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COHOMOLOGY CLASSES OF STRATA OF DIFFERENTIALS

ADRIEN SAUVAGET

Abstract. We introduce a space of stable meromorphic differentials with
poles of prescribed orders and define its tautological cohomology ring. This
space, just as the space of holomorphic differentials, is stratified according to
the set of multiplicities of zeros of the differential. The main goal of this paper
is to compute the Poincaré-dual cohomology classes of all strata. We prove
that all these classes are tautological and give an algorithm to compute them.

In a second part of the paper we study the Picard group of the strata. We
use the tools introduced in the first part to deduce several relations in these
Picard groups.
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1. Introduction

1.1. Stratification of the Hodge Bundle. Let g ≥ 1. Let Mg be the space of
smooth curves of genus g. The Hodge bundle,

Hg → Mg

is the vector bundle whose fiber over a point [C] of Mg is the space of holomorphic
differentials on C. A point of Hg is then a pair ([C], α), where C is a curve and α a
differential on C. We will denote by PHg → Mg the projectivization of the Hodge
bundle.

Notation 1.1. Let Z (for zeros) be a vector (k1, k2, . . . , kn) of positive integers
satisfying

n∑

i=1

ki = 2g − 2.
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We will denote by PHg(Z) the subspace of PHg composed of pairs ([C], α) such
that α is a differential (defined up to a multiplicative constant) with zeros of orders
k1, . . . , kn.

The locus PHg(Z) is a smooth orbifold (or a Deligne-Mumford stack), see for
instance, [32]. However, neither PHg, nor the strata PHg(Z) are compact.

The Hodge bundle has a natural extension to the space of stable curves:

Hg → Mg.

We recall that abelian differentials over a nodal curve are allowed to have simple
poles at the nodes with opposite residues on the two branches.

The space PHg is compact and smooth, and we can consider the closures PHg(Z)
of the strata inside this space. Computing the Poincaré-dual cohomology classes
of these strata is our motivating problem. In this paper we solve this problem and
present a more general computation in the case of meromorphic differentials.

1.2. Stable differentials. On a fixed smooth curve C with one marked point x
consider a family of meromorphic differentials with one pole of order p at x, such
that the leading coefficient of the differential at the pole tends to 0. In order to
construct a compact moduli space of meromorphic differentials we need to decide
what the limit of a family like that should be. One natural idea is to include
differentials with poles of orders less than p in the moduli space. It turns out,
however, that a more convenient way to represent the limit is to allow the underlying
curve to bubble at x; in other words, to allow differentials defined on semi-stable
curves.

The first uses of semi-stable objects to compactify moduli problems can be found
in the work of Gieseker for the moduli space of stable bundles (see [20]), or in
Caporaso’s construction of a universal Picard variety over the moduli space of
curves (see [6]).

A semi-stable curve is a nodal curve with smooth marked points such that every
genus 0 component of its normalization contains at least two marked points and
preimages of nodes (instead of at least three for stable curves). In the example
above, the limit of the family would be a meromorphic differential defined on a semi-
stable curve with one unstable component and on marked point x on it. The curve
maps to C under the contraction of the unstable component. The meromorphic
differential still has a pole of order exactly p at x.

Definition 1.2. Let n,m ∈ N and let P (for poles) be a vector (p1, p2, . . . , pm) of
positive integers. A stable differential of type (g, n, P ) is a tuple (C, x1, . . . , xn+m, α)
where (C, x1, . . . , xn+m) is a semi-stable curve with n+m marked points and α is
a meromorphic differential on C, such that

• the differential α has no poles outside the m last marked points and nodes;
• the poles at the nodes are at most simple and have opposite residues on
the two branches;

• if pi > 1 then the pole at the marked point xn+i is of order exactly pi; if
pi = 1 then xi can be a simple pole, a regular point, or a zero of any order;

• the group of isomorphisms of C preserving α and the marked points is
finite.

Definition 1.3. A family of stable differentials is a tuple (C → B, σ1, . . . , σn, α)
where (C → B, σ1, . . . , σn) is a family of marked semi-stable curves and α is a
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meromorphic section of the relative dualizing line bundle ωC/B such that for each
geometric point b of B, the tuple (Cb, σ1(b), . . . , σn(b), α|Cb

) is a stable differential.

The stack Hg,n,P of stable differentials of type (g, n, P ) is the category of families
of stable differentials of type (g, n, P ), fibered over the category of C-schemes.

Proposition 1.4. The moduli space Hg,n,P is a smooth Deligne-Mumford (DM)
stack. It is of dimension 4g − 4 +

∑
pi if P is non-empty and 4g − 3 otherwise.

The space Hg,n,P carries a natural C∗-action given by the multiplication of the

differential by non-zero scalars. Besides, there exists a forgetful map Hg,n,P →
Mg,n+m that maps a family stable differentials to the stabilization of its underlying

family of semi-stable curves. However, the space Hg,n,P does not have a natural
vector bundle structure in general because there is no natural definition of the sum
of two differentials with fixed orders of poles.

We will construct a partial coarsification of Hg,n,P that has the structure of an

orbifold cone over Mg,n+m.

Proposition 1.5. There exists a unique DM stack Hg,n,P fitting in the following
commutative triangle

Hg,n,P //

%%❏
❏❏

❏❏
❏❏

❏❏
Hg,n,P

π

��
Mg,n+m.

and satisfying

• the morphism π is schematic, i.e. for any C-scheme U with a morphism
U → Mg,n+m, the pull-back Hg,n,P ×

Mg,n+m

U is representable by a C-scheme;

• for any such U → Mg,n+m, the scheme Hg,n,P ×
Mg,n+m

U is the coarse space

of Hg,n,P ×
Mg,n+m

U .

Definition 1.6. The space Hg,n,P is the called the space of stable differentials.

Proposition 1.7. The space of stable differentials is an orbifold cone over Mg,n+m.

Besides the space Hg,n,P and its projectivization are normal.

We prove these propositions in Section 2, where we will also give a definition of an
orbifold cone. At present it suffices to note that the cone structure on Hg,n,P allows

one to define a projectivization PHg,n,P , a line bundle O(1) over the projectiviza-

tion, and the Segre class. Besides, the morphism Hg,n,P → Hg,n,P is C∗-equivariant.

Remark 1.8. The stack Hg,n,P can be endowed with the structure of an orbifold

cone over a different moduli spaceMg,n,P . The spaceMg,n,P is a

(
m∏
i=1

Z/(pi − 1)Z

)
-

gerb over Mg,n+m. The fibers of Hg,n,P → Mg,n,P are vector spaces, but the
C∗-action on these spaces has nontrivial weights.

One can define the projectivization of Hg,n,P and the tautological line bundle

over this projectivization. Then we have a map PHg,n,P → PHg,n,P which is a
bijection between the geometric points of these two stacks. Therefore we have
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natural isomorphisms H∗(PHg,n,P ,Q) ≃ H∗(PHg,n,P ,Q) and A∗(PHg,n,P ,Q) ≃
A∗(PHg,n,P ,Q). Thus, all the results of this text are valid for both spaces.

While the space Hg,n,P is the more natural choice for the moduli space of dif-

ferentials, in this paper we prefer to work with Hg,n,P in order to have Mg,n+m as
the base of our cone.

Notation 1.9. Let P = (p1, . . . , pm) be a vector of positive integers and Z =
(k1, . . . , kn) a vector of nonnegative integers. We denote by Ag,Z,P ⊂ Hg,n,P , the
locus of stable differentials (C, x1, . . . , xn+m, α) such that C is smooth and α has
zeros exactly of orders prescribed by Z at the first n marked points. The locus
Ag,Z,P is invariant under the C∗-action. We denote by PAg,Z,P the projectivization

of Ag,Z,P . Moreover, we denote by Ag,Z,P (respectively PAg,Z,P ) the closures of

Ag,Z,P (resp. PAg,Z,P ) in the space Hg,n,P (respectively in PHg,n,P ).

1.3. The tautological ring of Mg,n. Let g and n be nonnegative integers satis-

fying 2g − 2 + n > 0. Let Mg,n be the space of stable curves of genus g with n
marked points. Define the following cohomology classes:

• ψi = c1(Li) ∈ H2(Mg,n,Q), where Li is the cotangent line bundle at the
ith marked point,

• κm = π∗(ψ
m+1
n+1 ) ∈ H2m(Mg,n,Q), where π : Mg,n+1 → Mg,n is the

forgetful map,
• λk = ck(Hg,n) ∈ H2k(Mg,n,Q), for k = 1, . . . , g.

Definition 1.10. A stable graph is the datum of

Γ = (V,H, g : V → N, a : H → V, i : H → H,E,L)

satisfying the following properties:

• V is a vertex set with a genus function g;
• H is a half-edge set equipped with a vertex assignment a and an involution i;
• E, the edge set, is defined as the set of length 2 orbits of i in H (self-edges
at vertices are permitted);

• (V,E) define a connected graph;
• L is the set of fixed points of i called legs;
• for each vertex v, the stability condition holds: 2g(v)− 2+n(v) > 0, where
n(v) = #(a−1(v)) (the cardinal of a−1(v).

The genus of Γ is defined by
∑
g(v) + #(E)−#(V ) + 1.

Let v(Γ), e(Γ), and n(Γ) denote the cardinalities of V,E, and L, respectively.
A boundary stratum of the moduli space of curves naturally determines a stable
graph of genus g with n legs by considering the dual graph of a generic pointed
curve parameterized by the stratum. Thus the boundary strata of Mg,n are in
1-to-1 correspondence with stable graphs.

Let Γ be a stable graph. Define the moduli space MΓ by the product

MΓ =
∏

v∈V

Mg(v),n(v),

and let ζΓ : MΓ → Mg,n be the natural morphism.

Definition 1.11. A tautological class is a linear combination of classes β of the
form

β = ζΓ∗(
∏

v∈V

Pv),



COHOMOLOGY CLASSES OF STRATA OF DIFFERENTIALS 5

where Γ is a stable graph and Pv is a polynomial in κ, λ and ψ classes on Mg(v),n(v).

Proposition-Definition 1.12. Let RH∗(Mg,n) ⊂ H∗(Mg,n,Q) the vector sub-
space spanned by tautological classes. This subspace is a subring called the tauto-
logical ring of Mg,n.

See [21] for the description of the product of tautological classes.

Remark 1.13. Actually the classes α as above that do not involve λ-classes span
the tautological ring. However it will be more convenient for us to use this larger
set of generators.

1.4. The tautological ring of PHg,n,P . Let P be a vector of positive integers.

From now on, unless specified otherwise, we will denote by π : Mg,n+1 → Mg,n the

forgetful map and by p : Hg,n,P → Mg,n+m the projection from the space of stable

differentials to Mg,n. Moreover we use the same notation p : PHg,n,P → Mg,n+m

for the projectivized cone. Let

L = O(1) → PHg,n,P

be the tautological line bundle of PHg,n,P , and let ξ = c1(L).

Definition 1.14. The tautological ring of PHg,n,P is the subring of the cohomology

ring H∗(PHg,n,P ,Q) generated by ξ and the pull-back of RH∗(Mg,n+m) under p.

We denote it by RH∗(PHg,n,P ).

Remark 1.15. We have ξd = 0 for d > dim(PHg,n,P ). Therefore the tautological

ring of PHg,n,P is a finite extension of the tautological ring of Mg,n+m.

Example 1.16. In absence of poles, the Hodge bundle is a vector bundle and we
have

RH∗(PHg,n) = RH∗(Mg,n)[ξ]/(ξ
g + λ1ξ

g−1 + . . .+ λg).

Proposition 1.17. The Segre class of the cone Hg,n,P → Mg,n+m equals

m∏

i=1

(pi − 1)pi−1

(pi − 1)!
·
1− λ1 + . . .+ (−1)gλg∏m

i=1(1 − (pi − 1)ψi)
.

This proposition will be proved in Section 2. An important corollary of this
proposition is that the push-forward of a tautological class from PHg,n,P toMg,n+m

is tautological.

1.5. Statement of the results. Now, we have all elements to state the main
theorems of this article.

Theorem 1. For any vectors Z and P , the class
[
PAg,Z,P

]
introduced in Nota-

tion 1.9, lies in the tautological ring of PHg,n,P and is explicitly computable.

The main ingredient to prove this theorem will be the induction formula of
Theorem 5.

Definition 1.18. Let V be a vector, in this article we will denote by |V | the sum
of elements of V and by ℓ(V ) the length of V .

Given g and P , we will say that Z is complete if it satisfies |Z| − |P | = 2g − 2.
If Z is complete, we denote by Z − P the vector (k1, . . . , kn,−p1, . . . ,−pm).
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Restricting ourselves to the holomorphic case and applying the forgetful map of
the marked points we obtain the following corollary.

Theorem 2. For any complete vector Z, the class
[
PHg(Z)

]
introduced in Nota-

tion 1.1 lies in the tautological ring of PHg and is explicitly computable.

Remark 1.19. As a guideline for the reader, it will be important to understand
that the holomorphic case in Theorem 1 cannot be proved without using strictly
meromorphic differentials. Thus Theorem 2 is a consequence of a specific case of
Theorem 1 but one cannot avoid to prove Theorem 1 in its full generality.

The second important corollary is obtained by forgetting the differential instead
of the marked points. Let P = (p1, . . . , pm) be a vector of poles and Z = (k1, . . . , kn)
be a complete vector of zeros. We define Mg(Z − P ) ⊂ Mg,n+m as the locus of
points (C, x1, . . . , xn) that satisfy

ωC
(
−

n∑

i=1

kixi +

m∑

j=1

pjxn+j
)
≃ OC .

We denote by Mg(Z − P ) the closure of Mg(Z − P ) in Mg,n+m.

Theorem 3. For any vectors Z and P , the class
[
Mg(Z − P )

]
lies in the tauto-

logical ring of Mg,n+m and is explicitly computable.

Remark 1.20. Theorems 1, 2 and 3 are stated for the Poincaré-dual rational
cohomology classes. However, all identities of this paper are actually valid in the
Chow groups.

In a second part of the text (Section 7) we will consider the rational Picard group
of the space Mg(Z−P ). We will define several natural classes in this Picard group
and apply the tools developed in the first part of the paper to deduce a series of
relations between these classes (see Theorem 6).

1.6. An example. Here we illustrate the general method used in this article by
computing the class of differentials with a double zero

[
PHg(2, 1, . . . , 1)

]
. This

computation was carried out by D. Zvonkine in an unpublished note [35] and was
the starting point of the present work.

We begin by marking a point, i.e. we study the space PHg,1 of triples (C, x1, [α])
composed of a stable curve C with one marked point x1 and an abelian differential
α modulo a multiplicative constant. Recall that PAg,(2) ⊂ PHg,1 is the closure of
the locus of smooth curves with a double zero at the marked point. In order to
compute [PAg,(2)], we consider the line bundle

L ⊗ L1 ≃ Hom(L∨,L1)

over PHg,1. (Recall that L∨ is the dual tautological line bundle of the projec-

tivization PHg,1 and L1 is the cotangent line bundle at the marked point x1.) We
construct a natural section s1 of this line bundle,

s1 : L∨ → L1

α 7→ α(x1).

Namely, an element of L∨ is an abelian differential on C, and we take its restriction
to the marked point.
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The section s1 vanishes if and only if the marked point is a zero of the abelian
differential. Thus we have the following identity in H2(PHg,1):

[PAg,(1)] = [{s1 = 0}] = c1(L ⊗ L1) = ξ + ψ1.

Now we restrict ourselves to the locus {s1 = 0} and consider the line bundle

L ⊗ L⊗2
1 .

We build a section s2 of this new line bundle. An element of L∨
|{s1=0} is an abelian

differential with at least a simple zero at the marked point x1. Its first derivative at
x1 is then an element of L⊗2

1 (we can verify this assertion using a local coordinate
at x1).

As before, s2 is equal to zero if and only if the marked point is at least a double
zero of the abelian differential. However, {s2 = 0} is composed of three components:

• PAg,(2);
• the locus ae where the marked point lies on an elliptic component attached
to the rest of the stable curve at exactly one point and the abelian differ-
ential vanishes identically on the elliptic component;

• the locus ar where the marked point lies on a “rational bridge”, that is, a
rational component attached to two components of the stable curve that are
not connected except by this rational component (in this case the abelian
differential automatically vanishes on the rational bridge).

We deduce the following formula for [PAg,(2)]:

[PAg,(2)] = [{s2 = 0}]− [ae]− [ar]

= (ξ + ψ1)(ξ + 2ψ1)− [ae]− [ar]

= ξ2 + 3ψ1ξ + 2ψ2
1 − [ae]− [ar].

Remark 1.21. We make a series of remarks on this result.

• To transform the above considerations into an actual proof we need to check
that the vanishing multiplicity of s2 along all three components equals 1.
We will prove this assertion and its generalization in Section 3.

• Denote by π : PHg,1 → PHg the forgetful map, by δsep the boundary divi-
sor composed of curves with a separating node, and δnonsep the boundary
divisor of curves with a nonseparating node. Let us apply the push-forward
by π to the above expression of [PAg,(2)].

– The term π∗(ξ
2) vanishes by the projection formula, since it is a push-

forward of a pull-back.
– The term π∗(3ξψ1) gives 3κ0ξ = (6g − 6)ξ by the projection formula.
– The term π∗(2ψ

2
1) gives 2κ1.

– The term π∗([ae]) vanishes, because the geometric image of ae is of
codimention 2 in PHg.

– The term π∗([ar]) gives δsep since π induces a degree one map from ar
onto δsep.

Thus we get

[PH(2, 1, . . . , 1)] = π∗[PAg,(2)] = (6g − 6)ξ + 2κ1 − δsep.

Using the relation κ1 = 12λ1 − δsep − δnonsep on Mg (see, for example, [1],
chapter 17), we have

[PH(2, 1, . . . , 1)] = (6g − 6)ξ + 24λ1 − 3δsep − 2δnonsep.
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This formula was first proved by Korotkin and Zograf in 2011 using an
analysis of the Bergman tau function [26]. Dawei Chen gave another proof
of this result in 2013 using test curves [9].

• In general, to prove Theorem 1 we will work by induction. Let Z =
(k1, k2, . . . , kn) and P be vectors of positive integers. Let Z ′ = (k1, . . . , ki+
1, . . . , kn). Then we will show that
[
PAg,Z′,P

]
= (ξ + (ki + 1)ψi)

[
PAg,Z,P

]
− boundary terms.

The computation of these boundary terms is the crucial part of the proof.

1.7. Applications and related work.

Classes in the Picard group of Mg. Scott Mullane and Dawei Chen gave a closed

formula for the class of π∗
[
Mg(Z)

]
in the rational Picard group of Mg for all

Z of length g − 2 (see [8] and [27]). They used test curves and linear series to
compute this formula. This result has the advantage of giving explicit expressions,
however it has the drawback of not keeping track of the positions of the zeros and
of being restricted to the vectors Z of length g − 2 (see Section 6.2 for an example
of computation).

Incidence variety compactification. The problem of the compactification of the
strata is extensively studied from different approaches in a joint work of Bainbridge,
Chen, Gendron, Grushevsky, and Moeller (see [2] and [18]). Their compactification
(called incidence variety compactification) is slightly different from the one that we
use here. We will recall their definitions in Section 4.2 since we will make use of
some of their results.

Moduli space of twisted canonical divisors. In [15], Farkas and Pandharipande pro-
posed another compactification of the strata. Let g, n,m be non-integers such that
2g − 2 + n + m > 0. Let P be a vector of positive integers of lenght m and let
Z be vector of non-negative integers of length n that is complete for g and P .
We recall that Mg(Z − P ) ⊂ Mg,n+m is the locus of smooth curves such that
ωC(−k1x1 − . . . − knxx + p1xn+1 + . . . + pmxn+m) ≃ OC and that we denote by
Mg(Z − P ) its closure in Mg,n+m. In [15], Farkas and Pandharipande defined the

space of twisted canonical divisors denoted by M̃(Z − P ). The space of twisted
canonical divisors is a singular closed subspace of Mg,n+m such that M(Z − P ) is

one of the irreducible components of M̃(Z − P ).
We assume that m ≥ 1. In the appendix of [15], Farkas and Pandharipande de-

fined a class Hg(Z−P ) in Ag(Mg,n+m) (or H2g(Mg,n+m)): this class is a weighted
sum over the classes of irreducible components.

Conjectural expression of Hg(Z−P ). Let r be a positive integer and (C, x1, . . . , xn+m)
be a smooth curve with markings. A r-spin structure is a line bundle L such that
L⊗r ≃ ωC(−k1x1−. . .−knxn+p1xn+1+. . .+pmxn+m). We denote the moduli space

of r-spin structures by M
1/r
g,Z−P . This space admits a standard compactification

by twisted r-spin structures: M
1/r

g,Z−P . We denote by π : C
1/r

g,Z−P → M
1/r

g,Z−P the

universal curves and by L → C
1/r

g,Z−P the universal line bundle. The moduli space of

twisted r-spin structures has a natural forgetful map ǫ : M
1/r

g,Z−P → Mg,n+m; the
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map ǫ is finite of degree r2g−1. We consider Rπ∗(L) the image of L in the derived

category of M
1/r

g,Z−P .

If m ≥ 1, then we consider the class crg(Z − P )
def
= cg (Rπ∗L) ∈ Ag(M

1/r

g,Z−P ).
If m = 0, then we consider a different class, namely Witten’s class: crW (Z) ∈

Ag−1(M
1/r

g,Z). There are several equivalent definitions of Witten’s class, all of which
require several technical tools that we will not describe here (see [33], [11] or [7]).

We consider the two following functions:

Pg,Z−P , P
W
g,Z : N∗ → A∗(Mg,n+m)

r 7→ rǫ∗(c
r
g(Z − P )), rg−1ǫ∗(c

r
W (Z)).

Both Pg,Z−P and PWg,Z are polynomials for large values of r (this result is due to

Aaron Pixton, see [23] and [31]). We denote by P̃g,Z−P and P̃Wg,Z the asymptotic
polynomials. The two following conjectures have been proposed.

Conjecture A. (see [15]) If m ≥ 1 then the equality Hg(Z−P ) = P̃g,Z−P (0) holds

in Ag(Mg,n+m).

Conjecture B. (see [30]) If m = 0 then the equality [Mg(Z)] = (−1)gP̃Wg,Z(0)

holds in Ag−1(Mg,n).

As a consequence of Theorem 3, we know that the classes Hg(Z−P ) and [Mg(Z)]
are tautological and we have an algorithm to check the validity of the conjectures
case by case (see Section 6.2 for examples of computations).

