dθδijδ(t − t′), with Dθ = 3kBT/γσ

2
d. The units of length,

mass and energy are given by σd, m and ε, and are typically set to one. Two relevant parameter
of the model are the surface fraction occupied by the particles φ = πσ2dN/(4V ), where V = L2

is the system’s surface, and the Péclet number Pe = Factσd/(kBT ), which measures the ratio
between the work done by the active force and the thermal energy KBT . We tune L and Fact

at fixed γ = 10 and kBT = 0.05, according to the value of φ and Pe that we want to obtain, in
order to explore the whole space parameter. This choice of the values for friction coefficient and
temperature ensures the overdamped regime, as commonly used in the field and justified by the
low-Re regime of most experiments.

The equation of motions are integrated numerically, using the software LAMMPS [22], with
a velocity Verlet algorithm and an additional Langevin-type thermostat.

2.2. Active dumbbells
Dumbbells are diatomic molecules consisting of two identical disks of diameter σd. The equations
of motion for 2N disks are:

mr̈i = −γṙi + Fact −∇∇∇i
2N∑
j(6=i)

U(rij) +χχχi . (2)

The potential is the same as the one defined above, while χχχi are uncorrelated Gaussian noises
with zero mean and variance 2γkBT . The active force has constant magnitude Fact and is kept
along the tail-to-head direction. The bond between the disks of each dumbbell are kept rigid at
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Figure 3. Correlation functions at fixed Pe= 20 and different φs as defined in the keys.
(a) Hexatic correlations functions for disks across the liquid-hexatic transition; (b) translational
correlation functions for disks across the hexatic-solid transition; (c) hexatic correlation functions
for dumbbells across the liquid-hexatic transition; (d) translational correlation functions for
dumbbells up to the close-packing limit.

a distance σd using a RATTLE scheme [23]. The surface fraction is φ = πσ2d(2N)/(4V ), while
the Péclet number is Pe = 2Factσd/(kBT ).
Note that the dumbbell model differ from colloids in the way the rotational diffusion is
implemented. While the latter is unaffected by the surrounding particles, because the equation
of motion for θ is independent from the atoms positions, dumbbells rotate due to the combination
of the noise of the dimers. Thus, when dumbbells start to cluster together, they will not be able
to rotate.
The equation of motions are integrated in the same way as the ones of colloids.

3. Phase diagram of the two models
The phase diagram for isotropic particles (Fig. 1(a,b)) has been established according to a
systematic evaluation of several quantities. As described in details in [20], we used local surface
fraction pdfs and virial pressure for self-propelled disks defined as in [6] to provide the limits
of the coexistence regions throughout the parameters space. Spatial correlation functions g6(r)

for the two-point correlation of the local hexatic parameter ψ6(rj) = N−1j
∑Nj

k=1 e
i6θjk and finite

size analysis of its 4-th order cumulant allowed us to distinguish between liquid structure and
hexatic one, and consequently to locate the liquid-hexatic transition for all values of Pe. Besides,
correlation functions Cq0(r) of local translational order parameter eiq0·ri , being q0 the maximum
of the diffraction peak in the reciprocal space, have been used to identify hexatic-solid transition.

Both the two peaks structure in density pdfs and the double loop shape in the equation of
state consistently demonstrate that the liquid-hexatic transition in the passive limit is a first
order phase transition, as expected from repulsive disk with a ∼ r−64 repulsive interaction [18],
and that, notably, the first-order nature of this phase transition is preserved after bringing the
system out of equilibrium by adding non-zero small activity, up to Pe∼ 3. For larger Pes liquid-
to-hexatic transition undergoes a crossover to a continuous transition. On the other hand,
upon increasing activity from the passive limit, the BKT nature of hexatic-solid transition
is maintained at all finite activities. Activity has the effect to destabilize the two ordered
phases and, as a consequence, hexatic and solid are pushed towards higher surface fraction.
Nevertheless, remarkably, both hexatic and solid phases are demonstrated to exist as stable
thermodynamic phases up to very high activities. This can be directly observed from the
hexatic and translational correlation functions shown, for fixed Pe= 20 in Fig. 3(a,b). Note
that above φ & 0.800 the hexatic correlation length diverges as expected in the hexatic phase
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Figure 4. Static structure factor S(q) = N−1
∑

i,j e
iq·(ri−rj) for ordered configurations of disks

and dumbbells, with an enlargement of one of the six peaks.

from Halperin-Nelson theory. Above φ & 0.870 also the positional correlation length diverges
indicating the emergence of quasi-long-range translational order.

