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Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
firstname.lastname@lip6.fr

Abstract. In this paper, we propose a general approach based on local
search and incremental preference elicitation for solving multi-objective
combinatorial optimization problems with imprecise preferences. We as-
sume that the decision maker’s preferences over solutions can be repre-
sented by a parameterized scalarizing function but the parameters are
initially not known. In our approach, the parameter imprecision is pro-
gressively reduced by iteratively asking preference queries to the decision
maker 1) before the local search in order to identify a promising starting
solution and 2) during the local search but only when preference infor-
mation are needed to discriminate between the solutions within a neigh-
borhood. This new approach is general in the sense that it can be applied
to any multi-objective combinatorial optimization problem provided that
the scalarizing function is linear in its parameters (e.g., a weighted sum,
an OWA aggregator, a Choquet integral) and that a (near-)optimal solu-
tion can be efficiently determined when preferences are precisely known.
For the multi-objective traveling salesman problem, we provide numer-
ical results obtained with different query generation strategies to show
the practical efficiency of our approach in terms of number of queries,
computation time and gap to optimality.

Keywords: Multi-objective combinatorial optimization, local search,
preference elicitation, minimax regret, traveling salesman problem.

1 Introduction

Designing efficient preference elicitation procedures to support decision making
in combinatorial domains is one of the hot topics of algorithmic decision the-
ory. On non-combinatorial domains, various model-based approaches are already
available for preference learning. The elicitation process consists in analyzing
preference statements provided by the decision maker (DM) to assess the pa-
rameters of the decision model and determine an optimal solution (see, e.g., [5,
7, 9, 10, 14, 31]). Within this stream of work, incremental approaches are of spe-
cial interest because they aim to analyze the set feasible solutions to identify the
critical preference information needed to find the optimal alternative. By a care-
ful selection of preference queries, they make it possible to determine the optimal
choice within large sets, using a reasonably small number of questions, see e.g.,
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[10] for an example in a Bayesian setting, and [7] for another approach based on
a progressive reduction of the uncertainty attached to the model parameters.

The incremental approach was efficiently used in various decision contexts
such as multiattribute utility theory or multicriteria decision making [8, 30, 34],
decision making under risk [10, 17, 26, 32] and collective decision making [23].
However, extending these approaches for decision support on combinatorial do-
mains is more challenging due to the implicit definition of the set of solutions
and the huge number of feasible solutions. In order to overcome this problem,
several contributions aim to combine standard search procedures used in combi-
natorial optimization with incremental preference elicitation. Examples can be
found in various contexts such as constraint satisfaction [15], committee election
[3], matching [13], sequential decision making under risk [28, 33], fair multiagent
optimization [6] and multicriteria optimization [1, 19]. In multicriteria optimiza-
tion, the search procedure combines the implicit enumeration of Pareto-optimal
solutions with preferences queries allowing a progressive reduction of the un-
certainty attached to the parameters of the preference aggregation model, in
order to progressively focus the exploration on the most attractive solutions.
Various attempts to interleave incremental preference elicitation methods and
constructive algorithms have been proposed. The basic principle consists in con-
structing the optimal solution from optimal sub-solutions using the available
preference information, and to ask new preference information when necessary.
This has been tested for greedy algorithms, for dynamic programming, for A∗

and branch-and-bound search, see [4] for a synthesis.

In this paper we explore another way by considering non-constructive algorithms.
We propose to interleave the elicitation with local search for multicriteria opti-
mization. To illustrate our purpose, let us consider the following example:

Example 1 Let us consider the instance of the multi-objective traveling sales-
man problem (TSP) depicted in Figure 1, including 5 nodes and two additive
cost functions to be minimized (one looks for a cycle passing exactly once through
each node of the graph and minimizing costs). Let us start a local search from

Fig. 1. An instance of the TSP with two criteria.

the boldface tour x0 = ADBECA whose cost vector is (45, 35), using a neighbor-
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hood definition based on the simple exchange of two consecutive nodes. Among
the neighbors of x0, there is x′0 = ABDECA whose cost vector is (31, 49). As-
sume that the DM declares that x0 is better than x′0 (denoted x0 � x′0).

