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Quantum thermal bath (QTB) simulations reproduce statistical nuclear quantum effects via a Langevin
equation with a colored random force. Although this approach has proven efficient for a variety of chemical and
condensed-matter problems, the QTB, as many other semiclassical methods, suffers from zero-point energy
leakage (ZPEL). The absence of a reliable criterion to quantify the ZPEL without resorting to demanding
comparisons with path integral based calculations has so far hindered the use of the QTB for the simulation
of real systems. In this work, we establish a quantitative connection between ZPEL in the QTB framework
and deviations from the quantum fluctuation-dissipation theorem (FDT) that can be monitored along the
simulation. This provides a rigorous general criterion to detect and quantify the ZPEL without any a priori
knowledge of the system under study. We then use this criterion to build an adaptive QTB method that
strictly enforces the quantum FDT at all frequencies via an on-the-fly, spectrally resolved fine tuning of the
system-bath coupling coefficients. The validity of the adaptive approach is first demonstrated on a simple
two-oscillator model. It is then applied to two more realistic problems: the description of the vibrational
properties of a model aluminium crystal at low temperature and the simulation of the liquid-solid phase
transition in a 13-atom neon cluster. In both systems, the standard QTB results are strongly altered by the
ZPEL, which can be essentially eliminated using the adaptive approach.

I. INTRODUCTION

Accounting for nuclear quantum effects in molecu-
lar dynamics (MD) simulations of complex atomic sys-
tems is an important issue when light elements, such
as hydrogen, are involved, or for the description of low-
temperature processes. However, modelling these effects
remains a theoretical challenge for which several differ-
ent approaches have been proposed. For the static prop-
erties of molecular and condensed matter systems, the
reference methods are based on Feynman’s path inte-
gral formalism1–4. Average values of quantum opera-
tors are obtained exactly by performing MD or Monte
Carlo simulations on a sufficient number, P , of replicas
of the system under study. These methods can be partic-
ularly resource-consuming when the value of P required
to converge to the exact result becomes large, e.g. at
low temperatures. The simulation of dynamical proper-
ties such as time correlation functions is even more chal-
lenging and all of the simulation techniques applicable
to complex multi-atomic systems imply strong approxi-
mations that are difficult to control. Notable examples
of these methods are the extensions of the path integral
MD that provide approximate time correlation functions,
namely ring-polymer MD5,6 and centroid MD7,8, as well
as the various semiclassical methods in which dynamical
properties are calculated by averaging over classical tra-
jectories with initial conditions sampled according to the
quantum distribution9–14.

In the past decade new approaches have also been de-
veloped in which the quantum delocalization of the nuclei
is introduced approximately using a Langevin equation
with a colored noise. The quantum thermostat15,16 and

the quantum thermal bath17 (QTB) methods, although
different in their formal expressions, both rely on the
same principle: in the colored-noise Langevin dynamics,
each vibrational mode of the system is thermalized, not
at the physical temperature T , but at an effective temper-
ature that includes the appropriate zero-point energy, so
that the stochastic dynamics approximately reproduces
the zero-point motion. Both variants of the quantum-
colored Langevin equation have been shown to provide
good qualitative and quantitative results in various prac-
tical cases18–23 with only a small numerical overhead with
respect to classical MD and therefore at a much lower
computational expense than path integral MD. In par-
ticular, some studies have shown the vibrational spec-
tra obtained within the QTB to agree with experimental
data or with the results of more costly quantum simula-
tion methods even when strong nuclear quantum effects
were involved24–26. As in any Langevin dynamics, the
system-bath coupling induces a broadening and possibly
deformations of the vibrational spectrum, which limit the
use of the QTB for the simulation of dynamical proper-
ties. Recently developed techniques23,27, however, might
allow to deconvolute the spectra from the effect of the
bath and to recover the unaffected dynamics.

In spite of the advantages described above, and
as many other semiclassical approaches, the colored
Langevin methods suffer from a major flaw: the zero
point energy leakage28–33 (ZPEL, see description in sec-
tion II).