Hexatic order for self-propelled disks can also be inferred qualitatively by providing a color
map for the local hexatic parameter defined before. We include some examples of this map
in Fig. 2 for few representative cases at different points in the Pe-φ space reported within the
figure. The color scale refers to the projection of the local hexatic parameter along the direction
in the complex plane of the sample average of the parameter itself. The specific nature of the
configurations shown in Fig. 2 is provided within the caption.

For what concerns dumbbells, we studied the phase diagram in great details in [21], focusing
on the emerging relations between the two-dimensional phase transition scheme for passive
dumbbells and the motility-induced phase separation. As clearly shown in Fig. 1(c,d), we found
a strongly different, but still much interesting scenario, never seen with disks, demonstrating at
least that MIPS is a strong system-dependent phenomenon.

We used the same quantities described above for the disks in order to explore extensively
the parameter space. In the limit of passive dumbbells we observed that, similarly to isotropic
particles, our molecules undergo a first order phase transition between isotropic liquid and
a hexatic phase for the mutual orientation of the centers of mass of the single beads. This
represents a notable extension to molecular systems of the most recent results obtained for hard
disks [17, 19] and is a novelty in the understanding of the nature of 2d melting.

The most remarkable point we found is that, turning on activity and increasing Pe from
the passive limit we did not find any finite critical value of activity which triggers the motility-
induced phase separation, since we observe macroscopic phase separation for each probed Pe
value. As shown in Fig. 3(c), increasing the surface fraction and crossing the upper limit
of the coexistence region, quasi-long-range orientational order arises in the system, revealing
that coexistence is between a liquid-gas phase and a hexatic phase everywhere in the spanned
activity range. Moreover, the finite range of packing fractions where liquid and hexatic coexist
is continuously connected throughout the phase diagram, suggesting a crucial interplay between
the liquid-hexatic first order phase transition and the motility-induced phase separation.

From both the phase diagram of Fig. 1(a,b) and translational correlation functions for
dumbbells shown in Fig. 3(d) is worth noting that we did not find any certain evidence of
the existence of a solid phase for dumbbells. Neither for passive molecules, nor with activity,
we observe quasi-long-range positional order for the centers of mass of the beads. As explained
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in [24], the reason for that comes from the shape of the objects in the system. Indeed, since
each head-to-tail distance is fixed to the same value σd for all values of the global packing
fraction, the beads cannot arrange on a perfect triangular lattice, as they are free to do in the
disk geometry, at any global φ < φcp(∼ 0.900). More quantitatively, the lack of positional order
for dumbbells can be deduced from the the structure of the diffractions peaks in the reciprocal
space for the ordered phase. In Fig. 4 the structure factor for passive disks in the solid phase
and the one for passive dumbbells at very high packing fraction, close to the maximum packing
value, shown the six-fold structure expected for a hexagonal packing. In the same figure is also
shown an enlargement of the structure of the peaks used, as described before, for calculating
the translational correlation function. While for the disks this peaks has a regular symmetric
structure, as the power-law singularity expected in a 2D solid [14], for the dumbbells it is much
more broadened. Clearly, the structure of the six peaks representing the triangular order for
the beads merges with the internal structure of the molecules, strongly indicating the absence
of quasi-long-range positional order.

4. Conclusions
This wide analysis of two of the most simple and representative models of active systems has
revealed many interesting features both of 2D melting scenario for passive anisotropic objects and
activity-driven aggregation. Furthermore, it inspires fundamental questions about the nature
of the ordered phases in presence of activity and about the strong observed dependence of
motility-induced phase separation on the shape of the self-propelled constituents. First, we aim
to explore further the profound differences between active disks and dumbbells and establish
stronger relationship between them. Moreover, would be of great relevance to investigate the role
of topological defects in the active melting transitions, comparing the results with the general
framework for defects of the KTHNY theory.
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