Let us show what could be a local search on this instance using partial preference
information interpreted under a linear model assumption:

Using a linear model. We assume here that DM’s preferences can be rep-
resented by a linear model of the form: fω(y1, y2) = ωy1 + (1 − ω)y2 for some
unknown ω ∈ (0, 1), where (y1, y2) is the cost vector associated to a feasible tour.
In this case the x0 � x′0 condition implies fω(45, 35) < fω(31, 49) and therefore
ω ∈ (0, 1/2). After this restriction of the set of possible values for ω it can easily
be checked that the optimal neighbor of x0 is solution x1 = ADBCEA of cost
(60, 20). Then by exploring the neighborhood of x1 it can easily be checked that
no other solution can improve x1 given that ω < 1/2. We get a local optimum
which is actually the optimal solution for this instance.

We can see here that, under the linear model assumption, an optimal solution
has been obtained using a single preference query. However, the linear model is
not always suitable. For example, when one looks for a compromise solution
between the two criteria, one could prefer resorting to a decision model favoring
the generation of solutions having a balanced cost vector. For this reason we
consider now another elicitation session using a non-linear weighted aggregation
function commonly used to control the balance between criterion values, namely
the Ordered Weighted Average (OWA, [22, 35]).

Using the OWA model. Now, let us assume that the DM’s preferences are
represented by a non-linear model of the form: fω(y1, y2) = ωmax{y1, y2}+(1−
ω) min{y1, y2} for some unknown ω ∈ (0, 1). In this case the x0 � x′0 condition
implies 45ω+ 35(1−ω) < 49ω+ 31(1−ω) and therefore ω ∈ (1/2, 1) (note that
although OWA is not linear in y, it is linear in ω and therefore any preference
statement translates into a linear constraint on ω). After this restriction of the
set of possible values for ω it can easily be checked that the optimal neighbor of
x0 is solution x2 = ABECDA whose cost vector is (40, 40). Then, by exploring
the neighborhood of x2, it can easily be checked that no other solution can
improve x2 given that ω > 1/2. We obtain a local optimum which is actually
the OWA-optimal solution for this instance, given the restriction on ω.

These simple executions of local search using partial preference information
show the potential of interactive local search combining local exploration of
neighborhoods and model-based preference elicitation. For a given class of pref-
erence models, the successive answers from the DM to preference queries make
it possible to progressively reduce the set of possible parameters and to discrim-
inate the solutions belonging to the neighborhood of solutions found so far.

The combination of preference elicitation has several specific advantages. In
particular, preference elicitation is based on very simple queries because they
involve neighbor solutions that are cognitively simpler to compare than pairs of
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solutions varying in all aspects. Moreover, preference queries only involve com-
plete solutions. This provides two advantages: 1) solutions are easier to compare,
and 2) no independence assumption is required in the definition of preferences
(no need to reason on partial descriptions under the assumption that preferences
hold everything all being equal). The latter point is of special interest when pref-
erences are represented by non-linear decision models. With such models, the
cost of partial solutions is a poor predictor of the actual cost of their extensions.
This seriously reduces possibilities of pruning sub-solutions in constructive algo-
rithms. Since we consider only complete solutions in local search, this problem
vanishes. Another interest of studying incremental elicitation approaches in lo-
cal search is to tackle preference-based combinatorial optimization problems for
which no efficient exact algorithm is known.

The paper is organized as follows. Section 2 introduces some preliminary
background and notations. Then, we present a general interactive local search
in Section 3. In Section 4 we further specify our approach for application to the
multi-objective TSP and provide numerical tests showing the practical efficiency
of the proposed incremental elicitation process.

2 Background and Notations

In this section, we present the necessary background on multi-objective combi-
natorial optimization and regret-based incremental elicitation.