As a possible solution to this issue, colored-noise path
integral MD approaches have been developed in which
the number P of replicas can be reduced with respect to
standard path integral MD without inducing significant
ZPEL34,35. Although P is reduced, it can still be large in
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the case of low-temperature simulations36. Furthermore,
to our knowledge, this approach has not been adapted
to compute dynamical properties so far. In the context
of semiclassical methods, a recent work37 has shown that
one particular approach, the Herman-Kluk propagator, is
free from ZPEL. Although this demonstration is encour-
aging for further developments, the numerical cost of this
accurate simulation technique remains high and can be
problematic for applications to large systems. Within the
framework of the QTB, it was shown that increasing the
system-bath coupling reduces the ZPEL substantially32.
This approach, however, affects the dynamical and even
the static properties of the simulated system and can hin-
der the accuracy of the QTB results. A clear criterion to
quantify the ZPEL is thus needed to enable more reliable
and general applications of the QTB.

Existing studies31–33 rely either on comparisons with
path integral results or on normal-mode decompositions
to assess the presence of ZPEL in QTB simulations and
the quality of the quantum distribution sampling. Nor-
mal mode analysis, however, is valid only for weakly an-
harmonic systems, while comparisons with path integrals
reintroduce high numerical costs. In this work, we pro-
pose an alternative approach that circumvents both prob-
lems. We show, in the framework of the linear response
theory, that the quantum fluctuation-dissipation theo-
rem (FDT) provides, at a very low computational cost,
a self-consistent assessment of the ZPEL in QTB sim-
ulations, without resorting to normal-mode or path in-
tegral calculations. The quantification of the ZPEL can
then be used to modify the system-bath coupling in order
to compensate for the leakage and restore the quantum
FDT. This leads to a new QTB algorithm, the adaptive
QTB (adQTB) that extends significantly the capabilities
of this approach with limited increase in the numerical
cost.

The article is organized as follows: in section II,
we discuss the issue of the ZPEL in QTB simulations.
In section III, we introduce the quantum fluctuation-
dissipation relation that enables a diagnosis of ZPEL
in QTB simulations and illustrate it with a simple two-
oscillator model. In section IV, we use the fluctuation-
dissipation relation to define two adaptive variants of the
QTB in which the ZPEL is compensated via an on-the-
fly spectrally resolved tuning of the system-bath coupling
coefficients. Finally, in section V, the adaptive QTB
schemes are applied to two more realistic problems that
have, so far, presented serious challenges for the QTB.
We study first a Lennard-Jones aluminium crystal at low
temperatures and show that, in contrast with the stan-
dard implementation of QTB31,32, the energy distribu-
tion amongst the normal modes is correctly captured by
the adaptive schemes. We then discuss QTB simulation
of a 13-atom neon cluster. In this strongly anharmonic
system, ZPEL causes the standard algorithm to predict
an abnormal liquid-like phase at low temperatures33. We
analyze the conditions under which this failure of the
QTB can be corrected by the adaptive scheme.

Our focus in this paper is on presenting the new FDT
criterion and demonstrating its potential on a first set
of recognized benchmark systems. The numerical results
of the adaptive QTB are very encouraging, but further
tests will be necessary to fully assess the capabilities of
the method and its numerical efficiency with respect to
alternative approaches (e.g. path integral MD). To con-
vey the key theoretical points more effectively and illus-
trate more clearly the performances of the proposed algo-
rithms, we omit some technical details on their practical
implementation from the main text. This information is,
however, detailed in the Appendices.

II. QTB AND ZERO-POINT ENERGY LEAKAGE

In the quantum thermal bath method, each nuclear de-
gree of freedom follows a Langevin equation of the type:

mkv̇k = − ∂V
∂xk
−mkγvk + Fk(t) (1)

In this expression, vk and mk are the velocity and the
mass of the degree of freedom k, V is the interaction po-
tential and the Fk(t) are Gaussian random forces, with
cross-correlation spectra (defined as the Fourier trans-
form of the time correlation functions) given by:

CFkFj (ω) = 2mkγ θ(ω, T ) δjk (2)

where δjk denotes the Kronecker symbol and

θ(ω, T ) = }ω

[
1

2
+

1

e
}ω

kBT − 1

]
(3)

In eq. (2), the thermal energy kBT of the classical
Langevin equation is replaced by the energy θ(ω, T ) of
a quantum harmonic oscillator at frequency ω and tem-
perature T . The strength of the system-bath coupling is
characterized by γ, which appears both as a damping co-
efficient in eq. (1) and in the amplitude of the Langevin
random forces in eq. (2).