These two conjectures are the analogous for differentials of the formula for the so-
called double-ramification cycles (DR cycles): the DR cycle is a natural extension of
to Mg,n of the cycle in Mg,n defined as the locus of marked curves (C, x1, . . . , xn)
such that

n∑

i=1

ai(xi) ≃ OC

for any fixed vector of integers (ai)1≤i≤n such that
∑
ai = 0 (see [23]).

Compactification via log-geometry. Jérémy Guéré constructed a moduli space of
“rubber” differentials using log geometry. He proved that this space is endowed
with a perfect obstruction theory. Moreover, if m ≥ 1, this moduli space surjects
onto the moduli space of twisted canonical divisors and the class Hg(Z − P ) is the
push-forward of the virtual fundamental cycle (see [22]).

If m = 0 has only positive values, Dawei Chen and Qile Chen have also used log
geometry to define a compactification of the strata Hg(Z) (see [10]).

Induction formula for singularities in families. The central result of the present
work is the induction formula of Section 5. A similar formula has been proved
by Kazarian, Lando and Zvonkine for classes of singularities in families of genus 0
stable maps (see [24]). Their formula contains only the genus 0 part of our induction
formula.

They gave an interpretation of the induction formula in genus 0 as a general-
ization of the completed cycle formula of Okounkov and Pandharipande (see [29]).
For, now it is not clear if this generalized completed cycle formula has an extension
to higher genera.
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This type of induction formula had been previously introduced by Gathmann in
the context of genus 0 Relative Gromov-Witten invariants (see [17]) and has been
recently adapted to the genus 0 quasimap invariants (see [3]).

Computation of the Lyapunov exponents of strata. Strata of differentials are en-
dowed with a structure of dynamical system. Several numerical invariants have
been introduced to characterize the dynamics of the strata: volumes, Siegel-Veech
constants, Lyapunov exponents. Some relations exist between these invariants.
These relations come in general from relations in the cohomology of the strata.

Our computation of cohomology classes of strata of differentials could be useful
to compute these numerical invariants. This idea is developed for example in [26]
and [8] based on the work of Eskin, Kontsevich, and Zorich [13] (see Section 7.3.3).
This has been explored in the subsequent paper (see [34])

1.8. Plan of the paper. In Section 2 we construct the space of stable differentials
and compute its Segre class. Then we generalize the definition of stable differentials
for disconnected curves and for unstable irreducible curves. In the last subsection
we present the tautological rings of spaces of stable differentials in this most general
setting (with possible disconnected and semi-stable curves).

In Section 3 we introduce the stratification of the interior of spaces of stable
differentials according to the orders of zeros and we study the geometry of the
strata: local parameters, dimension, neighborhood in the space of differentials.
Then, in Section 4 we describe the boundary components of the Zariski closure of
strata.

Theorems 1, 2 and 3 are proved in In Section 5. The main tool involved in their
proof is the induction formula for the Poincaré-dual classes of strata of differentials
with prescribed orders of zeros (see Theorem 5).

In Section 6 we present two examples of explicit computations.
Finally, in Section 7 we introduce several classes in the Picard group of strata of

differentials and prove several relations between these classes by using the induction
formula.
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and brought many beneficial comments.

I would also like to thank Jérémy Guéré, Charles Fougeron, Samuel Grushevsky,
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versations. They have enriched my understanding of the subject in many ways. I
am grateful to Felix Janda for the computations that he made and for the long
discussions we had regarding the present work. Moreover, I would like to thank
the organizers of the conference “Dynamics in the Teichmüller Space” at the CIRM
(Marseille, France) for their invitation as well as the people I have met for the first
time at this conference : Pascal Hubert, Erwan Lanneau, Samuel Lelièvre, Anton
Zorich, Quentin Guendron and Martin Möller.
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2. Stable differentials

In this section, we construct the space of stable differentials and compute its
Segre class. We also define stable differentials on disconnected and/or unstable
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curves. Finally, we define and describe the tautological rings in this generalized
set-up.

2.1. The cone of generalized principal parts.

2.1.1. Orbifold cones. We follow here the approach of [12]. Let X be a projective
DM stack.

Definition 2.1. An orbifold cone is a finitely generated sheaf of graded OX -
algebras S = S0 ⊕ S1 ⊕ S2 ⊕ . . . such that S0 = OX .

Remark 2.2. This definition of cone is weaker than the classical definition of Ful-
ton (see [16]) because we do not ask that S be generated by S1. In the classical
definition, a cone is a subvariety of a vector bundle (the dual of S1) given by ho-
mogeneous equations. Its projectivization is a subvariety of a bundle of projective
spaces. In the orbifold case, the cone is, again, a suborbifold of a vector bundle, but
is now given by quasi-homogeneous equations. Its projectivization is a suborbifold
of the corresponding bundle of weighted projective spaces, which carries a tauto-
logical line bundle O(1) in the orbifold sense (called canonical line bundle in [16]).
Thus the projectivization PC of a cone is an orbifold and carries a natural orbifold
line bundle O(1), the tautological line bundle. We denote p : PC = Proj(S) → X
and ξ = c1(O(1)). Let C → X be a pure-dimensional cone and r the rank of the
cone defined as dim(C)− dim(X). The i-th Segre class of C is defined as

si = p∗(ξ
r+i−1) ∈ H2i(X,Q).

Example 2.3. Let us consider the graded algebra C[x, y, z] such that x is an
element of weight 2, y is an element of weight 3 and z is an element of weight
1. This graded algebra is not generated by its degree 1 elements. The associated
projectivized cone over a point is the weighted projective space P(2, 3) which is the
quotient of (C3)∗ by C∗ with the action:

λ · (x, y, z) = (λ2x, λ3y, λz).

Example 2.4. More generally, consider a sheaf of algebras of the form OX ⊗C S,
where S is a graded algebra over C. The projective spectrum of this sheaf is a
direct product of X with Proj(S). We call this a trivial orbifold cone.

2.1.2. Cone of generalized principal parts.

Definition 2.5. Let p be an integer greater than 1. A principal part of order p at a
smooth point of a curve is an equivalence class of germs of meromorphic differentials
with a pole of order p ; two germs f1, f2 are equivalent if f1 − f2 is a meromorphic
differential with at most a simple pole.

First, we parametrize the space of principal parts at a point. Let z be a local
coordinate at 0 ∈ C. A principal part at 0 of order p is given by:[(u

z

)p−1

+ a1

(u
z

)p−2

+ . . .+ ap−2

(u
z

)] dz
z

with u 6= 0. However, given a principal part, the choice of (u, a1, . . . , ap−2) is not

unique. Indeed there are p−1 choices for u given by the ζℓ ·u (with ζℓ = exp(2iπ·ℓp−1 ),

for 0 ≤ ℓ ≤ p−1) and, once the value of u is chosen, the ai’s are determined uniquely.
Therefore the coordinates (u, a1, . . . , ap−2) parametrize a degree p − 1 covering of
the space of principal parts. This motivates the following definition.
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Definition 2.6. Assign to u the weight 1/(p− 1) and to aj the weight j/(p− 1).
The graded algebra S ⊂ C[u, a1, . . . , ap−2] spanned by the monomials of integral
weights is called the algebra of generalized principal parts and P = Spec(S) is the
space of generalized principal parts.

The space P is the quotient of Cp−1 by the group Z
/
(p− 1)Z, which, from now

on, we will denote by Zp−1 for shortness. An element ζ ∈ Zp−1 acts by

ζ · (u, a1, . . . , ap−2) = (ζu, ζa1, . . . , ζ
p−2ap−2).

Moreover, the natural action of C∗ on P is given by

λ · (u, a1, . . . , ap−2) = (λ
1

p−1u, λ
1

p−1 a1, . . . , λ
p−2
p−1 ap−2).

Note that this action is not well-defined on the covering space Cp−1, but is well
defined on its Zp−1 quotient P .

Notation 2.7. Denote by Iu ⊂ S the ideal of polynomials divisible by u. Denote
by A ⊂ P the suborbifold defined by Iu.

The suborbifold A ⊂ P is the Weil divisor obtained as the image of the Cartier
divisor {u = 0} ⊂ Cp−1 under the quotient of Cp−1 by the action of Zp−1. The
divisor (p− 1)A is the Cartier divisor given by the equation up−1 = 0. (Note that
up−1 lies in S while u does not.) The space of principal parts embeds into P as the
complement of A.

Lemma 2.8. A change of local coordinate z induces an isomorphism of S that
preserves the grading and acts trivially on the quotient algebra S/Iu.

Proof. Let z = f(w) = α1w + α2w
2 + . . . be a local coordinates change. We

denote by (u′, a′1, . . . , a
′
p−2) the parameters of the presentation of principal parts in

coordinate w. We have the transformation:

u 7→ α1u

a1 7→ a1 + γ1,1u

a2 7→ a2 + γ2,1ua1 + γ2,2u
2

...

where the γi,j are polynomials in α1, α2, . . . depending only on the order of the
principal part. By taking u to be 0, we see that the coordinates (a1, . . . , ap−2) of
A are independent of the choice of local coordinate. �

Remark 2.9. In Section 2.2 we will see that the locus A corresponds to the ap-
pearence of a semi-stable bubble of the underlying curve C at the ith marked point.
The coordinate on the bubble is w = u/z.

Remark 2.10. The cone of principal parts of differentials differs from the cone of
principal parts of functions of [12] only by the coefficients γi,j .

Now, let g, n be nonnegative integers such that 2g − 2 + n > 0. Let i ∈ [[1, n]]
and pi ≥ 2. We denote by Pi the following sheaf of graded algebras over Mg,n.

Pick an open chart U ⊂ Mg,n together with a trivialization of a tubular neigh-
borhood of the ith section σi of the universal curve over U . In other words, denoting
by ∆ the unit disc, we choose an embedding

U ×∆ →֒ Cg,n
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commuting with U →֒ Mg,n and such that U×{0} is the i-th section of the universal
curve. The sheaf Pi over U is given by Pi(U) = OU ⊗ S.

Now, given two overlapping charts U and V we need to define the gluing map
between the sheaves on their intersection. To do that, denote by z the coordinate
on ∆ in the product U ×∆ and by w the coordinate on ∆ in the product V ×∆.
Over the intersection U ∩V we get a change of local coordinates z(w). We use this
change of local coordinate and the constants γi,j from Lemma 2.8 to construct an
identification between the two algebras Pi(U)|U∩V and Pi(V )|U∩V .

Note that the sheaf of ideals Iu is well-defined and the quotients S/Iu are identi-
fied with each other in a canonical way that does not depend on the local coordinates
z and w.

We denote by Pi = Spec(Pi) the spectrum of Pi and by Ai = Spec(Pi/Iu) the
spectrum of the quotient. The latter is a trivial cone over Mg,n.

Proposition 2.11. The cone Pi and its projectivization are normal.

Proof. Indeed the space Mg,n is smooth and the sheaf of fractions of the algebra
Pi is the same as the sheaf of fractions of P1

i . �

Lemma 2.12. The cone Ai is the product of Mg,n with the weighted projective

space with weights ( 1
pi−1 , . . . ,

pi−2
pi−1 ) quotiented by the action of Zpi−1. Moreover the

Segre classes of Ai and Pi are given by

s(Ai) =
(pi − 1)

pi−2

(pi − 1)!

s(Pi) =
(pi − 1)

pi−1

(pi − 1)!
·

1

1− (pi − 1)ψi
.

Proof. The proof is based on the same arguments as for the cone of principal parts

of functions. The section upi−1 is a section of the line bundle L
−⊗(pi−1)
i which

vanishes with multiplicity pi − 1 along Ai. �

2.1.3. Stack of generalized principal parts. In the above paragraph we defined the
cone of generalized principal parts which is a normal scheme over Mg,n. We in-

troduce here another approach to the quotient by the Zpi−1-action. Let P̃i be the
sheaf of algebra defined locally by

P̃i(U) = OU [u, a1, . . . , api−2]

where U is a chart with a trivialization of a tubular neighborhood of the i-th section
of the universal curve and the coordinates (u, a1, . . . , api−2) are defined as above.

Definition 2.13. The stack of generalized principal parts Pi is the stack quotient

Spec(P̃i)/Zpi−1.

By construction we have the following proposition.

Proposition 2.14. For all schemes U with a map U → Mg,n, the scheme U×Mg,n

Pi is the coarse space of U ×Mg,n
Pi.

Proposition 2.15. The stack of generalized principal parts is a smooth DM stack.

Proof. The space Mg,n is a smooth DM stack and Pi is locally the quotient of an

affine smooth scheme over Mg,n by a finite group. �
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2.1.4. Cones of generalized principal parts and jet bundles. From now on in the
text, unless otherwise mentioned, for any family of semi-stable curves C → S we
denote by ω the relative cotangent line bundle ωC/S.

Definition 2.16. Let π : Cg,n → Mg,n be the universal curve and (σi)1≤i≤n :

Mg,n → Cg,n the global sections of marked points. Let 1 ≤ i ≤ n and pi ≥ 1. The

vector bundle Ji → Mg,n of polar jets of order pi at the i-th marked point is defined
as the quotient

Ji = R0π∗ (ω(piσi))
/
R0π∗ (ω(σi)) .

We fix 1 ≤ i ≤ n and pi > 0. The bundle of polar jet of order pi is a vector
bundle of rank pi − 1. As before, we consider an open chart U of Mg,n with a
trivialization zi of a tubular neighborhood of the section σi. Over the chart U the
jet bundle is trivial. Indeed an element of Ji over U is given by

[
b0

zpi−1
i

+ . . .+
bpi−2

zpi−2
i

]
dzi
zi
.

Thus, the jet bundle Ji restricted to U is given by Spec(OU [b
i
0, . . . , bpi−2]). Recall

that, using the trivialization zi we have defined coordinates u, a1, . . . , api−2 such
that Pi(U) is the sub-algebra of

OU [u, a1, . . . , api−2]

generated by monomials with integral weights. We define the following morphism
of graded algebras over OU

φi(U) : Sym∗(J i ∨)(U) → Pi(U)

b0 7→ upi−1,

bj 7→ upi−1−jaj (for 1 ≤ j ≤ pi − 2).

The morphism φi(U) is defined for a chart U with a choice of trivialization zi. We
can easily check that the φi(U) can be glued into a morphism of sheaves of graded
algebras. Thus we have constructed a morphism of cones

φi : Pi → Ji.

It is important to remark that for pi ≥ 3 the morphism φi is neither surjective
nor injective.

Lemma 2.17. We define the following two spaces

Pi ⊃ P̃i = (Pi \ Ai) ∪ the zero section,

Ji ⊃ J̃i = (Ji \ {b0 = 0}) ∪ the zero section.

The image of the morphism φi is the space J̃i. Moreover, the morphism φi restricted

to P̃i induces an isomorphism from P̃i to J̃i.

The proof is a simple check.

Remark 2.18. Note in particular that the morphism φi does not define a morphism
of projectivized cones. Indeed, certain points outside of the zero section of Pi are
mapped to zero section of Ji.



COHOMOLOGY CLASSES OF STRATA OF DIFFERENTIALS 15

2.2. The space of stable differentials. Let g, n, and m be nonnegative integers
satisfying 2g−2+n+m > 0. Let P = (p1, p2, . . . , pm) be a vector of positive integers.
For all 1 ≤ i ≤ m, we denote by Pn+i (respectively Pn+i and Jn+i) the cone of
principal parts (respectively the stack of principal parts and the vector bundle of
polar jets) of order pi at the (n+ i)-th marked point. Let p : Hg,n,P → Mg,n+m be
the space of stable differentials of Definition 1.2 together with the forgetful map.

We recall that π : Cg,n+m → Mg,n+m is the universal curve and the (σi)1≤i≤n+m :

Mg,n+m → Cg,n+m are the global sections corresponding to marked points.

Notation 2.19. Let KMg,n(P ) → Mg,n+m be the vector bundle

R0π∗
(
ω
( m∑

i=1

piσn+i
))

→ Mg,n+m.

It is a vector bundle of rank g − 1 +
∑
pi if P is not empty.

We have the following exact sequence of vector bundles over Mg,n+m

(1) 0 → R0π∗
(
ω
( m∑

i=1

σn+i
))

→ KMg,n(P ) →
m⊕

i=1

Jn+i → 0,

This exact sequence is simply the long exact sequence obtained from the residue
exact sequence.

Proposition 2.20. The stack Hg,n,P is isomorphic to the fiber product of KMg,n(P )
and

⊕m
i=1 Pn+i over

⊕m
i=1 Jn+i where the map Pn+i → Jn+i is the composition of

maps Pn+i → Pn+i
φi
→ Jn+i.

Proof. We denote by H̃g,n,P the fiber product

(2) H̃g,n,P //

��

⊕m
i=1 Pn+i

��
KMg,n(P ) //⊕m

i=1 Jn+i.

We construct the two directions of the isomorphism H̃g,n,P ≃ Hg,n,P separately.

From Hg,n,P to H̃g,n,P . To construct a morphism F1 : Hg,n,P → H̃g,n,P we define

morphisms Φi : Hg,n,P → Pn+i for all 1 ≤ i ≤ m and χ : Hg,n,P → KMg,n(P )
fitting in the diagram (2).

Let (C → S, σ1, . . . , σn+m, α) be a family of stable differentials. Let s→ S be a
geometric point of S and (Cs, x1, . . . , xn+m, αs) be the stable differential determined
by s. The element Φi(αs) is determined as follows

• If xn+i does not belong to a rational component then Φi(s) is the principal
part at the marked point. It belongs to Pn+i \ {u = 0}.

• If xn+i belongs to a rational component, let wn+i be a global coordinate of
the rational component such that: xn+i is at infinity, the node is at 0 and

the term of α in front of wpi−2
n+i dwn+i is −1. Then αs is of the form

−
(
wpi−1
n+i + a1w

pi−2
n+i + . . .+ api−2wn+i + resσn+i

(α)
) dwn+i
wn+i
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and we set Φi(s) = (0, a1, . . . , api−2). Indeed the substack {u = 0} is the
quotient of a trivial vector bundle by Zpi−1 and the ai’s are the global
coordinates of this vector bundle.

We will prove that the map Φi depends holomorphically on s. If s is a point of the
first type this is an obvious statement. If s is a point of the second type, let U be an
open neighborhood of s in S with a trivialization zn+i of a tubular neighborhood
of σn+i in C (see the previous section). Let C′ be the stabilization of C. The
differential α restricted to C′ is a differential with poles of order at most pi at
zn+i = 0. The differential α in this coordinate is given by

(3) α =

((
u

zn+i

)pi−1

+ . . .+ aipi−2

u

zn+i
+ resσn+i

(α) + O
zn+i7→0

(zn+i)

)
dzn+i
zn+i

The value upi−1 depends holomorphically on s and up to a choice of smaller U we
can fix a choice of (pi+1)-st root u. The function u depends holomorphically on s.

Now we use the function u and the local trivialization zn+i to construct the family
of semi-stable curves C′′ ⊂ C′ × P1 defined by the equation zn+iw = u (where, as
previously, w is the global coordinate of the rational component and the pole is
located at w = ∞). This family of curves is isomorphic to C (the stabilization of
C′′ and C′ are isomorphic and each fiber of these two families have the same dual
graph). In particular, α is a meromorphic differential on C′′ with constant order of
pole at w = ∞. Besides in the chart w the highest order coefficient of α is given by
1. In particular the coordinate w is equal to the coordinate wn+i on the unstable
rational component of the fiber of s. In the chart w, the meromorphic differential
α is given by

(4) α = −
(
wpi−1 + a1w

pi−2 + . . .+ api−2w + resσn+i
(α) + O

w 7→0
(w)
) dw
w

where the ai’s depend holomorphically on s. Therefore Φ depends holomorphically
on s.

Now, we construct the map χ : Hg,n,P → KMg,n(P ). Let (C → S, σ1, . . . , σn+m, α)

be a family of stable differentials. We denote by C̃ → S the stabilization of C and by

α̃ = α|C̃ . The family (C̃ → S, σ1, . . . , σn+m, α̃) is a section of ωC/S(
∑
piσn+i), thus

a map S → KMg,n(P ). By construction, the morphisms χ and the (Φi)i=1,...,m fit
in diagram (2).

From H̃g,n,P to Hg,n,P . Let S be a C-scheme and let S → H̃g,n,P be a morphism.

By composition with the morphism H̃g,n,P → KMg,n(P ), we get a family of stable
curves C → S with n + m sections σi and a section α of ωC/S(

∑
piσn+i). The

family S → H̃g,n,P determines also families of generalized principal parts. From
the family of meromorphic differentials α and the principal parts we will construct
a family of stable differentials.

Let zn+i be local trivializations of the tubular neighborhoods of the sections
σn+i of the curve C/S for 1 ≤ i ≤ m. Let wn+i be global coordinates of the
complex plane. We denote by (ui, ai1, . . . , a

i
pi−2) the standard coordinates of the

principal parts Pn+i obtained from the trivializations zn+i. We construct a fam-

ily of semi-stable curves C̃ → S defined by the equation zn+iwn+i = ui. On the
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curve C̃ we construct a differential α̃. This differential is given by the expres-
sion (4) in coordinate wn+i and by the expression (3) in coordinate zn+i. The tuple

(C̃, σ1, . . . , σn+m, α̃) is a family of stable differentials over S.

Therefore we have determined a morphism F2 : H̃g,n,P → Hg,n,P . By construc-
tion it is the inverse of F1 previously defined. �

The following proposition finishes the proof of Proposition 1.4 and thus completes
Definition 1.3.

Proposition 2.21. We denote by Hg,n,P the following fiber product (in the category

of cones over Mg,n+m or in the category of DM-stacks)

(5) Hg,n,P
//

��

⊕m
i=1 Pn+i

⊕
φi

��
KMg,n(P ) //⊕m

i=1 Jn+i.

Then space Hg,n,P is the unique space that satisfies the properties of Proposition 1.5.

Proof. The fact that Hg,n,P satisfies the properties of Proposition 1.5 is a direct
consequence of Propositions 2.14, 2.20. The uniqueness of this stack follows from
the uniqueness of coarse spaces. �

From now on we will denote by stab : Hg,n,P → KMg,n(P ) the vertical projec-
tion in diagram (5).

2.3. Properties of spaces of stable differentials. We keep the notation g, n,m,
and P of the previous sections. We state here several general properties of Hg,n,P
and Hg,n,P that will be needed further in the text.

Proposition 2.22. Suppose that P is not empty. Then the spaces Hg,n,P Hg,n,P

are irreducible DM stacks of pure dimension 4g− 4+
∑
pi and PHg,n,P is a proper

DM stack (of dimension one less). The space Hg,n,P and its projectivization are

normal. The space Hg,n,P is a smooth DM stack.