2.1 Multi-objective Combinatorial Optimization

We consider a multi-objective combinatorial optimization (MOCO) problem
with n objectives/criteria yi, i ∈ {1, . . . , n}, that need to be minimized. This
problem can be formulated as follows: minimize

x∈X

(
y1(x), . . . , yn(x)

)
where X is

the feasible set in the decision space (e.g., for the TSP, X is the set of all Hamil-
tonian cycles). In this problem, any solution x ∈ X is associated with a vector
y(x) = (y1(x), . . . , yn(x)) ∈ Rn that gives its evaluations on all criteria. Solutions
are usually compared through their images in the objective space (also called
points) using the Pareto dominance relation: point a = (a1, . . . , an) ∈ Rn is said
to Pareto dominate point b = (b1, . . . , bn) ∈ Rn (denoted by a ≺P b) if and only
if ai ≤ bi for all i ∈ {1, . . . , n} and ai < bi for some i ∈ {1, . . . , n}. A solution
x ∈ X is said to be efficient if there is no other feasible solution x′ ∈ X such
that y(x′) ≺P y(x) and the set XE of all efficient solutions is called the efficient
set (their images are respectively called non-dominated point and Pareto front).

We assume here that the DM needs to select a single solution. Without any
preference information, we only know that her preferred solution is an element of
the efficient set. However, it is well-known that the number of efficient solutions
(and the number of non-dominated points) can be exponential in the size of
the problem (e.g., [18] for the multicriteria spanning tree problem); in such
situations, identifying the Pareto front is not enough to help the DM in making
a decision. One way to address this issue is to reduce the size of the Pareto front
by constructing a “well-represented” set; for instance, this set can be obtained
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by dividing the objective space into different regions (e.g., [20]) or by using some
approximate dominance relation (e.g., ε-dominance [21]). However, in situations
where the DM needs to select only one solution, it seems more appropriate to
refine the Pareto dominance with preferences in order to determine the optimal
solution according to the DM’s subjective preferences.

In this work, we assume that the DM’s subjective preferences can be rep-
resented by a parameterized scalarizing function fω that is linear in its pref-
erence parameters ω. For example, function fω can be a weighted sum (i.e.,
fω(a) =

∑n
i=1 ωiai), an OWA aggregator (fω(a) =

∑n
i=1 ωia(i) where a(i) ≥

. . . ≥ a(n) are the components of a sorted in non-increasing order, see e.g.
[35]) or even a Choquet integral with capacity ω (see e.g. [11, 16]). In this con-
text, solution x ∈ X is preferred to solution x′ ∈ X by the DM if and only if
fω(y(x)) ≤ fω(y(x′)). Thus any solution x ∈ X that minimizes function fω is
optimal according to the DM’s preferences.

2.2 Regret-based incremental elicitation

For the purpose of elicitation, we assume that preference parameters ω are not
known initially. More precisely, we are given a (possibly empty) set Θ of pref-
erence statements of type (a, b) ∈ Rn × Rn, meaning that the DM prefers point
a to point b, and we consider the set ΩΘ of all parameters ω that are compati-
ble with Θ the available preference information. Formally, set ΩΘ is defined by
ΩΘ = {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}. Note that ΩΘ is a convex polyhedron
since function fω is assumed to be linear in its parameters ω.

Our goal now is to determine the most promising solution under the param-
eter imprecision characterized by ΩΘ. To this aim, we consider the minimax
regret approach (e.g., [7]) which is based on the following definitions:

Definition 1 (Pairwise Max Regret) The Pairwise Max Regret (PMR) of
solution x ∈ X with respect to solution x′ ∈ X is:

PMR(x, x′, ΩΘ) = max
ω∈ΩΘ

{
fω(y(x))− fω(y(x′))

}
By definition, PMR(x, x′, ΩΘ) is the worst-case loss when recommending solu-
tion x instead of solution x′ to the DM1.