In the QTB method, the interaction of the system with
the quantum bath (via the random and friction forces)
tends to thermalize each vibrational mode at the effec-
tive thermal energy θ(ω, T ) that increases with the mode
frequency ω and accounts for for zero-point energy. [...]
However, in the presence of anharmonicity, the classical
forces − ∂V

∂xk
couple the different modes and tend to drive

the system towards the classical equipartition of energy.
As a consequence, the average thermal energy per mode
effectively obtained through the QTB is in general less
than θ(ω, T ) for large ω and greater than it for small ω.
This unphysical energy flow from high to low frequencies
constitutes the zero-point energy leakage. This leakage
can have dramatic consequences, such as the spurious
melting of solids (see section V B).

In Ref. 32, the use of large system-bath coupling con-
stants γ was proposed to effectively enforce the quantum
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energy distribution θ(ω, T ) and limit the effect of the
ZPEL. This strategy proved efficient for mildly anhar-
monic systems32, but it has two serious limitations that
we both address in the present paper.

Firstly, although the impact of the ZPEL is reduced
for large γ, the leakage is not fully eliminated32. As men-
tioned in the introduction, a general criterion is still lack-
ing to estimate the importance of the ZPEL and define
an acceptable level for the associated error. In section
III, we propose such a general criterion, based on the
quantum FDT, that allows to quantify the ZPEL using
correlation spectra computed along the QTB trajectory.

Secondly, in the QTB, γ cannot be increased arbitrar-
ily without affecting the accuracy of the results. Indeed,
the friction force is responsible for a spectral broadening
of the vibrational modes that may affect the quality of
the simulated spectra and even cause a bias on the esti-
mates for static properties38,39 (this point is examined in
more detail in appendix C). As a general rule of thumb,
γ should be kept small compared to the frequencies of
the quantum modes of the system, i.e. the modes for
which the zero-point energy is relevant. However, this
condition is problematic for the simulation of highly an-
harmonic systems, for which a large γ is needed to control
the ZPEL. The adQTB method proposed in section IV
makes it possible to suppress the leakage using values of
γ much smaller than the ones needed in standard QTB,
therefore improving the accuracy of the QTB approach
and extending its domain of applicability.

III. FLUCTUATION-DISSIPATION CRITERION FOR
THE ZPEL

In this section we show that an appropriately adapted
version of the quantum fluctuation-dissipation theorem
(FDT) enables to detect and quantify the ZPEL in QTB
simulations. To set the stage, we start by rewriting the
position-velocity FDT in a more convenient form involv-
ing the velocity power spectrum and argue why this is a
relevant starting point for our considerations. Then, in
section III B, we show how to express the linear suscep-
tibility - in general not accessible analytically or numeri-
cally - in terms of quantities that can be computed along
a QTB trajectory. This expression for the susceptibility
will make it possible to monitor discrepancies from the
FDT and gauge the ZPEL based directly on results from
the QTB simulation, thus providing us with a general
diagnosis tool applicable to realistic systems. We close
this section by illustrating the FDT criterion on a simple
two-oscillator model considered in Ref. 32.