If P is empty then both Hg,n,P and Hg,n,P are isomorphic to the Hodge bundle,
which is a smooth DM stack of dimension 4g − 3.

Proof. The first part of the proposition follows from Propositions 2.15, 2.20, and 2.11.
The second part is straightforward. �

We consider the following two maps: on the one hand the inclusion of vector
bundles R0π∗

(
ω
(∑m

i=1 σn+i
))

→ KMg,n(P ), and on the other hand the zero map

KMg,n,P →
⊕

Pn+i. Then we get an embedding R0π∗
(
ω
(∑m

i=1 σn+i
))

→ Hg,n,P

by the universal property of the cartesian diagram (5).

Proposition 2.23. For all g, n, and P , we have the following exact sequence of
cones (in the sense of [16] Proposition 4.1.6)

0 → R0π∗
(
ω
( m∑

i=1

σn+i
))

→ Hg,n,P →
m⊕

i=1

Pn+i → 0.

Proof. By construction, the sheaf of algebras defining Hg,n,P is locally the tensor

product of the sheaves of algebras Sym∨

(
R0π∗

(
ω
(∑m

i=1 σn+i
)))

and the Pn+i. �
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The action of C∗ on the space Hg,n,P is determined by multiplication of the
differential by a scalar. Let us give a description of the C∗-fixed locus, i.e. the
locus of points that are invariant under the action of C∗.

Let (C, x1, . . . , xn+m) be a curve in Mg,n+m. We denote by m′ the number of

entries of P greater than 1. From C we construct a semi-stable curve C̃ as follows.

The curve C̃ hasm′+1 irreducible components: one main component isomorphic to
C and m′ rational components attached to C at the marked points corresponding

to poles of order greater than 1. We mark points (x′1, . . . , x
′
n+m) on C̃. The first

n marked points and the points corresponding to poles of order at most 1 are on
the main component and satisfy xi = x′i. The poles of orders greater than one are
carried by the rational components.

Now we define a meromorphic differential α on C̃ by

• the differential α vanishes identically on the main component;
• on an exterior rational component, if we assume that the marked point is
at 0 and the node at ∞ then α is given by dz/zpi.

The tuple (C̃, x′1, . . . , x
′
n+m, α) is a stable differential invariant under the action

of C∗. Indeed, let λ be a scalar in C∗, the differential λα vanishes on the main
component and λdz/zpi is equal to dw/wpi if we use the change of coordinate
z = w/λ1/pi for any pi-th root of λ.

Conversely any C∗-invariant point of Hg,n,P is of this type. Indeed Hg,n,P is
a cone thus the locus of C∗-invariant points is a section of this cone and we have
constructed this section here.

2.4. Residues. Let g, n,m and P be as in the previous sections.

Definition 2.24. Let R be the vector subspace of Cm defined by

R = {(r1, r2, . . . , rm), r1 + r2 + . . .+ rm = 0}.

The vector space R will be called the space of residues. The residue map is the
following map of cones over Mg,n+m

res : Hg,n,P → R

α 7→ (resxn+1(α), resxn+2(α), . . . , resxn+m
(α))

where R stands for the trivial cone. We use the same notation for the residue map
res : KMg,n(P ) → R. In this case it is a morphism of vector bundles.

These two residue maps fit in the following commutative triangle

(6) Hg,n,P
stab//

res

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

KMg,n(P )

res

��
R.

Let H
0

g,n,P ⊂ Hg,n,P (respectively KM
0

g,n(P ) ⊂ KMg,n(P )) be the sub-cone
(resp. sub vector bundle) of differentials without residues.

We recall that the Hodge bundle is by definition equal to Hg,n+m = R0π∗ω. The

following sequence of vector bundles over Mg,n+m is exact

(7) 0 → Hg,n+m → R0π∗(ω(

m∑

i=1

σn+i))
res
→ R → 0
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(this is the exact sequence obtained from the residue exact sequence 0 → ωC(
∑
xi) →

ωC → Cm → 0). The vector bundle KM
0

g,n(P ) fits into the following commutative

diagram of vector bundles over Mg,n+m:

(8) 0 // KM
0

g,n(P )
// KMg,n(P )

res // R // 0

Hg,n+m

OO

// R0π∗(ω(
∑m

i=1 σn+i))

OO 88♣♣♣♣♣♣♣♣♣♣♣♣♣

where the central square is cartesian. The first line of diagram (8) is exact by

exactness of the sequence (7). Therefore, the cone structure of H
0

g,n,P can be

defined equivalently from the cone structure of Hg,n,P or by saying that H
0

g,n,P is
the fiber product

H
0

g,n,P
//

��

⊕
Pn+i

��
KM

0

g,n(P ) //⊕Jn+i.

We have the following exact sequence of cones

0 → Hg,n+m → H
0

g,n,P →
⊕

Pn+i → 0.

Remark 2.25. Note that we cannot say that sequence

0 → H
0

g,n,P → Hg,n,P → R → 0

is exact because exactness for morphism of cones is ill-defined if the first term is
not a vector bundle.

More generally we define the following.

Definition 2.26. Let R be a vector subspace of R. Let H
R

g,n,P ⊂ Hg,n,P (re-

spectively KM
R

g,n(P ) ⊂ KMg,n(P )) be the sub-cone (resp. sub vector bundle) of
differentials with a vector of residues lying in R. We will call R a space of residue
conditions.

Lemma 2.27. Let R ⊂ R be a vector subspace.

• The space H
R

g,n,P is a closed subcone of Hg,n,P of codimension dim(R/R)
(where we set dim(R/R) = 0 if P is empty)

• The Segre classes of H
R

g,n,P and Hg,n,P are equal.

• The Poincaré-dual class of PH
R

g,n,P in H∗(PHg,n,P ,Q) is given by
[
PH

R

g,n,P

]
= ξdim(R/R).

Proof. Let us denote by resR the composition of morphisms Hg,n,P → R → R/R

(we use the same notation for its alter ego for KMg,n(P )). We denote by H
R

g,n+m

the kernel of the morphism

R0π∗(ω(

m∑

i=1

σn+i))
resR→ R/R→ 0.
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It is a vector bundle of rank g + dim(R). By repeating the above argument, we
have the following exact sequence of cones:

0 → H
R

g,n+m → H
R

g,n,P → R/R.

We deduce from this exact sequence that:

• the co-dimension of H
R

g,n,P in Hg,n,P is dim(R/R);

• the Segre class of H
R

g,n,P is given by

c∗

(
H
R

g,n+m

)
· s∗

(⊕
Pn+i

)

(see [16] Proposition 4.1.6).

Besides, the vector bundle R/R is trivial thus

c∗

(
H
R

g,n+m

)
= c∗

(
R0π∗(ω(

m∑

i=1

σn+i))

)

and the Segre class of H
R

g,n,P does not depend on the choice of R.
To prove the last statement, we study the vector bundle O(1) ⊗ p∗(R/R) →

PHg,n,P , where we recall that p : PHg,n,P → Mg,n+m is the forgetful map. We
have O(1)⊗ p∗(R/R) ≃ Hom(O(−1), p∗(R/R)). A section of this vector bundle is
given by:

s : α 7→ resR(α).

The vanishing locus of s is PH
R

g,n,P which is of codimension dim(R/R) and irre-

ducible. Thus the Poincaré-dual class of PH
R

g,n,P in H∗(PHg,n,P ,Q) is given by

d · ctop(O(1)⊗ p∗(R/R)) = d · ξdim(R/R)

where d is a rational number. Besides the cones H
R

g,n,P and Hg,n,P have the same
Segre class thus

s0 = p∗

(
ξrk(Hg,n,P )−1

)
= p∗

(
[PH

R

g,n,P ]ξ
rk(H

R

g,n,P )−1
)
= ds0,

and the coefficient d is equal to 1. �

Proposition 2.28. The Segre class of Hg,n,P is given by

m∏

i=1

(pi − 1)pi−1

(pi − 1)!
·
1− λ1 + . . .+ (−1)gλg∏m

i=1 (1− (pi − 1)ψi)
.

Proof. From the above lemma, we have

s∗(Hg,n,P ) = s∗(H
0

g,n,P )

= c∗(Hg,n+m)−1 · s∗

(
m⊕

i=n+1

Pn+i

)

= c∗(H
∨

g,n+m) · s∗

(
m⊕

i=n+1

Pn+i

)

=

m∏

i=1

(pi − 1)pi−1

(pi − 1)!
·
1− λ1 + . . .+ (−1)gλg∏m

i=1 (1− (pi − 1)ψi)
.
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From the third line to the fourth we have used the fact that c(Hg)
−1 = c(H

∨

g ) (see
[28]). �

2.5. Unstable base. Here we extend the definition of the spaces of stable differ-
entials to differentials supported on an unstable base.

Definition 2.29. A triple (g, n, P ) composed of a nonnegative integers g and n
and a vector P of positive integers is semi-stable if either:

• 2g − 2 + n+ ℓ(P ) > 0 (in which case we also say that (g, n, P ) is stable),
• or g = 0, n = 1 and P = (p) with p > 1;
• or g = 0, n = 0, P = (1, p) with p > 1.

We want to define the space Hg,n,P for all semi-stable triple. However, the space

M0,2 is empty thus we cannot define the spaces H0,1+1,(p) and H0,2,(1,p) as cones
over a moduli space of curves. Still, we can define the cone structure of these two
spaces over Spec(C).

The space H0,1+1,(p) is defined as the complement of {u = 0} in the space of

generalized principal parts defined in Section 2.1. In other words H0,1+1,(p) is the
spectrum of the graded subalgebra of C[a1, . . . , ap−2] generated by monomials with
integral weights (where the weight of aj is j/(p− 1)).

The spaceH0,2,(1,p) is the spectrum of the graded subalgebra of C[a1, . . . , ap−2, r]
generated by monomials with integral weights where r (for residue) has weight 1.

2.6. Stable differentials on disconnected curves. In the paper, we will need
stable differentials supported on disconnected. Let q be a positive integer, and

g = (g1, g2, . . . , gq),

n = (n1, n2, . . . , nq),

m = (m1,m2, . . . ,mq)

be lists of nonnegative integers, and let

P = (Pj)≤j≤q = (pj,i)≤j≤q,1≤i≤mj

be a list of vectors of positive integers of length mj.

Definition 2.30. The triple (g,n,P) is stable (or semi-stable), if the triple (gj , nj, Pj)
is stable (or semi-stable) for all 1 ≤ j ≤ q, (see Definition 2.29).

Unless otherwise state, we assume from now that (g,n,P) is semi-stable.

Definition 2.31. The space of stable differentials of type (g,n,P) is the space

Hg,n,P =

q∏

i=1

Hgi,ni,Pi
.

We define the interior of Hg,n,P as the open sub-stack Hg,n,P ⊂ Hg,n,P of differ-
entials supported on smooth curves.

Definition 2.32. The reduced base of type (g,n,P) (or of type (g,n,m)) is the
space

M
red

g,n,m =
∏

j such that
2gj−2+nj+mj>0

Mgj ,nj+mj
,

if the product is non-empty and Spec(C) otherwise.
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Proposition 2.33. The space of stable differentials of type P is a cone over
Mg,n,m. If the triple (g,n,P) is stable then the Segre class is given by

s
(
Hg,n,P

)
=

q∏

j=1

s
(
Hgj ,nj+mj ,Pj

)
,

where s
(
Hgj ,nj ,Pj

)
is the pull-back of the Segre class of Hgj ,nj ,Pj

to the product∏q
j=1 Mgj ,nj+mj

under the jth projection.

Proof. The proof is straightforward because the space Hg,n,P is a product of cones.
�

To handle the residues, we extend the definition of the space of residues R:

R =

q⊕

j=1

Rj = {(rj,i)j,i such that

mj∑

i=1

rj,i = 0, ∀j ∈ [1, q]} ⊂ Cm1+...+mq .(9)

Definition 2.34. Let R be a vector subspace of R. The space H
R

g,n,P is the space
of stable differentials with residues lying in R.

Lemma 2.35. Let R be a linear subspace of R. The space H
R

g,n,P is a subcone of

H
R

g,n,P of codimension dim(R)− dim(R) and we have:

• the cones Hg,n,P and H
R

g,n,P have the same Segre class;

• the Poincaré-dual class of [PH
R

g,n,P] in H
∗(PHg,n,P,Q) is given by

ξdim(R)−dim(R);

Proof. The proof of Proposition 2.27 can be adapted immediately to the general
case. �

Definition 2.36. Let p : Hg,n,P → M
red

g,n,m be the projection to the base. The tau-

tological ring of PHg,n,P is the sub-ring of H∗(PHg,n,P) generated by ξ = c1(O(1))

and pull-backs by p of tautological classes from the base M
red

g,n,m. We denote the

this ring by RH∗(PHg,n,P).

2.7. Semi-stable graphs. Let g,n,m, andP be lists of genera, numbers of marked
points without poles, numbers of marked poles and vectors of positive integers in-
dexed by j ∈ [[1, q]] as in the previous Section. We assume that (g,n,P) is semi-
stable.

In this section we define a combinatorial object called semi-stable graphs. We
show here that the spaceHg,n,P has a natural stratification according to semi-stable
graphs and that semi-graphs allow to define some tautological classes.

Definition 2.37. A semi-stable graph of type (g,n,P) is given by the data

(V,H, g : V → N, a : H → V, i : H → H,E, π0(V,E) ≃ [[1, q]], L ≃

q⋃

j=1

[[1, nj +mj ]]),

satisfying the following properties:

• V is a vertex set with a genus function g.
• H is a half-edge set equipped with a vertex assignment a and an involution i;
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• the edge set E is defined as the set of length 2 orbits of i in H (self-edges
at vertices are permitted);

• The graph (V,E) has q labeled connected components;
• for all 1 ≤ j ≤ q, the genus of the connected component labeled by j is
defined by

∑
g(v) + #(Ej)−#(Vj) + 1 and is equal to gj;

• L is the set of fixed points of i called legs;
• for all 1 ≤ j ≤ q, there are nj +mj legs on the jth connected component
and this set of legs is identified with the set [[1, nj +mj ]];

• for each vertex v in V belonging to the j-th component:
– let n(v) be the number of legs adjacent to v with label at most nj;
– let m(v) be the number of legs adjacent to v with label at least nj+1;
– let P ′(v) = (Pj,m−nj

)m 7→v,m>nj
: it is the vector obtained from Pj

by keeping only the entries associated to the legs of the second type
adjacent to v. We denote by P (v) the concatenation of P ′(V ) with
the vector (1, . . . , 1) of length equal to number of half-edges adjacent
to v that are not legs;

• for each vertex v, the triple (g(v), n(v), P (v)) is semi-stable.

We define the following lists indexed by the vertices of Γ:

gΓ = (g(v))v∈V , nΓ = (n(v))v∈V ,

mΓ = (m(v))v∈V , PΓ = (P (v))v∈V .

The triple (gΓ,nΓ,PΓ) is semi-stable (it is implied by the last condition of the
definition of a semi-stable graph). We consider the space HgΓ,nΓ,PΓ . We denote

by RΓ the space of residues of HgΓ,nΓ,PΓ . We define the subspace RΓ ⊂ R by the
equations

rh + rh′ = 0

for all edges e = (h, h′).

Notation 2.38. Let Γ be a semi-stable graph we denote by HΓ the moduli space

H
RΓ

gΓ,nΓ,PΓ
and by

ζ#Γ : HΓ → Hg,n,P

the natural closed morphism.

Proposition 2.39. The set of semi stable graphs is finite and the space Hg,n,P is

stratified according to the semi-stable graphs; i.e, for all x in Hg,n,P there exists a
unique graph Γ such that x ∈ ζΓ(HΓ).

Proof. If we fix the datum (g,n,P), then there are finitely many semi-stable graphs
Γ for (g,n,P) such that the graph Γ is stable. Indeed, there are finitely many
stabilization of Γ and then the graph Γ is determined by the choice of which set of
marked points is on an unstable rational component (we recall that unstable rational
bridges between components are not permitted because the triple (0, 0, (1, 1)) is not
semi-stable).

Now for all semi-stable graphs the only possible unstable vertices are vertices
of genus 0 with 2 marked points: a leg and a half-edge. Therefore for all stable
graphs Γ of type (g,n,P), there are finitely many semi-stable graphs Γ′ such that
the stabilization of Γ′ is equal to Γ. Therefore there are finitely many semi-stable
graphs.
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Now, if x is a point in Hg,n,P then if we denote by Γ the dual graph of the
underlying curve of x then x lies in ζΓ(HΓ). This graph is uniquely determined. �

The space PHΓ is a cone, thus it has a tautological line bundle O(1). This line

bundle is the pullback by ζ#Γ of the tautological line bundle of PHg,n,P. By abuse
of notation we will write ξ for the first Chern class of the tautological line bundle
for both spaces. We have the following important proposition.

Proposition 2.40. Let Γ be semi-stable graph. The morphism ζ#Γ ∗ : H∗(PHΓ,Q) →

H∗(PHg,n,P,Q) maps tautological classes to tautological classes.

Proof. Let Γ be a semi-stable graph. Let k ≥ 0 and β ∈ M
red

Γ . We need to prove

that the class ζ#Γ ∗(ξ
kp∗(β)) is tautological. We will prove this statement in three

steps.

Stable graphs. We suppose first that Γ is a stable graph. We recall that in this case
we have defined a map ζΓ : MΓ → Mg,n,m. Then HΓ is the fiber product

HΓ

pΓ

��

ζ#Γ // Hg,n,P

p

��
MΓ

ζΓ

// Mg,n,m

Let β be a cohomology class in H∗(MΓ,Q). We use the projection formula and the

fact that HΓ is a fiber product to get ζ#Γ ∗(ξ
k · p∗Γ(β)) = ξkp∗(ζΓ∗(β)). Therefore,

if the class β belongs to the tautological ring RH∗(MΓ,Q), then the class ζ#Γ ∗(ξ
k ·

p∗Γ(β)) belongs to the tautological ring of Hg,n,P.

Graph with one main vertex. Now we no longer assume that Γ is stable. Let 1 ≤
j ≤ q and 1 ≤ i ≤ mj . Let pi be the i

th entry of Pj . Assume that Γ is the following
graph

xj,nj+i

'&%$ !"#0

76540123gj

(we take the trivial graph for all the other connected components). We will prove

that the class ζ#Γ ∗(1) lies in RH∗(PHg,n,m,P). We use the parametrization of the
cone of principal parts at x

[(u
z

)pi−1

+ a1

(u
z

)pi−2

+ . . .+ api−2

(u
z

)] dz
z
.

The stratum defined by Γ is the vanishing locus of u. We have seen that upi−1 is a
section of the line bundle Hom(O(−1),Lpi−1

i ). Therefore the vanishing locus of u
has Poincaré-dual class given by

[u = 0] =
1

pi − 1
ξ − ψi.
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By the same argument, if Γ is the graph

xj,nj+i1 xj,nj+i2 . . .

'&%$ !"#0

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱ '&%$ !"#0
❑❑

❑❑
❑❑

❑❑ . . .

76540123gj

where the set {ik} is a set of indices in [[1,mj]]. Then we have

ζ#Γ ∗(1) =
∏

k

(
1

pik − 1
ξ − ψik

)
.

And more generally, for a class β in RH∗(M
red

g,n,m,P) and k ∈ N, we have

ζ#Γ ∗(ξ
kβ) = ξkβ ·

∏

k

(
1

pik − 1
ξ − ψik

)
∈ RH∗(Hg,n,m,P).

General unstable graph. We combine the two previous arguments. Let Γ be a

general semi-stable graph. Let Γ̂ be the graph obtained by contracting all edges

between stable vertices. We haveM
red

g,n,m = M
red

Γ̂ The spaceHΓ is the fiber product

HΓ

pΓ

��

// H
red

Γ̂

pΓ̂
��

ζ#
Γ̂ // Hg,n,m

MΓ
ζΓ

// M
red

g,n,m.

Thus ζ#Γ ∗(ξ
kp∗Γβ) = ζ#

Γ̂ ∗
(ξkp∗

Γ̂
(ζΓ∗β)). Now Γ̂ has one stable vertex, and ζΓ∗β ∈

RH∗(M
red

g,n,m) thus the class ζ#Γ ∗(ξ
kp∗Γβ) is tautological. �

3. Stratification of spaces of stable differentials

The interior of space of stable differentials is stratified according to the orders
of the zeros of the differential. In this section we study the local parametrization
of these strata and compute their dimension.

3.1. Definitions, notation. In the paper we will often consider the following set-
up.

Assumption 3.1. The quadruple (g,Z,P, R) is of the following type:

• g = (g1, . . . , gq), Z = (Z1, . . . , Zq), and P = (P1, . . . , Pq) are lists of the
same length q ≥ 1;

• for all 1 ≤ j ≤ q, gj is a positive integer, Zj is a vector of non-negative
integers of length nj and Pj is a vector of positive integers of length mj ;

• we denote by n = (n1, . . . , nq) and m = (m1, . . . ,mq);
• the triple (g,n,P) is semi-stable (in the sense of Definition 2.30)
• R is a linear subspace of R =

⊕q
j=1 Rj ≃

⊕q
j=1 C

mj−1 (defined as in (9)).

Let (g,Z,P, R) be a quadruple satisfying Assumption 3.1.
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Notation 3.2. We denote by

ARg,Z,P ⊂ HR
g,n,P

the locus of points (C, (xj,i)1≤j≤q,1≤i≤nj+mj
, α) ∈ HR

g,n,P such that C is smooth,
and α is nonzero on each connected component and has a zero of order exactly kj,i
at the ith point of the jth connected component for all 1 ≤ j ≤ q and 1 ≤ i ≤ nj .

If there is no condition on the residues we will simply denote it by Ag,Z,P.

Definition 3.3. We say that Z is complete for (g,P) if Zj is complete for (gj , Pj)
for all 1 ≤ j ≤ q.

3.2. Standard coordinates. In this section we describe how to parametrize dif-
ferentials with prescribed singularities. We use the notation ∆ρ = {z ∈ C : |z| < ρ}
for the disks of radius ρ ∈ R+ and Aρ1,ρ2 = {z ∈ C : ρ1 < |z| < ρ2} for the annulus
of parameters 0 < ρ1 < ρ2.

3.2.1. Standard coordinates. Let α be a meromorphic differential on a small disk
∆ρ ⊂ C. We denote by r the residue of α at 0. Then, there exists a conformal map
ϕ : ∆ρ′ → ∆ρ for ρ′ small enough, such that: ϕ(0) = 0 and

ϕ∗(α) =





d(zk) if 0 is a zero of order k − 1;
r dzz if 0 is a pole of order 1;
d( 1
zk ) + r dzz if 0 is a pole of order k + 1.