Definition 2 (Max Regret) The Max Regret (MR) of solution x ∈ X is:

MR(x,X , ΩΘ) = max
x′∈X

PMR(x, x′, ΩΘ)

In other words, MR(x,X , ΩΘ) is the worst-case loss when choosing x instead of
any other solution x′ ∈ X . Finally, the minimax reget is defined as follows:

Definition 3 (Minimax Regret) The MiniMax Regret (MMR) is:

MMR(X , ΩΘ) = min
x∈X

MR(x,X , ΩΘ)

1 Note that PMR(x, x′, ΩΘ) values can be computed using a LP solver since ΩΘ is
described by linear constraints and fω is linear in its parameters ω.
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A solution x∗ ∈ X is optimal according to the minimax regret decision crite-
rion if x∗ achieves the minimax regret, i.e. if x∗ ∈ arg minx∈X MR(x,X , ΩΘ).
Recommending such a solution guarantees that the worst-case loss is mini-
mized (given the imprecision surrounding the DM’s preferences). Moreover, if
MMR(X , ΩΘ) = 0, then we know that any optimal solution for the minimax
regret criterion is necessarily optimal according to the DM’s preferences.

Note that we have MMR(X , ΩΘ′) ≤ MMR(X , ΩΘ) for any set Θ′ ⊇ Θ, as
already observed in previous works (see e.g., [5]). Thus the general principle of
regret-based incremental elicitation is to iteratively collect preference informa-
tion by asking preference queries to the DM until MMR(X , ΩΘ) drops below
a given tolerance threshold δ ≥ 0 (representing the maximum allowable gap to
optimality); if we set δ = 0, then we obtain the (optimal) preferred solution at
the end of the execution.

3 An Interactive Local Search Algorithm

For MOCO problems, regret-based incremental elicitation may induce prohibitive
computation times since it may require to compute the pairwise max regrets for
all pairs of distinct solutions in X (see Definitions 2 and 3). This observation has
led a group of researchers to propose a new approach consisting in combining
regret-based incremental elicitation and search by asking preference queries dur-
ing the construction of the (near-)optimal solution (e.g. [2]). In this paper, we
combine incremental elicitation and search in a different way. More precisely, we
propose an interactive local search procedure that generates preference queries
1) before the local search to determine a promising starting point and 2) during
the local search to help identifying the best solution within a neighborhood.

Our interactive algorithm takes as input a MOCO problem P , two thresholds
δ = (δ1, δ2), (δ1, δ2 ≥ 0), a scalarizing function fω with unknown parameters ω,
an initial set of preference statements Θ (possibly empty), and m the number of
possible starting solutions (generated at the beginning of the procedure). First,
our algorithm identifies a promising starting solution as follows:

1. A set of m admissible preference parameters ωk, k ∈ {1, . . . ,m}, are ran-
domly generated within ΩΘ.

2. Then, for every k ∈ {1, . . . ,m}, a (near-)optimal solution is determined for
the precise scalarizing function fωk using an existing efficient algorithm. Let
X0 be the set of generated solutions.

3. Finally, preference queries are generated in order to discriminate between the
solutions in X0. More precisely, while MMR(X0, ΩΘ) > δ1, the DM is asked
to compare two solutions x, x′ ∈ X0 and the set of admissible parameters
is updated by inserting the constraint fω(x) ≤ fω(x′) (or fω(x) ≥ fω(x′)
depending on her answer); once MMR(X0, ΩΘ) drops below δ1, the starting
solution x∗ is arbitrarily chosen in arg minx∈X0

MR(x,X0, ΩΘ).

Then, our algorithm moves from solution to solution by considering local im-
provements. More precisely, it iterates as follows:
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1. Firstly, a set X∗ of solutions is generated from x∗ using a neighborhood
function defined on the search space; we add x∗ to X∗ and remove from X∗

any solution that is Pareto-dominated by another solution in this set.

2. Secondly, while MMR(X∗, ΩΘ) > δ2, the DM is asked to compare two
solutions x, x′ ∈ X∗ and ΩΘ is restricted by inserting the constraint fω(x) ≤
fω(x′) (or fω(x) ≥ fω(x′)).