The map ϕ is unique up to multiplication of the coordinate z by a k-th root of
unity when 0 is a zero of order k− 1 or a pole of order k+1. The coordinate z will
be called the standard coordinate.

More generally, if U is an open neighborhood of 0 in Cn and αu is a holomorphic
family of differentials on ∆ρ such that the order of αu at 0 is constant, then there

exists a holomorphic map ϕ : Ũ × ∆ρ′ → ∆ρ such that ϕ(u, ·)∗(αu) is in the

standard form for some neighborhood of 0, Ũ . Once again the map ϕ is unique up
to multiplication of the standard coordinate by a root of unity.

Now the following classical lemma describes the deformations of d(zk) (see [25]
for a proof):

Lemma 3.4. Let ρ > 0 and U ⊂ Cn be a domain containing 0. Let αu be a family
of holomorphic differentials on ∆ρ such that α0 has a zero of order k − 1 at the
origin. Then, there exists ρ′ > 0, a neighborhood of 0 in Ck−2, Z and a conformal
map

ϕ : U ×∆ρ′ → ∆ρ ×Z

such that that ϕ(u, ·)∗(αu) = d(zk + ak−2z
k−2 . . .+ a1z). The map ϕ is unique up

to multiplication of z by a k-th root of unity.

The locus z = 0 determines a section of the projection U × ∆ρ that does not
depend on the choice of k-th root of unity. This section is called the local center of
mass of zeros.

Now we would like to generalize the above lemma to deformations of poles of
order 1.

Definition 3.5. Let ρ > 0 and U ⊂ Cn be a domain containing 0. Let α be a
differential on ∆ρ in the standard form d(zk). A standard deformation of α is defined
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by a holomorphic function β : U × ∆ρ → C satisfying β(0, z) = 0. A standard
deformation associated to β is the family of differentials on ∆ρ parametrized by U

αu = d(zk) +
β(u, z)

z
dz.

In general, there exists no standard coordinate for a standard deformation. How-
ever, the following proposition has been proved in [2] (see Theorem 4.3).

Proposition 3.6. We consider the annulus Aρ1,ρ2 for any choice of 0 < ρ1 < ρ2 <
ρ.

Chose a point p ∈ Aρ1,ρ2 and ζℓ = exp(2iπℓk ) a k-th root of unity. Chose a map

σ : U → ∆ρ such that σ(0) = ζℓp. Then there exists a neighborhood Ũ of 0 in U

and a holomorphic map ϕ : Ũ ×Aρ1,ρ2 → ∆R such that

ϕ∗
u(αu) = d(zk) +

β(u, 0)

z
dz,

and ϕ(0, z) = ζℓz and ϕ(u, p) = σ(u) for all u ∈ Ũ and z ∈ Aρ1,ρ2 . For Ũ small
enough, the map ϕ is unique.

3.2.2. Neighborhood of strata. Let (g,Z,P, R) be a quadruple satisfying Assump-
tion 3.1.

Lemma 3.7. There exists a neighborhood V of Ag,Z,P in Hg,n,P and a holomorphic
retraction η : V → Ag,Z,P such that η preserves the residues at the poles.

Proof. The general statement follows immediately from the connected case. Indeed,
Ag,Z,P is locally isomorphic to

∏q
j=1Agj ,Zj ,Pj

therefore we can define the neigh-
borhood V and the retraction η as the product of the Vj and ηj for all 1 ≤ j ≤ q.
Therefore we will assume that q = 1.

Let y0 = (C0, x1, . . . , xn+m, α0) be a point in Ag,Z,P . Let n′ be the number of
zeros of α distinct from the marked points. We chose an ordering of these zeros

(x̃1, . . . , x̃n′) and we denote by k̃i the order of α at x̃i for all 1 ≤ i ≤ n′.
We denote by d = dim(Ag,Z,P ) and by d′ = dim(Hg,n,P ). A neighborhood of

y0 in Ag,Z,P is of the form U/Aut(y0) where U is a contractible domain of Cd.
A neighborhood of U/Aut(y0) in Hg,n,P is of the form W/Aut(y0) where W is a

contractible domain of Cd
′

.
For all y = (C,α, (xj,i)) in U we denote by P (y) ⊂ C the set of poles of α and

by Z(y) the set of zeros (marked or not). For all y, the form α determines a class in
the relative cohomology group H1(C \P (y), Z(y),C). Besides, we have a canonical
identification of H1(C \ P (y), Z(y),C) with H1(C0 \ P (y0), Z(y0),C) (this is the
Gauss-Manin connection), therefore we have a holomorphic map

ΦU : U → H1 (C0 \ P (y0), Z(y0),C) .

This map can be described as follows. Let (γ1, . . . , γd) be simple closed curves
of C0 \ (P (y0)

⋃
Z(y0)) that form a basis of the relative homology group H1(C0 \

P (y0), Z(y0),Z). Then the map ΦU is defined by

ΦU : U → H1(C0 \ P (y0), Z(y0),C)

(C,α, (xi)) 7→

(
γ 7→

∫

γi

α

)
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Where the cycles on C0\(P (y0)
⋃
Z(y0)) are identified with cycles on C\(P (y)

⋃
Z(y))

by the Gauss-Manin connection. The map ΦU is a local bi-holomorphism (see [4]
for example). We call the map ΦU a period coordinates chart.

Now we will construct the following holomorphic maps

Φ1 :W → H1(C0 \ P (y0), Z(y0),C),

Φ2,i :W → Zki for all 1 ≤ i ≤ n,

Φ3,i :W → Z̃ k̃i for all 1 ≤ i ≤ n′,

where Zi is a domain of Cki containing of 0 for all 1 ≤ i ≤ n and Z̃i is a domain of

Ck̃i−1 containing of 0 for all 1 ≤ i ≤ n′.

• For all 1 ≤ i ≤ n, the map Φ2,i is determined by a slight modification of
Lemma 3.4 for marked differentials. We consider a tubular neighborhood
W ×∆ρ → CW around the i-th section of the universal curve. There exists
a ρ′ > 0 and a neighborhood Zi of 0 ∈ Cki with coordinates (ai,1, . . . , ai,ki)
and a map ϕ :W ×∆ρ → ∆ρ′ ×Zi such that the marked point is at zi = 0
and

αs = d(zki+1
i + ai,kiz

ki
i + . . .+ ai,1zi)

for each point s of W . The map ϕ is unique up to a multiplication of zi
by a (ki + 1)-st root of unity. Thus we have defined a map from W to Zi
given by αs 7→ (ai,1, . . . , ai,ki)).

• For all 1 ≤ i ≤ n′, the map Φ2,i is determined by Lemma 3.4. We consider
a tubular neighborhood W × ∆ρ → CW around the i-th section of the

universal curve. There exists a ρ′ > 0 and a neighborhood Z̃i of 0 ∈ Ck̃i−1

with coordinates (ai,1, . . . , ai,k̃i−1) and a map ϕ :W ×∆ρ → ∆ρ′ ×Zi such
that

αy = d(zk̃i+1
i + . . .+ ai,1zi)

for each point y of W . The map ϕ is once again unique up to a multiplica-

tion of zi by a (k̃i + 1)-st root of unity. Thus we have defined a map from
W to Zi given by αy 7→ (ai,1, . . . , ai,k̃i−1)).

Besides, the point zi = 0 is called the center of mass of the differential.
It does not depend on the choice of a root of unity, therefore we have a
uniquely determined point x̃i ∈ C for all s.

• The map Φ1 is defined as ΦU by the Gauss-Manin connection. For a
point y = (C,α, x1, . . . , xn+m) in W we denote by Z(y) = {x1, . . . , xn} ∪
{x̃1, . . . , x̃n′} (the union of the marked points with the center of masses de-
fined above). Then the differential α defines a point in H1(C \P (y), Z(y))
which is once again canonically identified with H1(C0 \ P (y0), Z(y0)).

We will prove that the map

Φ = Φ1 ×

(
n∏

i=1

Φ2,i

)
×




n′∏

i=1

Φ3,i




is a local bi-holomorphism (see [25] 5.2, in the holomorphic case). The source and
the target have the same dimension therefore we only need to check that that the
differential of each component of Φ is surjective. For Φ1 this is obvious because
Φ1|U = ΦU is a local bi-holomorphism.
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Let 1 ≤ i ≤ n and let ∆ρ be a disk in C0 around xi such that α = d(wki+1). Up to
a choice of a smaller Zi, for all (ai,1, . . . , ai,ki−1) ∈ Zi we have (zki+1+ . . .+ai,1z) 6=
0 for all ρ/2 < |z| < ρ. Then we construct a family of curves Ci → Zi by gluing the
two families of curves

(
C0 \∆ρ/2

)
×Zi with ∆ρ ×Zi along the identification

w = (zki+1 + . . .+ ai,1z)
1

(ki+1)

(this family depends on the choice of a the (ki + 1)-st root). Now the differential
α on Ci is determined by α0 on

(
C0 \∆ρ/2

)
× Zi and by d(zki+1 + . . . + ai,1z)

on ∆ρ × Zi. The two differentials agree by construction of the complex structure.
Therefore the differential of Φ2,i is surjective. The same argument holds for Φ3,i

for 1 ≤ i ≤ n′.
Now we set ηW = Φ−1

U ◦Φ1. This retraction does not depend on the choice of the
root of unity nor on the choice of ordering of the non-marked zeros. Indeed, it is
defined by the inverse procedure of patching d(wki+1) instead of d(zki+1+. . .+ai,1z)
for all 1 ≤ i ≤ n (and for non-marked zeros). Therefore it does not depend on the
local identification of the relative homology group. Thus if we consider two maps
ηW and ηW ′ (for neighborhoods of points y0 and y′0) then these two map agree on
W ∩W ′.

Finally, the residues are preserved by η. Indeed for any choice of y0, we can
chose a basis (γ1, . . . , γd) of H1(C0 \ P (y0), Z(y0),Z) such that γi is a small loop
around the (n + i)th marked point for all 1 ≤ i ≤ m − 1. The period of α around
this loop is the residue of α at the i-th pole and is preserved by η. �

Corollary 3.8. The residue map restricted to ARg,Z,P → R is a submersion.

Proof. Let (C, x1, . . . , xn+m, α) be a point of ARg,Z,P. Let r = (r1, . . . , rm) be a
vector in R. There exists a meromorphic differential ϕ on C with at most simple
poles at the m last marked points with residues prescribed by r. Let ∆ be a disk of
C centered at 0 and parametrized by ǫ. Let η be the retraction map of Lemma 3.7.
The residues of η(α+ ǫϕ) at the poles are given by

resxn+i
(α) + ǫri.

Thus the vector r belongs to the image of the tangent space of ARg,Z,P under the
differential of the map res. �

Remark 3.9. Recenlty Gendron and Tahar studied the surjectivity of the residue
maps for open strata in the space of meromorphic differentials (and also of higher
order differentials – see [19]). Our statement that the residue map is a submersion
does not imply surjectivity. However, the image of an algebraic submersion is
always a Zarisky open set. Thus we can claim that the residue map is surjective on
the closure of every nonempty stratum.

3.2.3. Neighborhood of strata with appearance of residues. We consider a slightly
more general set-up. Let q ≥ 2 and g,n,n′,m be list of non-negative integers of
length q. Let P = (P1, . . . , Pq) be a list of vectors of positive integers such that
length(Pj) = mj for all 1 ≤ j ≤ q and let Z = (Z1, . . . , Zq) be a list of vectors of
nonnegative integers such that length(Zj) = nj + n′

j . We assume that the triple

(g,n+ n′,P) is semi-stable (in the sense of Definition 2.30).
For all 1 ≤ j ≤ q, we denote by P ′

j = (p1, . . . , pmj
, 1, . . . , 1) the vector obtained

from p by adding n′
j times 1 and by Z ′

j = (k1, . . . , kn) the vector obtained by erasing

the last n′ entries of Z.
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The space Hg,n+n′,P is embedded in Hg,n,P′ . We denote by R and R′ the vector
spaces of residues of Hg,n+n′,P and Hg,n,P′. Let R′ be a vector subspace of R′.
The vector space R is a vector subspace of R′, and we denote by R = R ∩R′. We
have the following series of embeddings

ARg,Z,P →֒ ARg,Z′,P →֒ AR
′

g,Z′,P′ .

Proposition 3.10. Let y0 be a point in ARg,Z,P. Let U be neighborhood of y0 in

ARg,Z,P. There exists a neighborhood V of y0 in AR
′

g,Z′,P′ and a map

φ : V
∼
→ U ×



∏

1≤j≤q
1≤n′

j

Zj,i


×Z

where:

• Zj,i is a neighborhood of 0 in Ckj,nj+i for all 1 ≤ j ≤ q, 1 ≤ i ≤ n′ and Z
is a neighborhood of 0 in R′/R;

• if ∆ρ is a disk and s : U ×∆ρ → (
∏

Zj,i)× Z is a holomorphic map such
that s(u, 0) = 0 then the family of differentials

s̃ : U ×∆ρ → V

(u, ǫ) 7→ φ−1(u, s(u, ǫ))

is a standard deformation of d(zkj,nj+i+1) for all 1 ≤ j ≤ q, 1 ≤ i ≤ n′.

Proof. We have seen that a neighborhood of U in ARg,Z′,P is isomorphic to U ×
∏q
j=1

∏nj+n
′
j

i=1 Zj,i. For all 1 ≤ j ≤ q, and 1 ≤ i ≤ n′
j, the differential at the marked

point xj,nj+i is given by d(zknj+i + a1z
kj,nj+i + . . .) (Lemma 3.4).

Now, for all 1 ≤ j ≤ q and 1 ≤ i ≤ nj, we choose a meromorphic differential ϕj,i
with simple poles at the marked points in such a way that the vectors of residues
rj,i of ϕj,i form a basis of R′/R. The residue map AR

′

g,Z′,P′ → R′ is a submersion

(Corollary 3.8). Thus a neighborhood of U×
∏

Zj,i in AR
′

g,Z′,P′ is naturally identified

with a U × (
∏

Zj,i) × Z with Z neighborhood of 0 in R′/R. The identification is
given by adding a linear combination of the ϕj,i’s.

Both the deformations of U into U ×
∏

Zj,i and the deformations of U ×
∏

Zj,i
into U × (

∏
Zj,i) × Z are standard deformations at the marked point xj,nj+i for

all 1 ≤ j ≤ q and 1 ≤ i ≤ nj . �

The isomorphism φ is not unique. Our construction depends on the choice of
standard coordinates at the xj,nj+i for all 1 ≤ j ≤ q and 1 ≤ i ≤ nj and on the
choice of the differentials ϕj,i with simple poles. However Proposition 3.10 implies
the following corollary.

Corollary 3.11. Given φ satisfying the conditions of Proposition 3.10. The mor-
phism φ defines a local retraction η : V → U such that η ◦ s̃ = IdU for any
holomorphic section s : U ×∆ρ → (

∏
Zj,i)×Z.

3.3. Dimension of the strata. Let (g,Z,P, R) be quadruple satisfying Assump-
tion 3.1.

Definition 3.12. A completion of Z is a list of q vectors of non-negative integers
Z ′
1 = (k′1,1, . . . , k

′
1,n′

1
), . . . , Z ′

q = (k′1,1, . . . , k
′
1,n′

q
) such that:
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• for all 1 ≤ j ≤ q, n′
j ≥ nj ;

• for all 1 ≤ j ≤ q and 1 ≤ i ≤ n, we have k′i ≥ ki.
• Z′ is complete for (g,P).

We will say that the completion Z′ is exterior if for all j and all 1 ≤ i ≤ nj we have
k′i = ki. Finally we will denote by Zm the maximal completion, i.e. the exterior
completion of Z that satisfies k′j,i = 1 for all j and nj + 1 ≤ i ≤ n′

j .

If Z′ is a completion of Z we denote by π : ARg,Z′,P → ARg,Z,P the forgetful map
of marked point that are not accounted for by Z, i.e. the restriction of the forgetful
map of marked points π : Hg,n′,P → Hg,n,P to ARg,Z′,P. We have the following
straightforward lemma.

Lemma 3.13. We have
ARg,Z,P =

⋃

Z′

π(ARg,Z′,P),

where the union is over all exterior completions of Z.

Lemma 3.14. If q = 1 and the vector Z is complete for g and P , then the forgetful
map of the differential p : ARg,Z,P → p(ARg,Z,P ) ⊂ Mg,n+m is a line bundle minus

the zero section. In particular PARg,Z,P is isomorphic to its image.

Proof. Let (C, x1, . . . , xn+m) be a point of Im(p). The curve C is smooth and
the divisor ωC −

∑n
i=1 ki(xi) +

∑m
j=1 pj(xn+j) is a principal divisor of degree 0.

Therefore the fiber of p over (C, x1, . . . , xn+m) is given by the nonzero multiples of
one differential with fixed orders of zeros and poles. �

Proposition 3.15. The space ARg,Z,P is either empty or co-dimension
∑q

j=1 |Zj |+

dim(R/R) in Hg,n,P.

Proof. First we assume that q = 1 (connected case), Z is complete and R = R (no
residue condition). The dimension of PAg,Z,P is equal to the dimension of its image
in the moduli space of curves. Then the image of PAg,Z,P is of dimension 2g−2+n
if P is empty (see [32]) and 2g− 3+ n+m otherwise (see [15]). By a simple count
of dimension we can check that the proposition is valid in this specific case.

We no longer assume that q = 1 (but we still assume that Z is complete and
R = R). Then the space Ag,Z,P is birationally equivalent to

∏
j Agj ,Zj ,Pj

. Thus

dim(Ag,Z,P) =
∑

dim(Agj ,Zj ,Pj
) and once again, the Proposition holds by a simple

count of dimensions
Now, we still assume that Z is complete, however we no longer assume that

R = R. We have seen that the residue map ARg,Z,P → R is a submersion, therefore

the dimension of ARg,Z,P is equal to the dimension of R plus the dimension of the
fiber of the residue map at any point. If we consider the case R = R, then we see
that that dimension of the fiber at any point is dimAg,Z,P − dimR. Therefore the
dimension of ARg,Z,P is equal to dimAg,Z,P−(m−1)+dim(R). Thus the proposition
is valid for all choices of R.

Now, let Z be any vector. Let Z′ be an exterior completion of Z. The map π :
ARg,Z′,P → ARg,Z,P is quasi-finite. Indeed the preimage of a point (C, x1, . . . , xn+m, α)
is finite: the points in the preimage correspond to the different orderings of the zeros
that are not accounted for by Z.

The proof of Lemma 3.7 implies that if Ag,Z′,P is not empty for some exterior
completion then Ag,Zm,P is not empty: indeed we can always perturb a differential
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to “break up” a zero of order greater than 1. By counting the dimensions, we have
dim(ARg,Zm,P

) > dim(ARg,Z′,P) for all exterior completions Z′ 6= Zm. Therefore

dim(ARg,Zm,P
) = dim(ARg,Z,P) and the proposition is proved. �

3.4. Fibers of the map p : ARg,Z,P → Mg,n,m. Let (g,Z,P, R ⊂ R) be a quadru-
ple satisfying Assumption 3.1. Besides in all this section we assume that the triple
(g,n,P) is stable.

If the context is clear, we denote by the same letter the map p : Hg,n,P → Mg,n,m

and its restriction p : ARg,Z,P → p(ARg,Z,P). We denote by Im(p) = p(ARg,Z,P) ⊂
Mg,Z,P its image.

We recall that by definition R =
⊕q

j=1 Rj ≃
⊕q

j=1 C
mj−1 (see Section 2.6).

Notation 3.16. Let 1 ≤ j ≤ q, we denote by prj : R → Rj the projection onto
Rj along

⊕
j′ 6=j Rj′ . We denote by Rj the space prj(R).

Remark 3.17. The linear relations that define the space R may involve residues
at poles of different connected components. Thus in general we have R∩Rj ( Rj .

Let 1 ≤ j ≤ q. We denote by pj the map from A
Rj

gj ,Zj ,Pj
to Mgj ,nj+mj

. Finally

we denote by Im(pj) the image of pj . We have a natural embedding of ARg,Z,P into
∏q
j=1 A

Rj

gj ,Zj ,Pj
and of Im(p) into

∏n
i=1 Im(pj).

The purpose of this section is to state the condition (⋆⋆) (see Notation 3.23)
that ensures that the projectivized morphism p : PARg,Z,P → Im(p) is birational.
This will be needed in Section 4.4 to describe the boundary divisors of the stratum
ARg,Z,P. We will proceed in two steps: first we consider the case that Z is complete
and then a general Z.

Complete case. For now we assume that Z is complete for g and P.
We have seen that the fact that Zj is complete for all 1 ≤ j ≤ q implies that

that A
Rj

gj ,Zj ,Pj
→ Im(pj) is a line bundle minus the zero section. We denote by Lj

the pull-back of this line bundle to Im(p).
We define the j-th evaluation map of residues evj : Lj → Rj as the morphism

of vector bundles over Im(p) given by the evaluation of the residues at the j-th
connected component. We define the evaluation of residues as the morphism of

vector bundles: ev =
(⊕q

j=1 evj

)
:
⊕q

j=1 Lj → R.

Remark 3.18. The evaluation map (ev) and the residue map (res) are not defined
on the same spaces. The first one is a morphism of vector bundles on the space
Im(p) while the second one is defined as a morphism of vector bundles over PARg,Z,P.

If q = 1, then PARg,Z,P is isomorphic to its image and the two morphisms are equal.

Proposition 3.19. Suppose that Z is complete. Then, the families

p : ARg,Z,P → Im(p)

and

p̃ : ev−1(R) ∩




q∏

j=1

L∗
j


→ Im(p)

are isomorphic. If q ≥ 2, the fiber of p over a point is of dimension 1 if and only
if ev is injective and R ∩ ev(

⊕
j Lj) is of dimension 1.
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Proof. The proposition is straightforward for q = 1. We suppose from now on that
q ≥ 2.

For a point x ∈ Im(p), the fiber of p can be described as follows: it is the choice
of a nonzero differential for each connected component such that the residues at
the poles define a vector in R. Therefore the fiber over x is the subset of points of∏
L∗
j with residues in R. This fiber is given by ev−1(R) ∩

∏q
j=1 L

∗
i .