3. Finally, if MR(x∗, X∗, ΩΘ) > δ2 holds, solution x∗ is then replaced by a
neighbor solution minimizing the max regret in X∗; otherwise, the algorithm
stops by returning solution x∗.

Our algorithm is called ILS for Interactive Local Search and is summarized in
Algorithm 1.

Algorithm 1: ILS

IN ↓ P : a MOCO problem; δ1, δ2: thresholds; fω: an aggregator with unknown
parameters; Θ: a set of preference statements; m: number of initial solutions.

- -| Initialization of the admissible parameters:
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}
- -| Generation of m initial solutions:
X0 ← Select&Optimize(P,ΩΘ,m)
- -| Determination of the starting solution:
while MMR(X0, ΩΘ) > δ1 do

- -| Ask the DM to compare two solutions in X0:
(x, x′)← Query(X0)
- -| Update preference information:
Θ ← Θ ∪ {(y(x), y(x′))}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}

end while
x∗ ← Select(arg minx∈X0 MR(x,X0, ΩΘ))
- -| Interactive Local Search:
improve ← true
while improve do
X∗ ← Neighbors(P, x∗) ∪ {x∗}
while MMR(X∗, ΩΘ) > δ2 do

- -| Ask the DM to compare two solutions in X∗:
(x, x′)← Query(X∗)
- -| Update preference information:
Θ ← Θ ∪ {(y(x), y(x′))}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}

end while
- -| Move to another solution:
if MR(x∗, X∗, ΩΘ) > δ2 then
x∗ ← Select(arg minx∈X∗MR(x,X∗, ΩΘ))

else
improve ← false

end if
end while
return x∗
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Note that procedures Select&Optimize and Neighbors depend on the prob-
lem considered; for instance, for the multicriteria spanning tree problem with a
weighted sum model, the optimization part can be performed using Prim algo-
rithm [27] and the neighborhood function can be defined by edge swaps. Note
also that procedure Query(X) can implement any query generation strategy that
selects two solutions in X and asks the DM to compare them; in the numerical
section, we propose and compare different query generation strategies.

It is well-known that local search is a heuristic search that may stuck at a lo-
cally optimal point that is not globally optimal; the problem obviously remains
when using our interactive local search. However, it is worth noting that our
algorithm with δ2 = 0 provides the same performance guarantees as the corre-
sponding local search algorithm with precise preferences. To give an example,
when using the 2-opt neighborhood function [12], our algorithm approximately
solves the TSP within a differential-approximation ratio bounded above by 1/2
(see [24] for further details); in the numerical section, we will see that the error
is even lower in practice.

For illustration purposes, we now present an execution of our algorithm on
a small instance of the multi-objective TSP:

Example 2 Consider the 3-objective TSP with 6 vertices defined by Figure 2. In
this problem, the set X of feasible solutions is the set of all Hamiltonian cycles,
i.e. cycles that include every node exactly once. We now apply ILS algorithm
with δ = (0, 0) on this instance considering the neighborhood function defined by
2-opt swaps [12]; in other words, the neighbors of cycles are all the cycles that
can be obtained by deleting two edges and adding two other edges from the graph
(see Figure 2 for an example).

Fig. 2. The graph on the left side of the figure represents an instance of the 3-objective
TSP with 6 vertices. The two others graphs give an example of a 2-opt movement: the
dashed edges of the cycle in the middle are deleted and then replaced by the dashed
edges in the right side of the figure.

We assume here that the DM’s preferences can be represented by a weighted
sum with the hidden weight ω∗ = (0.2, 0.1, 0.7) and we start the execution with
an empty set of preference statements (i.e. Θ = ∅). Hence ΩΘ is initially the set
of all weighting vectors ω = (ω1, ω2, ω3) ∈ [0, 1]3 such that ω1 + ω2 + ω3 = 1. In
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Figure 3, we represent ΩΘ by the triangle ABC in the space (ω1, ω2), ω3 being
implicitly defined by ω3 = 1− ω1 − ω2.

Identification of a promising starting solution: First, we generate m =
2 weighting vectors ω1 and ω2 at random and we determine then the correspond-
ing optimal solutions x1 and x2. If ω1 = (0.6, 0.3, 0.1) and ω2 = (0.3, 0.6, 0.1), we
obtain the following evaluation: y(x1) = (19, 34, 30) and y(x2) = (21, 32, 27). Let
X0 = {x1, x2}. Since MMR(X0, ΩΘ) = 2 > δ1, we ask the DM to compare x1

and x2. Since fω∗(y(x1)) = 28.2 > fω∗(y(x2)) = 26.3, the DM prefers solution
x2 to x1. Therefore we set Θ = {((21, 32, 27), (19, 34, 30))} and ΩΘ is restricted
by imposing the constraint fω(y(x2)) ≤ fω(y(x1)), i.e. ω2 ≤ −5ω1 + 3 (see
Figure 4 where ΩΘ is represented by ABDE). Now we have MMR(X0, ΩΘ) =
MR(x2, X0, ΩΘ) = 0 ≤ δ1, and therefore x2 is chosen to be the starting solution
(i.e. x∗ = x2).

Local Search: At the first iteration step, three neighbors of x∗ are Pareto
non-dominated, and the set X∗ contains four solutions, denoted by x1, x2(=
x∗), x3 and x4 evaluated as follows: y(x1) = (23, 34, 26), y(x2) = (21, 32, 27),
y(x3) = (19, 34, 30) and y(x4) = (20, 31, 30). Since MMR(X∗, ΩΘ) = 1 > δ2,
we ask the DM to compare two solutions in X∗, say x1 and x∗. As fω∗(y(x1)) =
26.2 < fω∗(y(x∗)) = 26.3, the DM prefers x1 to x∗. Therefore we obtain Θ =
{((21, 32, 27), (19, 34, 30)), ((23, 34, 26), (21, 32, 27))} and ΩΘ is restricted by the
linear constraint fω(y(x1)) ≤ fω(y(x∗)), i.e. ω2 ≤ −ω1+1/3 (see Figure 5 where
ΩΘ is represented by AGF). Then we stop asking queries at this step since we
have MMR(X∗, ΩΘ) = MR(x1, X∗, ΩΘ) = 0 ≤ δ2. We move from x∗ = x2 to
solution x1 for the next step (i.e., we now set x∗ = x1).

At the second iteration step, X∗ only includes three solutions denoted by
x1(= x∗), x2 and x3 with y(x1) = (23, 34, 26), y(x2) = (21, 32, 27) and y(x3) =
(19, 33, 31). Since MMR(X∗, ΩΘ) = 0 ≤ δ2, no query is generated at this step.
Moreover, MR(x∗, X∗, ΩΘ) = 0 ≤ δ2 (that is x∗ ∈ arg minx∈X∗MR(x,X∗, ΩΘ))
and x∗ is thus a local optimum (variable improve is set to false and the while
loop ends). Therefore, after two iteration steps, ILS algorithm stops by returning
the solution x∗ = x1 which is the preferred solution in this problem. Note that
only two preference queries were needed to discriminate between the 60 feasible
solutions (among which 10 are Pareto-optimal).
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Fig. 3. Initial set ΩΘ.
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Fig. 5. ΩΘ after 2 queries.
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To illustrate ILS and the impact of m (the number of initial solutions), we
show the evolution of the local search on a randomly generated instance of
the bi-criteria TSP with 100 cities (see Figure 6). The left part of the figure
(m = 1) shows that the neighborhood function enables to go straight to the
optimal solution instead of following the Pareto front. However the number of
iterations can still be very large when the starting solution is far from the optimal
solution in the objective space. The right part of the figure (m = 2) shows that
the number of iterations can be much reduced when increasing the number of
possible starting solutions and selecting the most preferred one.
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Fig. 6. Results obtained for an instance of the 2-criteria TSP.