The fiber of ev−1(R) ∩
∏q
j=1 L

∗
j over x ∈ Im(p) is not empty. Indeed, suppose

that for some 1 ≤ j ≤ q the space ev−1(R) is contained in {0}×
⊕

j′ 6=j Lj′ , then the
residue condition R imposes that the differential on one of the component is zero. In
which case, x is not a point of Im(p). Therefore the dimension of ev−1(R)∩

∏q
j=1 L

∗
j

is the same as the dimension of ev−1(R) ∩
⊕q

j=1 Lj.
The only point that remains to prove is: if the map ev is not injective then

the fiber of p is of dimension greater than 1. We assume that the map ev is not
injective. Then one of the Lj’s is mapped to zero for some 1 ≤ j ≤ q: indeed for
all 1 ≤ j ≤ q, the j-th component of ev is the composition of evj : Lj → Rj with
the inclusion of Rj → R; thus if a vector in

⊕
Lj with a non-zero j-th entry is

mapped to zero in R then the generator of Lj is mapped to zero in Rj and Lj is
mapped to zero in R.

Therefore we have

ev−1(R) ∩

q⊕

j=1

Lj = Lj ⊕


ev−1(R) ∩

⊕

j′ 6=j

Lj′


 .

We have seen that ev−1(R) cannot be contained in Lj × {0}, thus the second
summands is of positive dimension and ev−1(R)∩

⊕q
j=1 Lj is of dimension greater

than 1. �

Let Σ be the union of the vector subspaces R ∩ ker(prj) for 1 ≤ i ≤ q. If R is
of positive dimension, we denote by PΣ the image of Σ in PR. This is the locus
of vectors of residues that vanish on at least one connected component. Suppose
that all Rj are of positive dimension, then Σ ( R and there is a natural map
ρ : PR \ PΣ →

∏q
j=1 PRj defined as the projection on each factor.

Notation 3.20. We will say that the residue vector spaces (R, R, (Rj)1≤i≤q) satisfy
the condition (⋆) if either q = 1 or the two following conditions holds:

• the space R and the Rj ’s are of positive dimension;
• there exists an open and dense set U in PR such that the restriction of the
natural map ρ : PR \ PΣ →

∏q
i=1 PRj to U is finite.

Proposition 3.21. Suppose that Z is complete and that q is at least 2. Then the
fiber of p over a generic point of Im(p) is of dimension 1 if and only if (R, R, (Rj)1≤j≤q)
satisfy the condition (⋆).

Proof. We have already seen that if Rj is reduced to the trivial space, then the
map ev :

⋃q
j=1 Lj → R is not injective and the fibers of p are all of dimension

greater than 1 (see the proof of Proposition 3.19). We assume that all Rj are non
trivial. For all j, we denote by A0

j ⊂ ARg,Z,P to be the locus of differentials with

zero residues on the jth component. The image of A0
j by the residue map lies in

R ∩ ker(prj) which is of positive codimension in R. Besides the residue map is a
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submersion, thus dim(A0
j ) < dim(ARg,Z,P). We will denote

A′ = ARg,Z,P \

q⋃

j=1

A0
j .

The locus A′ is dense in ARg,Z,P. If we assume that the fibers of p are generically

of dimension 1, then p(A′) is also dense in Im(p). Therefore we only need to prove
that a generic point of p(A′) has fibers of dimension 1 if and only if condition (⋆)
is satisfied.

It is easy to check that the residue map sends A′ to R \ Σ. Therefore the
locus p(A′) is the locus of points such that the map ev defined in the proof of
Proposition 3.19 is injective. Thus a point of p(A′) has fibers of dimension 1 by p if
and only if R∩ev(

⊕
j Lj) is of dimension 1. Now, R∩ev(

⊕
j Lj) is of dimension 1 if

and only if the preimage under ρ of the point (L1, . . . , Lq) ∈
∏q
j=1 PRj is composed

of a unique point.
Now the residue map is a submersion from ARg,Z,P to R. Therefore, the map ρ is

finite on a dense open subset of PR \PΣ if and only if the fiber of p is of dimension
1 on a dense open set of Im(p). �

3.4.1. General case. We no longer assume that Z is complete. We denote by
Zm = (Z1,m, . . . , Zq,m) the maximal completion of Z. Besides, we denote by
pm : ARg,Zm,P

→ Im(pm) the forgetful map of the differential.

Proposition 3.22. We suppose that (R, R, (Rj)1≤i≤q) satisfy the condition (⋆).
Then we have dim(Im(pm)) = dim(Im(p)) if and only if for all 1 ≤ j ≤ q we have

dim(A
Rj

gj ,Zj ,Pj
)− 1 ≤ dim(Mgj ,nj+mj

).

Proof. We proceed in two steps: first we assume that the base is connected and
then we consider the general case.

Connected case. We assume that q = 1. In this case, the “only if” is trivial. Indeed
PARg,Z,P = dim(Im)(pm) and dim(Im)(p) ≤ Mg,n+m.

We assume that the dimension of PARg,Z,P is less than or equal to the dimension
of Mg,n+m. We have the following commutative diagram:

ARg,Zm,P
//

pm

��

ARg,Z,P

p

��
Im(pm) // Im(p),

where the horizontal arrows are the forgetful map of the zeros that are not accounted
for by Z. We have seen that the image of ARg,Zm,P

is dense in Ag,Z,P . Therefore

the image of Im(pm) under the forgetful map of the points that are not accounted
for by Z. is dense in Im(p). Then we have dim(Im(pm)) ≥ dim(Im(p)). Now we
will prove that dim(PARg,Z,P ) ≤ dim(Im(p)).
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We consider the following two vector bundles over the moduli space of curves
Mg,n+m

KMg,n(P ) = R0π∗(ωC(
m∑

i=1

piσn+i)),

E = R/R⊕

(
n⊕

i=1

Jhol
i,ki

)
,

where Jhol
i,ki

is the vector space of holomorphic jets of order ki at the marked point
xi, i.e.

Jhol
i,ki = R0π∗(ω(−kixi)/ω).

(beware the vector space of jets here is not the vector space of polar jets used in
Section 2.2). We have a morphism e : KMg,n(P ) → E. The rank of KMg,n(P )
is r1 = g − 1 +

∑
pi if P is not empty and r1 = g otherwise. The rank of E is

r2 = dim(R/R) +
∑
ki. By assumption, we have

dim(PARg,Z,P ) = dim(Mg,n+m) + r1 − r2 − 1 ≤ dim(Mg,n+m).

Let E ⊂ Mg,n+m be the locus where e is not injective. We have r1 ≤ r2 + 1 thus
the locus E is of codimension at most r2 − r1 + 1 because it is the vanishing locus
of r2 − r1 + 1 minors of the map e. Therefore the locus E is of dimension greater
than or equal to dim(PARg,Z,P ) = dim(Im(pm)).

To complete the proof, we show that Im(p) is open and dense in E . Let P ′ be a
vector of m positive integers such that P ′ ≤ P . Let Z ′ be a vector of n nonnegative
integers such that Z ′ ≥ Z. The image of PARg,Z′,P ′ lies in E . Conversely, the locus

E is the union of all the Im(p′) where p′ is the map from PARg,Z′,P ′ to Mg,n+m for

P ′ ≤ P and Z ′ ≥ Z. We have dim(PARg,Z′,P ′) < dim(PARg,Z,P ) ≤ dim(E) if P ′ < P

or Z ′ > Z. Therefore all irreducible components of Im(p) have the same dimension
as E and dim(Im(p)) = dim(Im(pm)).

Disconnected case. Suppose that there exists 1 ≤ j ≤ q such that dim(PA
Rj

gj ,Zj ,Pj
) >

dim(Mgj ,nj+mj
). Then the fibers of the map Im(pj,m) → Im(pj) are of positive

dimension. Thus for all points in Im(p) the fibers of the map Ag,Z,P → Im(p) are
of positive dimension.

Conversely, suppose that for all 1 ≤ j ≤ q, we have dim(PA
Rj

gj ,Zj,Pj
) ≤ dim(Mgj ,nj+mj

).

Thus for all 1 ≤ j ≤ q, we have dim(Im(pj)) = dim(Im(pj,m)) = dim(PA
Rj

gj ,Zj ,Pj
).

Therefore, there exists a dense open subset Uj ⊂ PA
Rj

gj ,Zj ,Pj
such that the morphism

Im(pj,m) → Im(pj) is finite over its image. Besides, the map PARg,Z,P → PR and

the maps PA
Rj

gj ,Zj ,Pj
→ PRj are submersions. Thus, for all 1 ≤ j ≤ q, the image of

Uj under the residue map is an open subset of PRj that we denote Ũj ⊂ PRj .
Now we consider the morphism ρ : PR\PΣ →

∏
j Uj . We claim that the preimage

of
∏
j Uj under ρ is a non empty open subset in PR. Indeed, if we suppose that

ρ−1(
∏
j Uj) is empty, then the image of PR \ PΣ under ρ is contained in a finite

union of closed subsets of the form (PRj \ Ũj) ×
∏
j′ 6=j PRj′ for some 1 ≤ j ≤ q.

However, the space PR\PΣ is irreducible, thus its image under ρ is contained in one
such subspace. This would imply that the image of PR \PΣ → PRj is contained in
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a closed subspace and this is not possible (because Rj is the image of the projection
of R onto Rj).

Putting everything together, the preimage of
∏
j Ũj under the composition of

morphisms PARg,Z,P → PR \ PΣ →
∏
j Rj is an open and dense subspace U :

U ⊂ PARg,Z,P
//

��

Im(p)

��∏q
j=1 Uj ⊂

∏q
j=1 PA

Rj

gj ,Zj ,Pj

// ∏q
j=1 Im(pj)

The lower arrow is finite from
∏
j Uj to its image. By construction the subspace U

is embedded in
∏
Uj . Therefore the map U → Im(p) is finite over its image and

dim(Im(p)) = dim(PARg,Z,P) = dim(Im(pm)). �

Notation 3.23. We will say that (g,Z,P, R) satisfies condition (⋆⋆) if and only if
the two following conditions are satisfied

• the vector spaces (R, R, (Rj)1≤j≤q) satisfy the condition (⋆);

• for all 1 ≤ j ≤ q, we have dim(A
Rj

gj ,Zj ,Pj
)− 1 ≤ dim(Mgj ,nj+mj

).

Proposition 3.24. The morphism p : PARg,Z,P → Im(p) is birational if and only if

(g,Z,P, R) satisfies the condition (⋆⋆).

Proof. Proposition 3.21 implies that dim(Im(p)) = dim(PARg,Z,P) if and only if

(g,Z,P, R) satisfies the condition (⋆⋆). Therefore if p : PARg,Z,P → Im(p) is bira-

tional then the condition (⋆⋆) is satisfied.
Conversely if (⋆⋆) is satisfied, then there exists a dense open subspace U in Im(p)

such that for any point in U , the fiber of p over this point is finite. Suppose that
there are at least two points in the preimage of a marked curve (C, (xj,i)j,i) ∈
Im(p). Then there exist two non-proportional meromorphic differentials α and α′

supported on C with orders of zeros and poles prescribed by Z and P and with
the same residues at the poles. Any non zero linear combination of these two
differentials is in ARg,Z,P and in the pre-image of (C, xj,i). This is a contradiction
with the finiteness of the fibers of p over U . �

4. Boundary components of strata of stable differentials

Let (g,Z,P, R ⊂ R) be a quadruple satisfying Assumption 3.1.

Notation 4.1. We respectively denote by A
R

g,Z,P and PA
R

g,Z,P the Zariski closure

of ARg,Z,P and PARg,Z,P in Hg,Z,P and PHg,Z,P.

In this section we describe the boundary components of A
R

g,Z,P. We will see that
these can described with combinatorial objects called P-admissible graphs. We also
describe the subset of boundary divisors among these boundary components.

4.1. Twisted graphs with level structures. We introduce P-admissible graphs
here and in the subsequent section, we explain how they correspond to strata of

A
R

g,Z,P.
Let Γ be a semi-stable graph of type (g,n,P). We denote by He the set of

half-edges of Γ which are not legs.
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Definition 4.2. A twist on Γ is a function

I : He → Z

Satisfying the following conditions.

• If h and h′ form an edge, then I(h) + I(h′) = 0.
• Let v and v′ be two vertices, and {(h1, h′1), . . . , (hn, h′n)} be the set of
edges from v to v′. Then either I(hj) = 0 for all 1 ≤ j ≤ n, or I(hj) > 0
for all 1 ≤ j ≤ n, or I(hj) < 0 for all 1 ≤ j ≤ n. We say that v = v′, or
v > v′, or v < v′, depending on the above inequalities.

• The relation ≤ thus defined on vertices is transitive.

For shortness, a semi-stable graph endowed with a twist function will be called a
twisted graph. If (Γ, I) is a twisted graph, the above conditions define a partial
order on the set of vertices of Γ.

Definition 4.3. A level structure on a twisted graph is a function:

l : Vertices → Z−,

compatible with the partial order induced by the twist, i.e., for all vertices v and
v′,

v = v′ ⇒ l(v) = l(v′), v < v′ ⇒ l(v) < l(v′).

We impose that the image of l is an interval containing all integers from 0 to −d
and we call d the depth of the twisted graph. We will denote by V i the set of
vertices of level i.

Definition 4.4. An edge between vertices of the same level will be called an hor-
izontal edge.

Definition 4.5. A twisted graph with level structure is called P-admissible if all
marked poles of order at least 2 belong to vertices of level 0. For shortness we will
call such graphs admissible graphs.

This definition of P-admissibility implies in particular that unstable vertices
can only be present at the level 0. In the sequel, we will see that P-admissible
graphs represents loci in Hg,n,P where the differential vanishes identically on the
components of negative levels. As explained in the introduction, the appearance of
unstable components on the level 0 ensures that the poles remains of fixed order.

Remark 4.6. The reader should keep in mind that a stable differential cannot
vanish identically on an unstable component. Indeed, otherwise there would be
infinitely many automorphisms of the curve preserving the differential ; this would
contradict the stability condition (see Definition 1.2).

Example 4.7. We represent in Figure 1 an example of admissible graph. Each
vertex v is represented by a circle containing the integer gv. The marked poles and
zeros are represented by legs. A leg corresponding to a pole (respectively a zero) of
order k is marked by −k (respectively +k). The twists are indicated on each edge.

Definition 4.8. Let (Γ, I, l) be a semi-stable graph with a twist and a level struc-
ture. We say that (Γ, I, l) is a twisted stable graph if Γ is a stable graph (in the
sense of Definition 1.10).
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−3 −2

Level 0 '&%$ !"#1
+1

−1 −2

+1

−1

'&%$ !"#0
+1

−1

+2

'&%$ !"#2

❈❈
❈❈

❈❈
❈❈

+1

−1

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

+4

Level -1 '&%$ !"#0
+1

−1
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵

'&%$ !"#0
+2

−2

+3

−3 ✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶

+2

⑦⑦⑦⑦⑦⑦⑦⑦

Level -2 '&%$ !"#1 '&%$ !"#0

+7 +4

Figure 1. An example of admissible graph of genus 7 for the
vectors Z = (2, 4, 4, 7) and P = (−3,−2).

Definition 4.9. Let (Γ, I, l) be a semi-stable graph with a twist and a level struc-
ture. We say that (Γ, I, l) is realizable if for all vertices v of Γ we have

(10)
∑

(j,i) 7→v

kj,i −
∑

(j,nj+i) 7→v

pj,i +
∑

h 7→v

I(h)− 1 ≤ 2g(v)− 2

where the sums are respectively over marked points corresponding to zeros, marked
points corresponding to poles and half-edges adjacent to v.

The following lemma will be needed later to compare the space of stable differ-
entials and the incidence variety.

Lemma 4.10. If Z is complete, then there exists a bijection between the set of
realizable and admissible graphs and the set of realizable and twisted stable graphs.

Proof. To an admissible graph we assign its stabilization. The twists and levels on
this graph are obtained by restriction of the former twists and level functions.

From a twisted stable graph, we construct an admissible graph by adding an
unstable vertex for each marked point corresponding to a pole of order p greater
than 1 and adjacent to a vertex of level < 0. This new vertex is of level 0 and the
new edge between this vertex an the rest of the curve has twists given by +p − 1
and −p+ 1. �
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Example 4.11. Here is the stabilization of the admissible graph of Figure 1.

−2

'&%$ !"#1
+1

−1

+1

−1

+1

−1

'&%$ !"#2

❈❈
❈❈

❈❈
❈❈

+1

−1

☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

−3 +4

'&%$ !"#0
+1

−1
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

'&%$ !"#0
+2

−2

+3

−3 ✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷

+2

⑥⑥⑥⑥⑥⑥⑥⑥

'&%$ !"#1 '&%$ !"#0

+7 +4

4.2. Boundary strata associated to admissible graphs. Let (g,Z,P, R ⊂ R)
be a quadruple satisfying Assumption 3.1. Let (Γ, I, l) be an admissible graph. In
this subsection, we assign to this admissible graph a stratum of abelian differentials
AΓ,I,l ⊂ Hg,n,P that lies in the closure of ARg,Z,P. We build this stratum level by
level.

To every level 0 vertex we assign a substack of the corresponding space of differ-
entials. To every vertex of negative levels we assign a substack of the corresponding
moduli space of curves. The product of these cycles will give us a substack of the
space HΓ by putting an identically vanishing differential on every component of the
curve of negative level. Thus our input is (Z, R) and an admissible graph (Γ, I, l)
of type g,n,P; our output is a collection of subspaces of the spaces of differentials
(for level 0 vertices) and of the spaces of curves (for vertices of negative levels).

Level 0 and -1. We respectively denote by q0 and q1 the numbers of vertices of level
0 and −1. Besides, we denote by g0 and g1 the lists of genera of vertices of level 0
and −1. We determine orders of zeros and poles as follows:

• For all 1 ≤ j ≤ q0, we construct the vector P
0
j by taking the entries of P for

all marked poles on the j-th component and a −1 for each horizontal half-
edge; we construct the vector Z0

j by taking the entries of Z for all marked
zeros carried by the j-th component and I(h)− 1 for each half-edge h to a
deeper level.

• For all 1 ≤ j ≤ q1, we construct the vector P 1
j by taking I(h) + 1 for all

half-edges to level 0 and 1 for all horizontal half-edges adjacent to to the j-
th component; we construct the vector Z1

j by taking the entries of Z for all
marked zeros carried by the j-th component and I(h)−1 for each half-edge
to a deeper level.

• We denote by Zi = (Zi1, . . . , Z
i
qi) and Pi : (P

i
1, . . . , P

i
qi) for i = 0, 1.
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Now we define the residue conditions as follows

• We denote by hor0 the number of horizontal half edges of level and by
RH = Chor0 . We denote by R1 the space of residues of the space of stable
differentials Hg1,n1,P1 (where n1 is the determined by the length of entries
of Z1).

• We define

proj : R⊕RH ⊕R1 → R1

as the projection along R⊕RH .
• We consider the vector subspace R′ = R ⊕ RH ⊕ R1, and we define the

vector subspace R̃ of R′ by the following linear relations:
– rh + r′h = 0 for all horizontal edges (h, h′);
– for all vertex of level 0, we have

∑

p7→v

rp +
∑

h horizontal
h 7→v

rh +
∑

h to level −1
h 7→v

−rh = 0

where the first sum is over marked poles adjacent to v, the second is
over horizontal-edges, and the last one is over the edges to level −1
(in this last sum rh is the value of the residue at the corresponding
half-edge of level −1).

• Finally we denote by R0 = ker(proj) ∩ R̃ and R1 = proj(R̃).

With these data, we define the level 0 and −1 strata as

A0
Γ,I,l = AR

0

g0,Z0,P0
⊂ Hg0,n0,P0

A1
Γ,I,l = p(AR

1

g1,Z1,P1
) ⊂ Mg1,n1,m1 =

∏

v∈V 1

Mgv ,nv+mv
,

where p : Hg1,n1,P1 → Mg1,n1,m1 is the forgetful map.

Example 4.12. To illustrate the definition of R0 and R1, we compute all vector
spaces for the following two graphs

c −c

−a • −b

▲▲
▲▲

▲▲
▲▲

▲▲
+a •+b

rr
rr
rr
rr
rr
r

−a • −b

▲▲
▲▲

▲▲
▲▲

▲▲
+a •+b

rr
rr
rr
rr
rr
r

(a) +a • −a +b • −b (b) +a • −a +b • −b.

On these two examples we have not represented the genera of the vertices and
we have only represented the legs with poles (thus at level 0). In the first case
R = R = {0} (there are no poles). In the second case we assume that R = R ≃ C

(we impose no condition on the residues).

All letters stand for the value of the residue, i.e. for a coordinate in R̃
⊕

R1

corresponding either to a half-edge or to a marked pole. In the following table we

give the dimensions and equations of all sub-vector spaces of R̃ and a presentation

of R̃1 and R1.
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Vector space Example (a) Example (b)

R⊕RH ⊕R1 {0} ⊕ {0} ⊕ C2 C⊕ {0} ⊕ C2

R′ = R⊕RH ⊕R1 = R⊕RH ⊕R1

Relations from edges none none
Relations from vertices {a+ b = 0} {c− a− b = 0}

{(a = ǫ1, b = ǫ2,

R̃ {(a = ǫ, b = −ǫ, ǫ ∈ C} c = −ǫ1 − ǫ2, (ǫ1, ǫ2) ∈ C2}
R1 {(a = ǫ, b = −ǫ, ǫ ∈ C} {(a = ǫ1, b = ǫ2, (ǫ1, ǫ2) ∈ C2}
R0 {0} {0}

Level −ℓ. Let (Γ′, I ′, l′) be the graph obtained from Γ by contracting edges between
vertices of levels 0 through −ℓ + 1. The twist on Γ restricts to Γ′ and the level
structure is shifted. Vertices of levels 0 to −ℓ+1 merge to level 0, level −ℓ vertices
become level -1 vertices and so on. Therefore we have the natural identification

∏

v∈V (Γ),
ℓ(v)=−ℓ

Mg(v),n(v) =
∏

v∈V (Γ′),
ℓ(v)=−1

Mg(v),n(v)

and we define AℓΓ,I,l as A
1
Γ′,I′,l′ .

Example 4.13. The contraction of level 0 and −1 of the admissible graph of
Figure 1 gives the following admissible graph with two levels

−3 −2

④④
④④
④④
④④

'&%$ !"#2

−1

+1 +3

−3

'&%$ !"#2

☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

+2

−2

+1

−1

+2

④④④④④④④④

'&%$ !"#1 '&%$ !"#0

+7 +4

If we assume here that R = R ≃ C then here we have R0 = {0} while R0′ = R.

Notation 4.14. Now that we have defined the AℓΓ,I,l for all levels, we denote

AΓ,I,l =
∏

ℓ∈Z−

AℓΓ,I,l.

We have a natural morphism of AΓ,I,l →֒ Hg,n,P: the differential is nonzero only
on the level 0 vertices and vanishes identically everywhere else. We will call AΓ,I,l

the boundary stratum of type (g,Z,P, R) associated to (Γ, I, l).