4 Numerical Tests

In this section, we provide numerical results aiming to estimate the performance
of our algorithm. In these experiments, we use existing Euclidean instances2

of the multi-objective TSP with 25 to 100 cities, and n = 3 to 6 objectives.
Numerical tests were performed on a Intel Core i7-8550U CPU with 16 GB of
RAM, with a program written in C++3.

4.1 Preferences represented by a weighted sum

We assume here that the preferences are represented by a weighted sum fω with
imprecise weights, with an empty set of preference statements (i.e. Θ = ∅). The
answers to queries are simulated using a weighting vector ω randomly generated
before running the algorithm, using the procedure presented in [29], to guarantee
a uniform distribution of the weights.

2 https://eden.dei.uc.pt/~paquete/tsp/
3 PMRs values are computed using CPLEX Optimizer (https://www.ibm.com/
analytics/cplex-optimizer) and the optimization part of Select&Optimize is per-
formed by the exact TSP solver Concorde (http://www.math.uwaterloo.ca/tsp/
concorde).
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In ILS algorithm, procedure Query(X) selects two solutions from X and then
asks the DM to compare them. We first want to estimate the impact of the query
generation strategy on the performances of ILS algorithm. To do so, we consider
the following two query generation strategies:

– Random: the set of possibly optimal solutions in X are computed and then
two of them are selected at random at each iteration step; note that the set
of possibly optimal solutions in X can be determined in polynomial time in
the size of X (see e.g., [1]).

– CSS: The Current Solution Strategy (CSS) selects a solution x∗ ∈ X that
minimizes the max regret MR(x∗, X,ΩΘ) and then the DM is asked to
compare solution x∗ with one of its adversary’s choice (i.e. a solution in
arg maxx∈X PMR(x∗, x,ΩΘ)) [7].

These strategies are compared in terms of computation time (given in seconds),
number of generated queries and the error (expressed in terms of percentage from
the optimal solution). Results averaged over 100 runs are given in Table 1 for
the instance with 50 cities. In this table, “/” means that the timeout is exceeded
(the timeout is set to 900 seconds).

CSS Random
n m time queries error time queries error

4 10 28.52 35.90 1.96 15.33 77.54 1.90
4 50 8.65 27.31 1.11 317.11 380.18 0.92
4 100 6.71 24.34 0.69 894.93 375.83 0.70

6 10 537.07 85.67 2.06 67.91 168.71 2.31
6 50 133.08 68.45 1.64 899.39 338.98 1.49
6 100 43.06 54.40 1.35 > 900 / /

Table 1. Comparison between CSS and Random strategies, 50 cities, δ = (0, 0).

First, we see that the query strategy has an important impact on the quality
of the results: with the random strategy the number of queries and computation
time are much higher than with the CSS strategy, showing that preference queries
must be carefully chosen when designing incremental elicitation methods. Then
we see that ILS with CSS achieves better results when increasing the number of
possible initial solutions, in terms of computation times, queries and error (as
the selected starting solution is becoming closer to the best solution). Although
the error is very low (about less than 2%) for both strategies, the number of
queries is quite high for instances with 6 criteria (at least 54 queries). This is
due to the fact that we use the tolerance thresholds δ = (0, 0).

We now compare the results obtained with δ = (0, 0) and δ = (0.1, 0.4) (see
the left part of Table 2); we set δ1 < δ2 since the starting point selection has a
significant impact on local search performances. We also give the results obtained
by ILS when a ranking of the objectives can be provided by the DM prior to the
search (see the right part of Table 2). We vary n the number of criteria between
3 and 6, and we set m the number of initial solutions to 100.
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In Table 2, we see that using strictly positive thresholds enables to reduce
both the number of queries and the computation time without having much
impact on the error. For instance, for n = 6, the error is equal to 1.35% with
δ = (0, 0) whereas it is equal to 1.77% with δ = (0.1, 0.4), while the number
of queries is reduced from 54.40 to 32.24. We also remark that knowing the
ranking of the objectives allows to further reduce the number of queries (only
23.75 queries for n = 6, with an error of 1.51%).