Remark 4.15. Note that the stratum AΓ,I,l is constructed from an admissible
graph (Γ, I, l) of type (g,n,P), a space of residues R ⊂ R and q vectors of zeros Z.
However, for simplicity, R and Z do not explicitly appear in the notation.
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Remark 4.16. If R = R, then the construction of the space of residues is the
translation of the global residue condition of [2]. For every level −ℓ and every vertex
v of level greater than −ℓ that does not contain a pole the following conditions holds.
Let h1, . . . , hk denote the half-edges adjacent to v and part of an edge to a vertex
of level −ℓ. Then the sum of residues assigned to this set of half-edges is zero.

Our definition of the Ri is more complicated to state because we need to take
into account any vector subspace R of R.

4.3. Stratification of A
R

g,Z,P. Let (g,Z,P, R ⊂ R) be a quadruple satisfying
Assumption 3.1.

Lemma 4.17. Let (Γ, I, l) be an admissible graph of type (g,Z,P, R). The locus

AΓ,I,l lies in the closure of ARg,Z,P. Conversely if y is a point of A
R

g,Z,P then

there exists an exterior completion Z′ of Z and an admissible graph (Γ, I, l) of type
(g,Z′,P, R) such that y lies in π(AΓ,I,l), where π : ARg,Z′,P → ARg,Z,P is the forgetful
map of the marked zeros that are not accounted for by Z.

Remark 4.18. The set of admissible and realizable graphs (see Definition 4.9) is
finite. Besides, if (Γ, I, l) is an admissible graph, then the locus AΓ,I,l is empty

if (Γ, I, l) is not realizable. Thus Lemma 4.17 asserts that A
R

gZ,P is stratified by
finitely many strata corresponding to admissible graphs.

Before proving it we will introduce the incidence variety compactification of [2].

Notation 4.19. We suppose that 2gj − 2 + nj +mj > 0 for all 1 ≤ j ≤ q. Then

we denote by KMg,n(P) the vector bundle

R0π∗


ω




q∑

j=1

mj∑

i=1

pj,iσj,nj+i




 ,

where π : Cg,n,m → Mg,n,m is the forgetful map, ω is the relative cotangent bundle
and the σj,i’s are the sections of the universal curve (this generalize the notation 2.19
to the disconnected case).

As in Section 2, there exists a natural morphism of cones

stab : Hg,n,P → KMg,n(P).

4.3.1. The image of A
R

g,n,P under the morphism stab.

Definition 4.20. We denote by ΩMinc
g (Z,P)R ⊂ KMg,n(P) the image of ARg,n,P

under the morphism stab. The incidence variety for the tuple (g,Z,P, R) is the
closure of ΩMinc

g (Z,P)R in KMg,n(P).

The morphism stab induces a map from ARg,n,P to ΩMinc
g (Z,P)R. We will use

the same notation for the morphism stab and its restriction

stab : A
R

g,n,P → ΩMinc
g (Z,P)R.

Proposition 4.21. We suppose that Z is complete. The map stab : A
R

g,n,P →

ΩMinc
g (Z,P)R is an isomorphism.
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Remark 4.22. Beware that this statement is valid only under the hypothesis that
Z is complete. Otherwise the map stab may have fibers of positive dimension
and/or not be surjective.

Proof. In Section 2 we proved that the following square is cartesian

Hg,n,P

Φj,i//

��

⊕
1≤j≤q
1≤i≤mj

Pj,nj+i

��
KMg,n(P)

projj,i//⊕
1≤j≤q
1≤i≤mj

Jj,nj+i,

where Pj,nj+i is the cone of principal parts of order pj,i at the i-th marked point
of j-th connected component and Jj,nj+i is the vector bundle of polar jets of order
pj,i. We recall that we have defined the spaces

P̃j,nj+i = (Pj,nj+i \ Aj,nj+i) ∪ the zero section

J̃j,nj+i = (Jj,nj+i \ {leading term = 0}) ∪ the zero section.

We have seen that the map Φj,i maps Pnj+i to J̃nj+i and that the restriction of φi,j

to P̃j,nj+i → J̃j,nj+i is an isomorphism (see Lemma 2.17). Thus, the morphism

Hg,n,P → KMg,n(P) is an isomorphism from the preimage of
⊕

P̃j,nj+i to the

preimage of
⊕
J̃j,nj+i.

The spaces A
R

g,n,P and ΩMinc
g (Z,P)R are defined as Zariski closure of open

sub-space of Hg,n,P and KMg,n(P). Therefore we will prove that for all 1 ≤

j ≤ i and 1 ≤ i ≤ mj , the image of A
R

g,n,P (respectively ΩMinc
g (Z,P)R) under

Φj,i (respectively projj,i) is included in P̃j,nj+i (respectively J̃j,nj+i) to deduce the
proposition.

Let us consider a differential (C,α) in A
R

g,n,P and one of the marked points
xj,nj+i corresponding to a pole. There are two possibilities.

• The point xj,nj+i belongs to a stable irreducible component of level 0. In
which case the principal part belongs to Pnj+i \ Anj+i;

• The point xj,nj+i belongs to an unstable rational component. In this case
the differential restricted to this rational component is necessarily given by
dw/wpj,i (the marked point is at 0 and the node at ∞). Indeed, this follows
from the assumption that Z is complete: suppose that α has a zero outside

the node ; then let B → A
R

g,n,P be a irreducible family of differentials with
a special point b0 ∈ B whose image is the class [(C,α)] and the image of
B \ {b0} lies in ARg,n,P. Then there exists a neighborhood U of b0 such that

the differential parametrized by U has an unmarked zero (this follows from
Lemma 3.4). This is contradictory with the assumption that Z is complete
(all zeros of differentials in ARg,n,P are at marked points). Therefore the
principal part is equal to 0.

Therefore the image of A
R

g,n,P under Φj,i is included in P̃j,nj+i. Now, let us consider

a differential in ΩMinc
g (Z,P)R, and one of the marked points xj,nj+i corresponding

to a pole. Once again, there are two possibilities.
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• The point xj,nj+i belongs to an irreducible component of level 0. In this
case the differential has a pole of order exactly pj,i at this marked point

and the jet at xj,nj+i is in J̃j,ni+j ;
• The point xj,nj+i belongs to an irreducible component of level −ℓ < 0.
Then the differential vanishes identically on this component and the jet at
xj,nj+i is 0.

Therefore the image of ΩMinc
g (Z,P)R under projj,i is included in J̃j,nj+i. This

completes the proof. �

4.3.2. The image of the AΓ,I,l under the morphism stab. To complete the descrip-
tion of the map stab we describe the image of the strata defined by admissible
graphs.

Notation 4.23. Suppose that Z is complete and (Γ, I, l) is a realizable stable
twisted graph. Let (Γ′, I ′, l′) be the corresponding admissible graph. We denote by
ΩMinc

Γ′,I′,l′ the locus stab(AΓ,I,l) ⊂ KMg,n(P).

4.3.3. Stratification of ΩMinc
g (Z,P)R. Recall the main result of [2].

Lemma 4.24. (Theorem 1.3 of [2]) Suppose that Z is complete and that the triple
(gj, nj , Pj) is stable for all 1 ≤ j ≤ q. Let (Γ, I, l) be a stable graph. The locus

ΩMinc
Γ,I,l lies in the closure of ΩMinc

g (Z,P)R. Conversely the space ΩMinc
g (Z,P)R

is the union of the ΩMinc
Γ,I,l for all stable graphs (Γ, I, l).

Remark 4.25. The statement here is slightly more general than Theorem 1.3
of [2]. Indeed it takes into account possible disconnected basis and general choices
of vector subspace R ⊂ R. However all arguments in the proof of [2] can be adapted
mutatis mutandis to get the general statement above.

Proof of Lemma 4.17. Suppose that Z is complete and that the triple (gj , nj , Pj)
is stable for all 1 ≤ j ≤ q. Then, using Lemma 4.24 and Proposition 4.21 we
automatically get

A
R

g,Z,P =
⋃
AΓ,I,l

where the union is taken over all admissible graphs. Therefore we only need to
prove that the statement of Lemma 4.17 is still valid if we allow unstable base
curves and non complete lists of vectors Z.

Unstable basis. We assume that Z is complete but we no longer impose that the
base curves are stable. Then on a rational component with two points the only
possible configuration is P = (p) and Z = (p− 2). This is a closed point in H0,1,(p)

Thus the statement of Lemma 4.17 is still valid if we consider unstable basis.

Non complete Z. We no longer impose that Z is complete. The space ARg,Z,P is the

union of the π(ARg,Z′,P) for all exterior completions Z′ of Z (π being the forgetful

map of the zeros which or accounted for by Z). Therefore we have

A
R

g,Z,P =
⋃
π(A

R

g,Z′,P) =
⋃
π(AΓ,I,l),

where the last union is over all possible completions and admissible graphs. �
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4.4. Description of boundary divisors. Let (g,Z,P, R ⊂ R) be a quadruple
satisfying Assumption 3.1. In the proof of the main theorem, we will be interested

in the vanishing loci of sections of certain line bundles over A
R

g,Z,P. That is why

we need to understand the boundary divisors of A
R

g,Z,P. The purpose of this sec-
tion is to determine the set of admissible graphs which are associated to strata of
codimension 1, i.e. to divisors.

4.4.1. Bi-colored graphs.

Lemma 4.26. Let (Γ, I, l) be an admissible graph. The codimension of AΓ,I,l in

A
R

g,Z,P is greater than or equal to the depth of the level structure l.

Proof. Let (Γ, I, l) be an admissible graph of depth d. Let (Γ′, I ′, l′) be the ad-
missible graph obtained by merging the levels 0 and −1. The locus AΓ,I,l lies in
the closure of AΓ′,I′,l′ . Indeed this follows from Lemma 4.17 applied to the stra-
tum A0

Γ′,I′,l′ : the sub-graph of (Γ, I, l) obtained by keeping only vertices of level 0

and -1 determines a boundary stratum of A0
Γ′,I′,l′ . Thus AΓ,I,l is of dimension at

most dim(AΓ,I,l) − 1. Therefore, every time we merge two levels we decrease the
codimension at least by 1. �

Lemma 4.27. Let (Γ, I, l) be an admissible graph of depth 1. The codimension of

AΓ,I,l in A
R

g,Z,P is greater than the number of horizontal edges.

Proof. We can independently merge vertices along horizontal edges (See “classical
plumbing” in [2]). At every merging, we decrease the codimension by at least 1. �

It follows from Lemmas 4.26 and 4.27 that a nontrivial admissible graph corre-
sponding to a divisor of ARg,Z,P is necessarily of depth at most 1. Moreover, if it is
of depth 1 then it has no horizontal edges.

We recall from Section 4.2 that the boundary stratum associated to a graph of

depth 1 is equal to p(AR
1

g1,Z1,P1
)×AR

0

g0,Z0,P0
, where p is the map from AR

1

g1,Z1,P1
to

the moduli space of curves Mg1,n1,m1 .

Notation 4.28. We denote by Bic(g,Z,P, R) the set of realizable and admissible
graphs with two levels and no horizontal edges. We will call such graphs bi-colored
graphs.

We say that a bi-colored graph (Γ, I, l) satisfies condition (⋆⋆) if (g1,Z1,P1, R
1)

satisfies the condition (⋆⋆) (see Notation 3.23). We denote by Div(g,Z,P, R) the
set of bi-colored graphs satisfying condition (⋆⋆).

Remark 4.29. Elements of Bic(g,Z,P, R) are twisted graphs with level structures.
However, the level structure of a bi-colored graph is completely determined by the
twists. This is why we will denote by (Γ, I) the elements of Bic(g,Z,P, R).

Proposition 4.30. Let (Γ, I) be a bi-colored graph in Bic(g,Z,P, R). The locus

AΓ,I is of co-dimension 1 in A
R

g,Z,P if and only if (Γ, I) belongs to Div(g,Z,P, R).

Proof. Let (Γ, I) ∈ Bic(g,Z,P, R). The proposition follows easily from the equation

(11) dim(AR
0

g0,Z0,P0
) + dim(AR

1

g1,Z1,P1
) = dim(ARg,Z,P)



46 ADRIEN SAUVAGET

Indeed AΓ,I is of co-dimension 1 in ARg,Z,P if and only if dim(p(AR
1

g1,Z1,P1
)) =

dim(PAR
1

g1,Z1,P1
), i.e. if and only if (g1,Z1,P1, R

1) satisfy condition (⋆⋆) (see

Proposition 3.22).
Let us prove equation 11. We assume first that Z is complete for (g,P), the

dimension of ARg,Z,P is given by
(∑q

j=1(2gj − 1 + nj)
)
+ dim(R). Therefore we

have

dim(ARg,Z,P)− dim(AR
0

g0,Z0,P0
) − dim(AR

1

g1,Z1,P1
)

=




q∑

j=1

(2gj − 1 + nj)


 + dim(R)− dim(R1 ⊕R0)

−

(
∑

v∈V 0

(2gv − 1 + nv) +
∑

v∈V 1

(2gv − 1 + nv)

)

= 2h1(Γ)− q +Card(V (Γ))− Card(E(Γ))

+ dim(R)− dim(R1 ⊕R0)

= h1(Γ) + dim(R)− dim(R1 ⊕R0).

Thus we will prove that dim(R1 ⊕R0) = dim(R) + h1(Γ).
Let us recall the construction of R0 and R1. In absence of horizontal edges, we

consider the vector space R⊕R1 and the projection proj : R⊕R1 → R1 along R.

We also consider the vector subspace R̃ ⊂ R⊕R1 ⊂ R⊕R1 defined by the linear
relations ∑

h∈H(Γ),h 7→v

rh = 0

for all vertices v of level 0 (the sum is over all residues at half-edges adjacent to

v). We defined R0 = ker(proj) ∩ R̃ and R1 = proj(R̃). Thus dim(R0) + dim(R1) =

dim(R̃). Therefore we need to prove that dim(R̃) = dim(R) + h1(Γ).
To prove this equality we use the graph Γ′ obtained from Γ by adding one vertex

per marked pole and one edge between this vertex and the vertex that carries the
marked pole. We consider the spaces C0 = CV (Γ′) and C1 = CE(Γ′). We have the
chain complex d : C1 → C0.

The spaceR is a subspace ofC0: indeed, the spaceR is a subspace of the subspace

of R spanned by the vertices in V (Γ′) \ V (Γ). The space R̃ is naturally identified

with d−1(R). Therefore dim(R̃) = dim(R)+dim(ker(d)) = dim(R)+h1(Γ). Q.E.D.
If Z is not complete, then we consider Zm the maximal completion of Z. Then

equation (11) still holds by:

dim(ARg,Z,P) = dim(ARg,Zm,P) = dim(AR
0

g0,Z0,m,P0
) + dim(AR

1

g1,Z1,m,P1
)

= dim(AR
0

g0,Z0,,P0
) + dim(AR

1

g1,Z1,P1
).

�

4.4.2. Classification of boundary divisors.

Notation 4.31. Let 1 ≤ j ≤ q and 1 ≤ i ≤ ℓ(Zj). We denote by Zj,i the list of
vectors obtained from Z by increasing the ith coordinate of Zj by one.
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Proposition 4.32. Let Z′ be a completion of Z and let (Γ, I, l) be an admissible

graph such that D = π(AΓ,I) is a divisor of A
R

g,Z,P (where π is the forgetful map of
the points), then D is necessarily of one of the four kinds:

(1) the stratum AΓ,I for (Γ, I) ∈ Div(g,Z,P, R);

(2) the locus A
R

g,Zj,i,P for some label (j, i) corresponding to a marked point
which is not a pole;

(3) the locus AΓ,I,l for a P-admissible graph of depth 0 with a unique horizontal
edge;

(4) the locus A
R′

g,Z,P for the vector subspace R′ ⊂ R defined by the condition:
resxj,nj+i

= 0 for a choice of j and i such the point xj,nj+i corresponds to

a pole of order at most −1.

Proof. Let Z′ be a completion of Z. If Z′ is not the maximal completion then
dim(ARg,Z′,P) < dim(ARg,Z,P). The only possible admissible graph is the trivial and
we obtain a divisor of type 2.

We suppose now that Z′ = Zm, then (Γ, I, l) is of depth less than or equal to 1 by
Lemma 4.26. If (Γ, I, l) is of depth 0 then (Γ, I, l) has at most one horizontal edge
(type 3). If (Γ, I, l) is of depth 1 then either all or none of the edges of (Γ, I, l) are
contracted under the forgetful map of the marked points which are not accounted
for by Z (otherwise this graph does not satisfy condition (⋆⋆)). If none of the edges
are contracted, then D is a divisor of type 1. If all edges are contracted then we
get a divisor of type 2 or 4 (depending on whether there is a leg corresponding to
a pole of order 1 on a level -1 vertex or not). �

Proposition 4.33. Let D1 and D2 be two divisors obtained from an admissible
graph as in Proposition 4.32. Then D1 and D2 have no common irreducible com-
ponents.

Proof. The divisors D1 and D2 can be of one of the four types described in Propo-
sition 4.32. We will prove this proposition by considering every possible cases.

Type 1/type 1. Let (Γ, I) and (Γ′, I ′) in Div(g,Z,P, R) such that AΓ,I and AΓ′,I′

have a common irreducible component D. The component D determines a semi-
stable graph by taking the dual graph of a any point of D∩AΓ,I , therefore Γ = Γ′.
Moreover, the vertices of Γ with identically zero differentials are the vertices of
level −1. Therefore the level structure (or more precisely the signs of the twists)
are the same for (Γ, I) and (Γ′, I ′). Now the twist at an edge is determined by the
vanishing order of the differential at the corresponding node on the component of
level 0 for any point in D ∩AΓ,I . Therefore (Γ, I) = (Γ′, I ′). Thus divisors of type
1 have no common irreducible components.

Types 2 and 4. The underlying generic curve of the divisors of type 2 or 4 is a
curve without singularities, therefore divisors of type 2 or 4 do not intersect divisors
of type 1 or type 3. Now the differentials of the generic differentials of two divisors
of type 2 have different vanishing order at two of the marked points (either a marked
zero or a marked pole of order −1).

Type 3. Two divisors of type 3 are distinguished by the toplogical types of a
generic curve. Besides, a divisor of type 3 is distinguished from a divisor of type 1
because none of the components carries a vanishing differential in a divisor of type
3. �
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5. Computation of classes of strata

Let (g,Z,P, R ⊂ R) be a quadruple satisfying Assumption 3.1. The purpose
of this section is to prove the following generalization of Theorem 1 stated in the
introduction.

Theorem 4. Let (g,Z,P, R) be a quadruple satisfying Assumption 3.1. The

Poincaré-dual class of PA
R

g,Z,P ∈ H∗(PHg,n,P,Q) is tautological (in the sense of
Definition 2.36) and is explicitly computable.

Theorems 1, 2, and 3 will be deduced from Theorem 4 at the end of the section.
The most technical result involved in the proof of Theorem 4 is the induction

formula for the classes [PA
R

g,Z,P] (see Section 5.2).

5.1. A meromorphic function on A
R

g,Z,P. Let 1 ≤ j ≤ q and 1 ≤ i ≤ nj . Let

ki,j be the ith entry of Zj . We consider the line bundle:

O(−1)⊗ L
kj,i+1
j,i

∣∣∣∣
AR

g,P,Z

≃ Hom
(
O(−1),L

kj,i+1
j,i

) ∣∣∣∣
AR

g,P,Z

,

where Lj,i is the cotangent line bundle to the i-th marked point of j-th connected

component. Let sj,i be the holomorphic section of the line bundle Hom(O(−1),L
kj,i+1
j,i )|AR

g,P,Z

that maps a differential to its (kj,i + 1)-st order term at the ith marked point of
the jth connected component.

Lemma 5.1. The section sj,i vanishes with multiplicity 1 along PA
R

g,Zj,i,P.

Proof. Let y0 = (C,α, Z(y0) ∪ P (y0)) be a point of ARg,Zj,i,P
where we denote by

P (y0) ⊂ C be the set of poles of α and Z(y0) ⊂ C be the set of marked zeros of C.
Besides we denote by Z ′(y0) ⊂ C be the set of non-marked zeros.

Let W/Aut(y0) be a contractible neighborhood of y0. Up to a choice a smaller
W , in the proof of Lemma 3.7, we constructed the 3 following maps:

Φ1 :W → H1(C \ P (y0), Z(y0) ∪ Z
′(y0),C),

Φ2,x :W → Zkx for all x ∈ Z(y0),

Φ3,x :W → Z̃kx−1 for all x ∈ Z ′(y0),

where kx is the order of α at x (be it a marked or non-marked zero) and where Zk

is a domain in Ck containing 0. These maps are not uniquely determined, however,
we saw in the proof of Lemma 3.7 that the map Φ1×

∏
x∈Z(y0)

Φ2,x×
∏
x∈Z′(y0)

Φ3,x

is a local biholomorphism.
Now we consider the marked point xj,i. We denote

Φ(j,i) = Φ2,xj,i, and Φ̂(j,i) =
∏

x∈Zy0\{xj,i}

Φ2,x.

We recall that the map Φ(j,i) is defined as follows: for all points s in a neighborhood
of y0, the differential representing y is given in neighborhood of the marked point
xj,i(y) by

α =
(
zkj,i+1 + aki,jz

kj,i + . . .+ a0
)
dz

(the marked point being at z = 0), then we define Φ2(y) = (a0, . . . , aki,j ) ∈ Zkj,i+1

(this definition is unique up to choice of (kj,i + 2)-nd root of unity).
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Then with this parametrization we have

W ∩ ARg,Zj,i,P =
(
Φj,i × Φ̂j,i

)−1


 ∏

x∈Z(y0)

{0}


 ,

W ∩ARg,Z,P =
(
Φj,i × Φ̂j,i

)−1


(0, . . . , 0, ǫ)×

∏

x∈Z(y0)\{xj,i}

{0}


 .

In other words, the coordinate akj,i is a transverse parameter to the divisor ARg,Zj,i,P

in ARg,Z,P. We obviously have sj,i(y) = akj,i . Therefore the vanishing order of sj,i
along PARg,Zj,i,P

is equal to 1. �

Notation 5.2. We denote by Bic(g,P,Z, R)j,i ⊂ Bic(g,P,Z, R) the subset of
bi-colored graphs such that the ith marked point of the jth connected component
belongs to a level -1 vertex and we denote Div(g,P,Z, R)j,i the intersection of
Bic(g,P,Z, R)j,i and Div(g,P,Z, R).

Lemma 5.3. The divisors contained in the vanishing locus of sj,i are exactly the
divisors corresponding to admissible graphs in Div(g,P,Z, R)j,i and the divisor

PA
R

g,Zj,i,P. No two of these divisors have a common irreducible component.

Proof. It is a consequence of Propositions 4.32 and 4.33. �

5.2. Induction formula. Let (g,Z,P, R ⊂ R) be a quadruple satisfying Assump-
tion 3.1. Let 1 ≤ j ≤ q and 1 ≤ i ≤ nj . We recall that we denote by Zj,i the list of
vectors obtained from Z by increasing kj,i by 1. Besides, as in the previous section,
we denote by Lj,i the cotangent line to the ith marked point on the jth connected

component of the curve and by ψj,i = c1(Lj,i) ∈ H2(PHg,n,P,Q).

5.2.1. Multiplicity of (Γ, I).

Definition 5.4. Let (Γ, I) ∈ Bic(g,P,Z, R). The multiplicity of (Γ, I) is defined
as

m(I) =
∏

h→V 0

I(h),

where the product runs over the half-edges which are not legs, pointing to vertices
of level 0. The least common multiple and the group of roots of the twist are

L(I) = LCM({I(h)}h→V 0) ,

GI =

(
∏

h→V 0

ZI(h)

)/
ZL(I).

5.2.2. Locus of generic points. Let (Γ, I) ∈ Div(g,Z,P, R). We recall that

AΓ,I = p(AR
1

g1,Z1,P1
)×AR

0

g0,Z0,P0
,

where p : AR
1

g1,Z1,P1
→ Mg1,n1,m1 is the forgetful map. The condition (⋆⋆) ensures

that there exists an open dense locus Agen
1 ⊂ AR

1

g1,Z1,P1
such that the map p :

Agen
1 → p(Agen

1 ) has fibers of dimension 1 (see Proposition 3.24). Then we set

Agen
Γ,I = Agen

1 ×AR
0

g0,Z0,P0
.
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This open locus of generic points will be important for us because the map

p : Agen
1 ×AR

0

g0,Z0,P0
→ Agen

Γ,I = p(Agen
1 )×AR

0

g0,Z0,P0

is a line bundle minus the zero section.

Notation 5.5. We denote by p : NΓ,I → Agen
Γ,I this line bundle.

5.2.3. Induction formula. We finally have all elements to state the main result of
the paper.

Theorem 5. In H∗(PHg,n,P,Q) we have

(12) [PA
R

g,Zj,i,P] = (ξ + (kj,i + 1)ψj,i) · [PA
R

g,Z,P] −
∑

(Γ,I)∈Div(g,P,Z,R)j,i

m(I) [PAΓ,I ]

if 2gj − 2 + nj +mj > 0, or

(13) [PA
R

g,Zj,1,P] =
p− k − 2

p− 1
ξ · [PA

R

g,Z,P]

if gj = 0, Zj = (k), Pj = (p).

Proof of (12). As in Section 5.1, we consider the line bundle Hom(O(−1),L
kj,i+1
j,i ) →

PA
R

g,Z,P. Its first Chern class is equal to ξ+(kj,i+1)ψj,i. Moreover, this line bundle

has a global section sj,i which maps a differential to its (kj,i + 1)st-order term at

the marked point (j, i). In Lemma 5.1 we showed that sj,i vanishes along PA
R

g,Zj,i,P

with multiplicity 1. In Lemma 5.3 we showed that the remaining vanishing loci of
sj,i are supported on the PAΓ,I for (Γ, I) of Div(g,Z,P, R)j,i. Therefore we deduce
that

(ξ + (kj,i + 1)ψj,i) · [PA
R

g,Z,P] = [PA
R

g,Zj,i,P] + Z,

where Z is a cycle supported on the union of PAΓ,I for (Γ, I) ∈ Div(g,P,Z, R)j,i.
Now we claim that the vanishing order of sj,i along the locus PAΓ,I is equal

to m(I) (see Definition 5.4). Lemma 5.6 below implies this statement and thus
Equation (12). �

Lemma 5.6. Let (Γ, I) be a divisor graph in Div(g,Z,P, R)j,i. Let y0 ∈ PAgen
Γ,I .

Let ∆ be an open disk in C containing 0 and parametrized by ǫ. There exists an open
neighborhood U of y0 in PAgen

Γ,I together with a map ι : U ×∆ × GI → PHg,n,m,P

satisfying:

• the restriction ι|U×0×g is the identity on U for all g ∈ GI ;
• the image of the restriction ι|ǫ 6=0 lies in the open stratum PARg,Z,P;

• for all g ∈ GI , the section sj,i restricted to ι(U × ∆ × g) vanishes along
ι(U × 0× g) with multiplicity L(I);

• the map ι : U × ∆ × GI → PA
R

g,Z,P is a degree 1 parametrization of a

neighborhood of U in PA
R

g,Z,P.

The proof of Theorem 5 immediately follows from Lemma 5.6 because the van-
ishing order of sj,i along PAΓ,I is equal to

L(I) · Card (GI) = m(I).

Proof of Lemma 5.6. We prove the lemma in two steps: first we will prove the first
three points of the lemma and then we will prove that ι is a parametrization of
degree 1 of a neighborhood of U in ARg,Z,P.
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Proof of the first three points. For the sake of clarity we will successively prove the
first three points at three levels of generality: first for a divisor graph with one
edge, then for divisor graph with R1 = {0} and finally in full generality.

Bi-colored graph with one edge. For the moment we place ourselves in the simplest
case: (Γ, I) is an admissible graph with two vertices, one at level 0 and one at level
−1. We suppose that there is only one edge with a twist given by k > 0. Let y0 be
a point of PAgen

Γ,I . Let U be an open neighborhood of y0 in PAgen
Γ,I . A point y of U

is given by

([C0], [C1], x0, x1, [α0]),

where C0 and C1 are the curves corresponding to the two vertices of the graph; x0

and x1 are their marked point sets; α0 is a differential on the curve C0 and [α0]
its equivalence class under the C∗-action. More precisely, we denote by α0(y) a
nonvanishing section of the line bundle O(−1) over U . (Also recall that on C1 the
differential vanishes identically.)

The condition that y ∈ Agen
Γ,I implies that the curve C1 carries a unique meromor-

phic differential α1 with zeros and poles of prescribed multiplicities at the marked
points, up to a scalar factor. Let α1(y) be a nonvanishing section of the line bundle
NΓ,I , i.e., a choice of the scalar factor for each point y.

At the neighborhood of the node, the curves C1 and C0 have standard coor-
dinates z and w such that α0 = d(zk) and α1 = d( 1

wk ). The local coordinates z

and w are unique up to the multiplication by a kth root of unity. We fix one such
choice in a uniform way over U . We define a family of curves C(y, ǫ) over U ×∆
by smoothing the node between C0 and C1 via the equation zw = ǫ, where ǫ is
the coordinate on the disc ∆ and z, w are as above. The differentials α0 and ǫkα1

automatically glue together into a differential on C(y, ǫ).
The deformation that we have constructed does not depend on the choice of

standard coordinates z and w. For instance, if we multiply z by a kth root of unity
ζ, the equation of the deformation becomes zw = ζǫ, which is isomorphic to the
original deformation under a rotation of the disc ∆.

The section sj,i vanishes with multiplicity k along the locus defined by ǫ = 0:
indeed we have explicitly

sj,i(y, ǫ) = ǫk · α1(y).

Bi-colored graph (Γ, I) with R1 = {0}. We suppose now that the space R1 is trivial
(residues at the nodes between vertices of level 0 and -1 are equal to 0). A point y
in U still determines

([C0], [C1], x0, x1, [α0], [α1])

where α0 and α1 are sections of O(−1) and NΓ,I as in the previous paragraph.
Let e be an edge of Γ. We denote by ke the positive integer equal to |I(h)| for

any of the two half-edges of e. Let ze and we be choices of standard coordinates in a
neighborhood of the node corresponding to e: i.e. α0 = d(zkee ) and α1 = d(1/wkee ).
This choice of standard coordinates being fixed for all edges, we choose, on top of
that, ζe a ke-th root of unity for each edge e.

We define a family of curves C(y, ǫ) over U × ∆ by smoothing the node cor-
responding to an edge e of Γ via the equation zewe = (ζeǫ)

L(I)/ke where ǫ is the
coordinate on the disc ∆. The differentials defined by α0 and by ǫL(I)α1 automat-
ically glue together into a differential on C(y, ǫ).
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A multiplication of ǫ by a L(I)-th root of unity ζ gives an isomorphic deforma-
tion. Thus two choices of roots (ζe)e∈Edges and (ζ′e)e∈Edges give isomorphic defor-

mation if ζ′e = ζL(I)/keζe for all edges. The vanishing multiplicity of sj,i along the
locus defined by ǫ = 0 is equal to L(I).

General bi-colored graph (Γ, I). We no longer impose restrictions on R1. We still
define

([C0], [C1], x0, x1, α0, α1),

as above. Moreover we define the section r

r(y) = (re(y))e∈Edges,

where re(y) is the residue of α1 at the node of C1 corresponding to the edge e. For
every edge e, we fix a choice of standard coordinates of ze and we in a neighborhood
of the node corresponding to e, i.e., coordinates satisfying α0 = d(zkee ) and α1 =

d(1/wkee ) + re(y)dwe

we
.

Using Proposition 3.10, we get a family of differentials (C̃0, x0, α̃0) parametrized
by U ×∆ such that:

• when ǫ = 0, we have (C0, x0, α0) = (C̃0, x0, α̃0);
• the zeros of the differential which are not at the marked points correspond-
ing to nodes are of fixed orders;

• the differential α̃0 has at most simple poles at the nodes of C̃0 and the
residue at the node corresponding to the edge e is equal to −ǫL(I)re(y);

• the vector of residues at the poles of α̃0 lies in R;
• for each node corresponding to an edge e with a twist ke, the family of
differentials defined by U × ∆ is a standard deformation of d(zkee ) (see
Definition 3.5).

We use the fact that the family parametrized by U×∆ is a standard deformation of
d(zkee ) to apply Proposition 3.6. At each node e the differential α̃0 can be written
in the form d(zkee )−ǫL(I)r(u)dzeze in any annulus contained in a neighborhood of the
node. Therefore we can still glue the two components together along this annulus
with the identification zewe = ζeǫ

L(I)/ke for any choice of the ke-th root of unity
ζe. The end of the proof is the same as for divisor graphs with trivial residue
conditions.

Proof of the fourth point. Now we will prove that the map ι : U×∆×GI → PA
R

g,Z,P

is a degree 1 parametrization of a neighborhood of U in PA
R

g,Z,P.
First we prove that the image ι(U ×∆×GI) covers entirely a neighborhood of U

in ARg,Z,P. Let y0 = (C = C0∪C1, x0, x1, α0) be a point in Agen
Γ,I . Let ι̃ : ∆ → Ag,Z,P

be a family of differentials such that ι̃(0) = y0 and ι̃(ǫ) ∈ ARg,Z,P for ǫ 6= 0. We
denote by π : C → ∆ the induced family of curves and by α the induced family of
differentials on the fibers of C → ∆.

Let e be a node of C with a twist of order ke. Let γe be a simple loop in
the curve C0 around the node e. Let We be a neighborhood of γe in C such that
We ∩ π−1(ǫ) is an annulus for any ǫ small enough. Now, the differential α0 is
given by d(zkee ) in a standard coordinate. Thus the differential α|π−1(ǫ) is given by

d(zkee ) + φ(ǫ, ze)dze and we denote by re(ǫ) the integral of φ(ǫ, ze)dze along γe. We
consider the differential αe(ǫ) = dze + φ(ǫ, ze)dze − re(ǫ)

dze
ze

. We fix a point p in

the annulus We ∩ π−1(ǫ), the function f : z 7→ (
∫ z
p αe)

1/ke is uniquely determined
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for small values of ǫ. This determines a coordinate (that we will still denote ze)

such that α0 = ze
kedze − ϕ(ǫ, ze)

dze
ze

with ϕ holomorphic and thus a standard

deformation of α0. Proposition 3.6 implies that there exists a coordinate ze on this
annulus such that α|π−1(ǫ) = d(zkee ) + re(ǫ)

dze
ze

.
We fix ǫ small enough so that the coordinates ze are defined for all edges e. We

cut the curve π−1(ǫ) along simple loops contained in We. This gives two (possibly
disconnected) curves with boundary Copen

0 and Copen
1 . We “plug” the holes of Copen

0

with disks parametrized by the coordinate ze and the holes of Copen
1 with disks with

coordinate 1/ze. This determines two curves C0(ǫ) and C1(ǫ). On both C0 and C1,
the local chart used to “plug” the holes allow us to define differentials α0(ǫ) and
α1(ǫ).

The differential α1(ǫ) has a pole of order ke + 1 at we = 0; thus (C1, x1, α1)(ǫ)

is an element of AR
1

g1,Z1,P1
. Now, at the level 0, we use Proposition 3.11: in a

neighborhood of y0 we can apply the retraction η. The point η((C0, x0, α0)(ǫ)) is a

point of AR
0

g0,Z0,P0
. Therefore we define

y(ǫ) = (η(C0, x0, α0), (C1, x1, α1))(ǫ) ∈ Agen
Γ,I .

For all ǫ in a neighborhood of 0, the point ι̃(ǫ) lies in the deformation of y(ǫ) by
the family ι restricted to y(ǫ)×∆× g for some g ∈ GI (in fact here g = 1 because
of the choices of the parameters around y0 that we have fixed).

To finish the proof of the fourth point, we need to prove that the parametriza-
tion is of degree 1. For this, we once again use the retraction η defined in Propo-
sition 3.11. We have η ◦ ι = IdU , thus we only need to prove that for all y ∈ U ,
the family ι restricted to y ×∆×GI is of degree 1. We consider this family in the
moduli space of curves, i.e let

ι′ : ∆×GI → Mg,n,m

ǫ× g 7→ p(ι(y, ǫ, GI)).

This family is of degree one. Indeed the stack MΓ is regularly imbedded in Mg,n,m

and its normal bundle is the direct sum of the Th ⊗ Th′ for all edges e = (h, h′) of
Γ. Thus the family ι′ is given by the family:

ι′ : ∆×GI →
⊕

(h,h′)∈Edges

Th ⊗ Th′

(ǫ, (ζe)e∈Edges) 7→
(
ζeǫ

L(I)/ke
)
e∈Edges

,

which is of degree 1. �

Proof of Formula (13). We have seen that the space of differentials on an unstable
component is a weighted projective space parametrized by

[
wp−1 + a1w

p−2 + . . .+ ap−2w
] dw
w
,

where the weight of aj is j
p−1 . The fact that the order of the point x is kj,i is

equivalent to the vanishing of the terms ap−2, . . . , ap−kj,i−3. Therefore, the class of

[PA
R

g,Zj,i,P] is the closure of the vanishing locus ap−kj,i−2. Moreover we can easily

check that ap−1
p−kj,i+1 is a global section of O(−1)p−kj,i+1. �
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5.3. Class of a boundary divisor. Let (g,Z,P, R ⊂ R) be a quadruple satisfying
Assumption 3.1. We want to compute the Poincaré-dual class of the locus associated
to an element of Div(g,P,Z, R).

5.3.1. Decomposition of the morphism AΓ,I → Hg,Z,P. Let (Γ, I) be an admissible
graph in Bic(g,P,Z, R) (this graph may be a divisor or not). We recall that the
semi-stable graph Γ determines a stratum

ζ#Γ : HΓ = H
RΓ

gΓ,nΓ,PΓ
→ Hg,n,P

(see Section 2.7).

Remark 5.7. Beware that HΓ is purely determined by Γ (and not I). However
the twist I determines the components that are of level −1 and the P-admissibility
condition implies that these component do not carry marked poles. Therefore the
poles on these components are of order at most −1 and only at the marked points
that will be mapped to the branches of nodes.

We define the linear subspace R†
Γ ⊂ RΓ, as the space of vectors in RΓ defined

by the condition: all residues of poles on components of level −1 (or equivalently
at the nodes) vanish.

Now, we have seen that (Γ, I) defines the space

AΓ,I ≃ AR
0

g0,Z0,P0
× p(AR

1

g1,Z1,P1
) →֒ Hg0,n0,P0 ×Mg1,n1,m1

(see Notation 4.14 for the definitions of gi,Zi,Pi, and R
i). We denote by ÃΓ,I the

space on the right hand side.
With this notation, we have the following isomorphism

H
R†

Γ

gΓ,nΓ,mΓ,PΓ
≃ Hg0,n0,P0 ×

(
∏

v∈V 1

Hgv ,nv+mv

)
,

where in the second product, nv and mv are the length of Zv and Pv respectively
and we recall that pv : Hgv ,nv+mv

→ Mgv ,nv+mv
is the Hodge bundle. Indeed

a differential in H
R†

Γ

gΓ,nΓ,mΓ,PΓ
is a differential on the normalization of a curve in

ζ#Γ (HΓ) such that the differential has no residues (thus no poles) at the branches
of a node. Therefore the restriction of this differential to components of level 0
is a point in Hg0,n0,P0 (without residue condition at the marked poles), and its
restriction to the component of level −1 is an holomorphic differential (thus a point
in the product of the Hodge bundles).

All in all we have the following sequence of embeddings:

AΓ,I →֒ ÃΓ,I →֒ H
R†

Γ

gΓ,nΓ,mΓ,PΓ
→֒ HΓ,

where the second one is given by the zero section embedding of Mg1,n1,m1 in the
Hodge bundle. All these embeddings are compatible with the C∗-action therefore
we get the sequence of embeddings

PAΓ,I →֒ PÃΓ,I →֒ PH
R†

Γ

gΓ,nΓ,mΓ,PΓ
→֒ PHΓ.

From here, we will compute the Poincaré-dual cohomology class of PAΓ,I inH
∗(PHΓ,Q)

by computing successively the class of each of these sub-stacks in H∗(PHΓ,Q).
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5.3.2. The Poincaré-dual class of PÃΓ,I . We denote by

dΓ = dim(RΓ)− dim(R†
Γ).

The Poincaré-dual class of PH
R†

Γ

gΓ,nΓ,PΓ
inH∗(PHΓ,Q) is equal to ξdΓ (see Lemma 2.27).

Now we consider the morphism ψ : PH
R†

Γ

gΓ,nΓ,PΓ
→ Mg1,n1,m1 (it is the compo-

sition of a projection the forgetful map of the differential). The restriction of a

differential differential in PH
R†

Γ

gΓ,nΓ,PΓ
gives rise to morphism of vector bundles

Ψ : O(−1) //

��

ψ∗
(⊕

v∈V1
Hgv ,nv+mv

)

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

PH
R†

Γ

gΓ,nΓ,mΓ,PΓ
.

The morphism Ψ can equivalently be seen as a section ofO(1)⊗ψ∗
(⊕

v∈V1
Hgv ,nv+mv

)
.

The vanishing locus of Ψ is the locus of differentials whose restriction to level -1

components is identically zero, i.e. PÃΓ,I (with the reduced closed substack struc-

ture). The Poincaré-dual class of this locus in H∗(PHΓ,Q) is then given by

ξdΓ ·
∏

v∈V1

(ξgv + λ1ξ
gv−1 + . . .+ λgv ).

5.3.3. The Poincaré-dual class of PAΓ,I . We have the natural isomorphism:

PÃΓ,I ≃ PHg0,n0,P0 ×Mg1,n1,m1 .

We denote by Φ0 and Φ1 the projections on both factors.

Definition 5.8. The class aΓ,I ∈ H∗(PHg,n,P,Q) is defined by

1

|Aut(Γ, I)|
ζ#Γ ∗

(
ξdΓ · Φ∗

1(p∗[PA
R1

g1,Z1,P1
]) · Φ∗

0[PA
R0

g0,Z0,P0
]
∏

v∈V 1

(
ξgv + λ1ξ

gv−1 + . . .+ λgv
)
)
.

where Aut(Γ, I) is the group of automorphism of Γ preserving the twists at the
edges.

Proposition 5.9. Let (Γ, I) ∈ Bic(g,P,Z, R). We have:

(1) if (Γ, I) is divisor graph then aΓ,I = [PAΓ,I ];
(2) If (Γ, I) is not a divisor graph then aΓ,I = 0;

(3) if [PA
R0

g0,Z0,P0
] and [PA

R1

g1,Z1,P1
] are tautological and can be explicitly com-

puted then so is aΓ,I .

Proof of the first and second points. If (Γ, I) is a divisor graph then p : PAR
1

g1,Z1,P1
→

Im(p) is of degree 1, thus p∗[PA
R1

g1,Z1,P1
] = [p(PAR

1

g1,Z1,P1
)]. Therefore, by construc-

tion aΓ,I is the Poincaré-dual class of PAΓ,I .

If (Γ, I) belongs to Bic(g,P,Z, R)\Div(g,P,Z, R) then the fibers of p : PAR
1

g1,Z1,P1
→

Im(p) are of positive dimension and p∗[PA
R1

g1,Z1,P1
] = 0. �

Proof of the third point. We assume that [PA
R0

g0,Z0,P0
] and [PA

R1

g1,Z1,P1
] are tauto-

logical and can be explicitly computed.
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The projections Φ1 is equal to the composition of the forgetful map from HΓ to

M
red

Γ with the projection to the vertices of level−1. Thus by definition, if β is a tau-
tological class ofMg1,Z1,m1 then Φ∗

1β is a tautological class ofH∗(PHg,Z,P,Q). Be-

sides, if [PA
R1

g1,Z1,P1
] is tautological and be explicitly computed then so is p∗[PA

R1

g1,Z1,P1
]:

indeed the Segre class of Hg1,n1,P1 is a tautological class of Mg1,m1,P1 .

The map Φ1 is equivariant with respect to the C∗-action, thus we have Φ−1
1 (c1(O(1)) =

c1(O(1). Besides the following diagram commutes:

PÃΓ,I
Φ0 //

��

PAg0,n0,P0

p

��

M
red

Γ
// M

red

g0,n0,m0

Thus, if β is a tautological class of M
red

g0,n0,m0
, then the class Φ∗

0(p
∗(β)) is a tauto-

logical class of PHΓ and thus a tautological class of H∗(PHg,n,P,Q). �

We can already remark that Proposition 5.9 implies the following

Corollary 5.10. The following equality holds:
∑

(Γ,I)∈Bic(g,P,Z,R)j,i

m(I) aΓ,I =
∑

(Γ,I)∈Div(g,P,Z,R)j,i

m(I) aΓ,I .

Proof. It follows from the fact that if (Γ, I) ∈ Bic(g,P,Z, R)j,i \ Div(g,P,Z, R)j,i
then aΓ,I = 0. �

5.4. Proof of Theorems 1, 2, and 3. We have all ingredients to prove Theorem 4
(see the beginning of the Section).

Proof of Theorem 4. For a list Z = (Z1, . . . , Zq) of vectors of non-negative integers
we denote |Z| =

∑q
j=1 |Zj |. We prove Theorem 4 by induction on |Z|.