δ = (0, 0) δ = (0.1, 0.4)
n time queries error time queries error
3 2.67 13.50 0.20 3.81 13.65 2.01
4 6.71 24.34 0.69 8.32 19.68 1.84
5 19.96 38.38 0.96 19.30 26.21 2.08
6 43.06 54.40 1.35 36.25 32.24 1.77

δ = (0, 0) δ = (0.1, 0.4)
time queries error time queries error
2.10 10.53 0.20 2.30 9.66 0.80
5.01 17.01 0.66 4.89 13.39 1.13
14.81 25.08 0.95 10.97 19.24 1.38
31.19 34.52 1.36 29.68 23.75 1.51

Table 2. Performances of ILS combined with CSS, with (left) and without the ranking
of the objectives (right), 50 cities, m = 100, 100 runs.

In Figure 7, we show the evolution of the number of queries according to
the number of criteria (left part, 50 cities) and number of cities (right), with
δ = (0.1, 0.4) and m = 100. We note that the number of queries evolves more or
less linearly according to the number of criteria/cities.
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Fig. 7. Evolution of the queries according to number of criteria and number of cities.

4.2 Preferences represented by an OWA aggregator

Now we assume that the DM’s preferences can be represented by an OWA ag-
gregator, with decreasing weights, favoring well-balanced solutions [35] (as the
larger weights are associated with the worst values). Contrary to the weighted
sum, when the weights ω are known, we cannot reduce the multi-objective TSP
to a single-objective TSP as the OWA aggregator is not a linear operator. There-
fore, to obtain the optimal solution with known weights (to be able to compute
the error), we have used a well-known linearization of the OWA operator with
decreasing weights (see [25]); for information purposes, we also provide the com-
putation time needed when solving the corresponding linear program with the
LP-solver (see “LP time”).

In Table 3, we give the results obtained by ILS combined with the CSS for the
instances with 50 cities, 3 to 6 criteria and m = 10 starting solutions (obtained
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by optimizing 10 randomly generated weighted sum). The results show that the
number of queries is much reduced compared to the weighted sum, with an
error also around 2%. Moreover, we observe that using our algorithm to solve
the problem with unknown weights is much faster than using the LP-solver to
obtain the optimal solution when the weights are known. This shows that our
algorithm can be used to efficiently solve multi-objective optimization problems
with complex decision models, even for problems such that there is no efficient
algorithm for the determination of the optimal solution with known preference
parameters.

δ = (0, 0) δ = (0.1, 0.4)
n LP time time queries error time queries error

3 164.80 1.14 9.96 2.31 1.19 6.16 2.41
4 330.17 1.28 10.57 1.98 1.06 6.13 2.00
5 730.19 0.98 6.40 1.17 0.83 4.09 1.42
6 7870.03 1.12 16.00 1.41 0.89 9.13 1.44

Table 3. ILS combined with CSS with OWA, 50 cities, m = 10.

Finally, in Figure 8, we illustrate the iterations of ILS when preferences are
represented by an OWA operator with decreasing weights (which favors well-
balanced solutions).
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Fig. 8. Results obtained for an instance of the 2-criteria TSP with OWA operator.

5 Conclusion

In this paper, we have proposed a general approach based on local search and
incremental elicitation for solving multi-objective combinatorial optimization
problems with unkown preference parameters. We have applied the method
to a NP-hard combinatorial optimization problem and we have shown that,
by combining the generation of promising starting solutions with an adaptive
preference-based local search, we are able to rapidly obtain high quality solu-
tions, even with a non-linear aggregation function like OWA. The approach can
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be applied to any multi-objective combinatorial optimization problem provided
that the scalarizing function used to compare solutions is linear in its parameters.
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