Base of the induction: |Z| = 0. Let (g,Z,P, R) be a quadruple satisfying 3.1 and
such that |Z| = 0. is trivial then ARg,Z,P is dense in Hg,n,P. Therefore

[PARg,Z,P] = [PH
R

g,n,P] = ξdim(R)−dim(R),

by Lemma 2.27.

Induction. Now, let (g,Z,P, R) be a quadruple satisfying 3.1 and such that |Z| > 0.

The induction Formulas (12) and (13) of Theorems 5 express the class
[
PA

R

g,Z,P

]

in terms of a class with a smaller sum of the order of zeros and a sum over all
bi-colored graph (by Corollary 5.10). We only need to prove that the class aΓ,I is
tautological for any (Γ, I) ∈ Div(g,Z,P, R).

The vectors of zeros Z0 and Z1 of the levels 0 and −1 satisfy |Zi| < |Z|. Therefore

the classes [PA
R1

g1,Z1,P1
] and [PA

R0

g0,Z0,P0
] can be computed and are tautological.

Using Proposition 5.9, this implies that the class aΓ,I is tautological and can be
computed. �

Theorems 1, 2, and 3 stated in Section 1.5 are straightforward corollaries of
Theorem 4.
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Proof of Theorems 1, 2, and 3. Theorem 1 is the special case of Theorem 4 for a
connected and stable curves. Theorem 3 is a consequence of 1 and Proposition 1.4
(the Segre class of the spaces of stable differential is tautological).

To prove Theorem 2, we recall that we denote by π̃n : PHg,n → PHg, the forgetful

map of points. The bundleHg,n is the pull-back ofHg by πn, then ξ ∈ H∗(PHg,n,Q)

is the pull-back of ξ ∈ H∗(PHg,Q). Therefore the push-forward of a tautological

class of RH∗(PHg,n,Q) by πn is in RH∗(PHg,Q) and can be explicitly computed.
If Z = (k1, . . . , kn) is complete, the map π̃n restricted to PAg,Z is finite of degree

Aut(Z) onto PH[Z]. We have

[
PH[Z]

]
=

1

Aut(Z)
· π̃n∗

[
PAg,Z

]
,

and the class
[
PH[Z]

]
is tautological and can be explicitly computed. �

6. Examples of computation

We give two examples of computation: the first one is a computation in the pro-
jectivize Hodge bundle (we forget the marked points), the second is a computation
in the moduli space of curves (we forget the differential).

6.1. The class [PHg(3)]. We consider here g > 2 and Z = (3, 1 . . . , 1). We have
seen in the introduction the computation of [PAg,(2)]. Therefore, in order to com-

pute [PAg,(3)] we need to list the divisor graphs contributing to [PAg,(3)] − (ξ +

3ψ1)[PAg,(2)].

g=0 I= •

2
❃❃

❃ •

��
�

'&%$ !"#0

II= •
❃❃

❃ • •

��
�

'&%$ !"#0

III= •

'&%$ !"#0

g=1 IV= •
2
'&%$ !"#1

V= •

'&%$ !"#1

VI= •
❃❃

❃ •

��
�

'&%$ !"#1

g=2 VII= •

'&%$ !"#2

Figure 2. List of boundary terms in [PAg,(3)]− (ξ + 3ψ1)[PAg,(2)].

We have represented vertices of level -1 with their genera and the vertices of
level 0 by bullets (the sum will run over all possible distributions of the genera of
vertices of level 0). The marked point always belong to the unique vertex of level
−1. The twists are represented by one number because the level structure already
implies the sign of the twist on each half-edge. Finally we only represented the
twists of absolute value greater than 1.
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After push-forward by the forgetful map of the marked point, we get the following
formula for the class [PH(3, 1, . . . , 1)] ∈ H∗(PHg,Q):

[PH(3, 1, . . . , 1)] = (12g − 12) ξ2 +
(
11κ1 − δ − δsep − 5 '&%$ !"#1 •

)
ξ

+
(
6κ2 − •ψe • − 1/12 '&%$ !"#0 •

)
.

We explain the notation of the above expression. If the graph is not decorated,
then the notation stands for the push forward of the fundamental class ofMΓ under
ζγ . If a graph is decorated with classes Pv in Mg(v),n(v) for each vertex then the
notation stands for ζγ∗(

∏
Pv). These classes are either ψi for a marked point, ψe

for an half-edge or λi and κi for a vertex. In the above expression there is only one
decoration ψe on a half-edge.

Remark 6.1. For g = 3, we can compute p∗[PA3,(3)] ∈ H0(M3,Q) ≃ Q, where

p is the forgetful map of the differential. We get p∗[PAg,(3)] = 24, the number of
ordinary double points of a general quartic plane curve. In genus 3, we can also
compute p∗(π∗[PA3,(2,2)]) = 2 × 28, i.e. two times the number of bi-tangents to a
general quartic plane curve.

6.2. The class [M3(4)]. Here g = 3 and Z = (4). We will compute the class
M3(4) = π∗[PA3,(4)] ∈ H4(M3,1). We will not give the details of the computation
however we have

[M3(4)] = λ2 − 10ψ1λ1 + 35ψ2
1 − 5 '&%$ !"#0 '&%$ !"#2 − '&%$ !"#1 '&%$ !"#1 + 6 '&%$ !"#1 '&%$ !"#1 '&%$ !"#1

+ '&%$ !"#1 '&%$ !"#1 '&%$ !"#1 + 6 '&%$ !"#1 '&%$ !"#2
λ1

− 34 '&%$ !"#1 '&%$ !"#2
ψ1

− 11 '&%$ !"#1
ψe'&%$ !"#2

+ '&%$ !"#1 '&%$ !"#2
λ1

− 10 '&%$ !"#1 '&%$ !"#2
ψ1

− '&%$ !"#1
ψe'&%$ !"#2

We explain the notation of the above expression. The legs on the graphs stands for
the only marked point. We have decorated graph with classes Pv in Mg(v),n(v) for
each vertex. These classes are either ψ1 (for the marked point), ψe for an half-edge
or λ1 for a vertex.

We recall that H3(4) has two connected components (hyperelliptic and odd).
In this case one can compute [M3(4)

hyp] by using the work of Faber and Pand-
haripande (see [14]). This way one can also compute [M3(4)

odd] = [M3(4)] −
[M3(4)

hyp]. In general, it is possible to compute the class of the hyperelliptic com-
ponent but we do not know how to compute separately the classes of odd and even
components for g ≥ 4.

Felix Janda has compared this expression with the expression of Conjecture
B. The two expressions agree modulo tautological relations (see Section 1.7 for
presentation of the conjecture).
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If we forget the marked point, then we get a class in Pic(Mg) ⊗ Q. Using the
string and dilaton equations and Mumford’s formula for κ1 we get

π∗[M3(4)] = 0− 10× 4 λ1 + 35 κ1 − 5 δnonsep − 0 + 6 · 0

+ 0 + 6 · 0− 34 δsep − 11 δsep

+ 0− 10× 3 δsep − δsep

= 380 λ1 − 40 δnonsep − 100 δsep.

The expression agrees with the formula of Scott Mullane (see [27]).

7. Relations in the Picard group of the strata

We fix the notation for all the section. Let g, n,m ≥ 0 such that 2g−2+n+m> 0.
Let Z = (k1, . . . , kn) and P = (p1, . . . , pn) be vectors of positive integers such that
|Z| − |P | = 2g − 2. In this section we consider the space Mg(Z − P ) ⊂ Mg,n+m

(see Section 1.5 for definitions). The purpose is to define several natural classes in
Pic(Mg(Z − P )) ⊗ Q and to compute relations between these elements. Namely
there are two types of classes which arise naturally:

• Divisors associated to admissible graphs (see Sections 4.2 and 4.4);
• Intersections of Mg(Z − P ) with the tautological classes of A1(Mg,n).

7.1. Classes defined by admissible graphs. We consider the moduli space
of stable differentials Hg,n,P and the locus Ag,Z,P ⊂ Hg,n,P . We recall that

p : Hg,n,P → Mg,n+m is the forgetful map. We have seen that Ag,Z,P admits
a stratification indexed by admissible graphs (see Lemma 4.17). Here, we will
describe the set of admissible graphs (Γ, I, l) such that p(AΓ,I,l) is a divisor in

Mg(Z − P ) = p(Ag,Z,P ).
The map p : PAg,Z,P → Mg(Z−P ) is an isomorphism (see Lemma 3.14). Thus,

if p(PAΓ,I,l) is a divisor in Mg(Z − P ) then PAΓ,I,l is a divisor in PAg,Z,P . We

saw that an admissible graph (Γ, I, l) defines to a divisor of Ag,Z,P if and only it is
of one of the three following types (see Section 4.4):

(1) the admissible graph of depth 0 with one vertex and one edge;
(2) an admissible graph of depth 0 with two vertices and one edge;
(3) a bi-colored graph that satisfies the condition (⋆⋆).

Proposition 7.1. Let (Γ, I, l) be an admissible graph. The locus p(PAΓ,I,l) is a

divisor of Mg(Z − P ) if and only if:

• or (Γ, I, l) is of the type 1 above ;
• or (Γ, I, l) is a bi-colored graph with one vertex of level −1, one stable vertex
of level 0 and possibly other semi-stable vertices of level 0.

We call irreducible divisor the divisor of Mg(Z − P ) of the first type. We denote
this divisor by D0 (with the reduced structure).

In the second case, the stabilization of the graph Γ determines a unique stable
twisted graph of depth 1, (Γ′, I ′) (we no longer write the level structure which is
uniquely determined by I). Conversely, a twisted stable graph of depth 1 with two
vertices, we can uniquely determine an admissible graph satisfying the condition of
Proposition 7.1 by putting all the poles on the component of level −1 on unstable
rational components of level 0 (see Lemma 4.10 and Example 7.3 below).
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−2 −2 +2

☛☛
☛☛
☛☛

−2 +2

☛☛
☛☛
☛☛

'&%$ !"#0

✹✹
✹✹

✹✹
'&%$ !"#1 +6

✡✡
✡✡
✡✡

//oo −2

✹✹
✹✹

✹✹
'&%$ !"#1 +6

✡✡
✡✡
✡✡

'&%$ !"#1 '&%$ !"#1

Figure 3. Example of the correspondance between admissible
and stable graphs.

Definition 7.2. A simple bi-colored graph is a twisted stable graphs of depth 1
with two vertices. We denote by SB(Z, P ) the set of simple bi-colored graphs. If
(Γ, I) is a simple bi-colored graph, we denote by DΓ,I the corresponding divisor in

Mg(Z−P ) (with the reduced structure) and by aΓ,I its class in Pic(Mg(Z−P ))⊗Q.

The class i∗aΓI
(where i is the closed immersion of p(AΓ, I) in Mg,n+m) in the

moduli space of curves is simply given by:

ζΓ∗
(
[Mg0(Z0 − P0)], [Mg1(Z1 − P1)]

)
,

where g0 and g1 are the genera of the vertices of level 0 and −1 and the vectors Z0,
P0, Z1 and P1 are the vectors encoding the orders of zeros and poles at the marked
points and half-edes induced by Z, P and the twist I.

Example 7.3. We illustrate this correspondence between simple bi-colored graphs
and boundary divisors. We consider g = 3, Z = (2, 6) and P = (−2,−2) and the
admissible graph (on this example we take the twists equal to 1 on all edges). On
this example, the class i∗aΓ,I in the moduli space of curves will be given by

ζΓ∗
(
[M1(+2,+0,+0,−2)], [M1(+6,−2,−2,−2)]

)
.

Proof of Proposition 7.1. Let (Γ, I) be an amissible graph of depth at most 1 with
several stable components of level 0. Then the fiber of p over a generic point of
p(Ag,Z,P ) is of dimension greater than one. That is why divisors of type 2 are not
mapped to divisors while the map p restricted to D0 is indeed of degree one onto
its image.

Now we consider an admissible graph of depth 1 with one stable vertex of level
0. Then the graph satisfies condition (⋆⋆) if and only it has one vertex of level −1.

Finally, we consider an admissible graph (Γ, I, l) of depth 1 and with no stable
vertex of level 0. The projectivized stratum PAΓ,I,l ⊂ PHg,n,P is empty. Indeed,
Z is complete for g and P thus the differential on each unstable component with
a marked pole of order p is given by dz/zp. Therefore AΓ,I,l is a substack of the

zero section of the cone Hg,n,P → Mg,n+m (see Section 2.3 for the description of
the zero section). �

7.2. Classes defined by residue conditions. We recall that R is the vector
space of residues, i.e. the subspace of Cm defined by {(r1, . . . , rm)/r1+. . .+rm = 0}.
Let R ⊂ R be vector subspace of codimension 1. We define the following class in
the rational Picard group of Mg(Z − P ):

δresR = p∗(PA
R

g,Z,P ).



COHOMOLOGY CLASSES OF STRATA OF DIFFERENTIALS 61

Notation 7.4. Let 1 ≤ i < j ≤ n + m. We denote SB(Z, P )i (respectively
SB(Z, P )i) the set of simple bi-colored graphs such that the leg corresponding to
i is adjacent to the vertex of level −1 (respectively to the vertex of level 0). We

denote SB(Z, P )ji = SB(Z, P )i ∩ SB(Z, P )j .
Let R ⊂ R is a vector subspace. For a simple bi-colored graph, we denote

by R0 ⊂ R be the vector space defined by the linear conditions {ri = 0} for all
1 ≤ i ≤ m such that the leg of index n+ i is at level −1. We denote by SB(Z, P )R
the set simple bi-colored graphs such that the space R contains R0.

7.3. Classes defined by intersection. Let β be a tautological class in Pic(Mg,n+m)⊗
Q. The class β determines a class in Pic(Mg(Z − P )) ⊗ Q by taking i∗β where i

is the closed immersion of of Mg(Z − P ) into Mg,n+m. If β is either λ1, κ1 or a

ψ-class then we will denote by the same letter its pull-back to Pic(Mg(Z−P ))⊗Q

if the context is clear.
The last class that we will consider is the push-forward of the ξ-class that we

denote:

ξ = p∗(ξ · [PAg,Z,P ]).

Theorem 6. The following relations holds in Pic(Mg(Z − P ))⊗Q:

(1) for all 1 ≤ i ≤ n:

ξ + (ki + 1)ψ1 =
∑

(Γ,I)∈SB(Z,P )i

m(I)aΓ,I ;

(2) for all 1 ≤ i, j ≤ n:

(ki + 1)ψi − (kj + 1)ψj =
∑

(Γ,I)∈SB(Z,P )j
i

m(I)aΓ,I −
∑

(Γ,I)∈SB(Z,P )i
j

m(I)aΓ,I ;

(3) for all R ⊂ R vector subspace of codimension 1:

ξ = δresR +
∑

(Γ,I)∈SB(Z,P )R

m(I)aΓ,I ;

(4) if m = 0 then

λ1 + κZξ =
1

12
δ +

∑

(Γ,I)∈SB(Z)

2m(I,Γ)aΓ,I ,

where δ is the boundary divisor of Mg,n,

κZ =
1

12

n∑

i=1

ki(ki + 2)

ki + 1

and m(I,Γ) =
m(I)

12

(
−m(I) +

∑

i7→v1

ki(ki + 2)

ki + 1

)
.

the second sums goes over all legs adjacent to the vertex of level −1.

7.3.1. Relations (1) and (2) and Double Ramification cycles. The second relation of
Theorem 6 is a direct consequence of the first one: we write (ki+1)ψi−(kj+1)ψj =

(ξ + (ki + 1)ψi)− (ξ + (kj + 1)ψj). However, we chose to write Relation (2) in this
form for two reasons:
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• first because it involves only classes defined directly in the moduli space of
curves;

• the second motivation is related to the Conjectures A and B. Indeed the
classes Hg(Z) and [Mg(Z − P )] (see Section 1.7 for definitions) are sup-
posed to be generalizations of Double Ramification cycles. In [5], the au-
thors proved several identities between intersection of ψ-classes with Double
Ramification cycles. One consequence of the relations proven in [5] is the
existence a universal ψ-class over the Double Ramification Cycles (inde-
pendent of the choice of a marked point). For strata of differentials the
following corollary gives a candidate for this universal ψ-class.

Corollary 7.5. The following class in Pic(Mg(Z − P ))⊗Q

(ki + 1) ψi −
∑

(Γ,I)∈SB(Z,P )i

m(I)aΓ,I

is independent of the choice of 1 ≤ i ≤ n.

Proof of Relation (1). It is a direct consequence of the induction formula (see The-
orem 5). We consider Zi, the vector obtained from Z by increasing the i-th entry
by 1 and R = R (no residue condition), then we get:

(ξ + (ki + 1)ψi) · [PAg,Z,P ] = [PAg,Zj ,P ] +
∑

(Γ,I)∈Bic(g,Z,P )i

m(I) aΓ,I .

We remark that |Zj | − |P | > 2g − 2 thus [PAg,Zj ,P ] = 0. Now we apply the push
forward by p to this expression. In the sum of the right-hand side only the simple
bi-colored graphs will contribute and we indeed get

ξ + (ki + 1)ψ1 =
∑

(Γ,I)∈SB(Z,P )i

m(I)aΓ,I .

�

7.3.2. Relation (3). To prove the third relation, we need a generalization of the in-
duction formula. Let R ⊂ R be a vector subspace of co-dimension 1. We recall that
an admissible bi-colored graph defines a space of residue conditions R0 ⊂ R (see
Section 4.2 for the construction of R0). We define Bic(g, Z, P )R ⊂ Bic(g, Z, P,R)
as the subset of bi-colored graphs such that R0 ⊂ R.

Proposition 7.6. The following equality holds in H∗(PHg,n,P ;Q)

[PA
R

g,Z,P ] = ξ[PAg,Z,P ]−
∑

(Γ,I)∈Bic(g,Z,P )R

m(I)aΓ,I .

Remark 7.7. We could have stated this proposition in a larger generality (unstable
disconnected base) but it will not be useful here.

Proof. The proof is the same as the proof of Theorem 5. We consider the line
bundle O(1) ≃ O(−1)∨ restricted to PAg,Z,P with its section

s : O(−1) → C

α 7→ R/R

defined as the composition of the residue map O(−1) → R and the projection

R → R/R. The vanishing locus of the section s is the union of PA
R

g,Z,P and of the

divisors PAΓ,I for all (Γ, I) ∈ Bic(g, Z, P )R.
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Now the vanishing order of s along PA
R

g,Z,P is 1 because the residue map is a

submersion. The vanishing order of s along PAΓ,I is 1 because Lemma 5.6 re-
mains valid if we replace the section si,j by the section s and the set of graphs
Div(g,Z,P, R)ij by the set of graphs Div(g, Z, P )R. �

Proof of Relation (3). Relation (3) is a direct consequence of Proposition 7.6. It
suffices to use apply the push-forward by the forgetful map p.

�

7.3.3. Relation (4) and the work of Eskin-Kontsevich-Zorich. Let g ≥ 2 and let
Z = (k1, . . . , kn) be a partition of 2g−2. Before proving Relation (4), let us mention
that Konstevich proved that

λ1 = −κZξ + γ

where γ is a class supported on the boundary of M(Z). From this relation, he
deduced an equation relating two numerical invariants of strata of differentials: the
sum of the Lyapunov exponents and the Siegel-Veech constants (the complete proof
of this equation was achieved in [13]). Relation (4) gives an explicit expression for
the class γ.

Proof of Relation (4). Let Z ′ be the vector equal to (k1, . . . , kn, 0). If π : Mg,n+1 →
Mg,n is the forgetful map of the last marked point, then we haveAg,Z′ = π−1(Ag,Z).
We use the induction formula to obtain the relation:

(ξ + ψn+1)[PAg,Z′ ] = 0 +
∑

Bic(g,Z)n+1

m(I)aγ,I

We multiply this formula by ψn+1 to get

(14) ξψn+1[PAg,Z′ ] + ψ2
n+1[PAg,Z′ ] =

∑

Bic(g,Z′)n+1

m(I)ψn+1aΓ,I .

Now we apply (p∗) ◦ (π∗) to this formula (we forget the last point and then the
differential). We study each term separately.

Contribution of ξψn+1[PAg,Z′ ]. The classes ξ and [PAg,Z′ ] are pull back by π thus

p∗ (π∗(ψn+1ξ[PAg,Z′ ])) = p∗ (π∗(ψn+1)ξ[PAg,Z ])

= κ0p∗(ξ[PAg,Z ])

= (2g − 2 + n)ξ

by the projection formula.

Contribution of ψ2
n+1[PAg,Z′ ]. Still by the projection formula we have:

p∗
(
π∗(ψ

2
n+1[PAg,Z′ ])

)
= p∗

(
π∗(ψ

2
n+1)[PAg,Z ]

)

= κ1

= 12λ1 − δ +

n∑

i=1

ψi.

Now we use the first relation to write:

n∑

i=1

ψi = −

(
n∑

i=1

1

ki + 1

)
ξ +

n∑

i=1


 ∑

(Γ,I)∈BS(g,Z)i

m(I)

ki + 1
aΓ,I


 .
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Contribution of
∑

Bic(g,Z′)n+1
m(I)ψn+1aΓ,I . Let (Γ, I) be a bi-colored graph in

Bic(g, Z ′)n+1. There are two possible configurations:

• the point n+ 1 belongs to a rational components with 3 special points. In
which case ψn+1aΓ,I = 0;

• the point n + 1 is carried by a general vertex of level −1 which is not
contracted after the forgetful map.

In the second case, we denote by (Γ′, I ′) the twisted graph obtained after forgetting
the marked point. We get:

π∗(ψn+1aΓ,I) = (2gΓ′,I′,1 − 2 + nΓ′,I′,1)aΓ′,I′ ,

where gΓ,1 and nΓ,1 denote the genus and valency of the vertex of level −1. Thus

(p∗ ◦ π∗)
∑

Bic(g,Z′)n+1

m(I)ψn+1aΓ,I =
∑

(Γ,I)∈BS(g,Z)

m(I)(2gΓ′,I′,1 − 2 + nΓ′,I′,1)aΓ,I .

We obtain Relation (4) by replacing all the terms in Equation (14) by their expres-
sions in terms of simple bi-colored graphs. �
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arXiv:1705.03240.

[20] D. Gieseker. A degeneration of the moduli space of stable bundles. J. Differential Geom.,
19(1):173–206, 1984.

[21] T. Graber and R. Pandharipande. Constructions of nontautological classes on moduli spaces
of curves. Michigan Math. J., 51(1):93–109, 2003.
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