A. The FDT as a diagnosis tool for ZPEL

Let us start by recalling the fluctuation-dissipation the-
orem, a fundamental law of linear response theory, given
for the relevant case of position and velocity operators as

(see Ref. 40):

Re [χvx(ω)] =
ω

2iθ(ω, T )

∫ +∞

−∞
〈{x(0)v(t)}〉e−iωtdt, (4)

where θ(ω, T ) is the quantum thermal energy in equation
(3), χxv(ω) is the linear susceptibility and 〈{x(0)v(t)}〉 =
1
2Tr [(x(0)v(t) + v(t)x(0))ρeq] denotes the symmetrized
average of the position and velocity operators over the
quantum equilibrium probability density ρeq. Using
the time translation invariance property 〈{x(0)v(t)}〉 =
〈{x(−t)v(0)}〉 and an integration by parts, the FDT can
be rewritten as a function of the velocity autocorrelation
spectrum:

Re [χvx(ω)] =
Cvv(ω)

2θ(ω, T )
(5)

Eq. (5), is an exact result that reflects the quantum
distribution of the thermal energy, characterized by the
function θ(ω, T ). It is satisfied at each frequency if the
quantum operators x and v evolve according to the ex-
act quantum dynamics. In the QTB dynamics, however,
operators are replaced by classical variables, and the col-
ored thermostat used to induce the energy distribution
θ(ω, T ) is combined with a purely classical, deterministic
evolution of positions and velocities. As a consequence,
the resulting stochastic dynamics violates the quantum
FDT for anharmonic systems. In particular, the drive to-
wards equipartition of energy introduced by the classical
evolution originates the ZPEL. Monitoring the violation
of eq. (5) along a QTB trajectory thus provides a general
criterion to detect and quantify the ZPEL in a simula-
tion.

In practice, to apply this criterion, all quantities ap-
pearing in eq. (5) must be evaluated along the QTB
trajectory. In this framework, statistical averages over
quantum operators are replaced by their classical coun-
terparts. The Fourier transform of the velocity autocor-
relation function Cvv(ω) can then be straightforwardly
computed. The evaluation of the susceptibility χxv(ω),
on the other hand, is non trivial. In the next section, we
show that, in the QTB framework, the dissipative part
of the susceptibility Re [χxv(ω)] can be expressed as the
ratio of two correlation functions that can be evaluated
directly.

B. Linear response theory and correlation functions

The susceptibility χvx(ω) characterizes the linear re-
sponse of the system at thermal equilibrium, subject to
a small perturbative force ∆F (t). The linear velocity re-
sponse to ∆F is given in the frequency domain by the
following relation40:

∆v(ω) = χvx(ω)∆F (ω) (6)

In general, the susceptibility cannot be computed ana-
lytically but it can be estimated numerically in a QTB
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simulation, by considering the linear response of the sys-
tem to the stochastic Langevin force. More precisely, re-
lation (6) cannot be applied directly since the Langevin
force F (t) cannot be treated as a small perturbation. To
circumvent this difficulty, we consider the results that
would be obtained in two different simulations, one with
the QTB-Langevin force F (t), and an other (virtual) one
with the modified force F ′(t) which is defined from F (t)
by setting to zero all its frequency-components in the
vicinity of a particular angular frequency ω0. The force
F ′ is expressed in the frequency domain as:

F ′(ω) = F (ω) [1−Π(ω − ω0)] , (7)

where the rectangular function Π(ω − ω0) equals 1 in-
side the interval

[
ω0 − ∆ω

2 , ω0 + ∆ω
2

]
and zero outside.

Using the definition above, the force difference between
the original and the modified QTB dynamics, ∆F (t) =
F (t)− F ′(t), is given by:

∆F (t) =

∫ ω0+ ∆ω
2

ω0−∆ω
2

dω

π
Re
[
F (ω)eiωt

]
(8)

If ∆ω is small enough, the force ∆F (t) can be treated as
a small perturbation. In practice, in QTB simulations,
the trajectory is finite, the force spectrum is discrete and
∆ω = 2π

τ , where τ is the total duration over which the
correlation spectra are evaluated (see appendix B for de-
tails). Relation (6) can then be applied to express the
linear velocity response ∆v(ω) as a function of the pertur-
bative force spectrum ∆F (ω). To that end, we multiply
both members of equation (6) by ∆F (−ω) and use the
relation between the cross-correlation spectrum and the
Fourier transform, CAB(ω) ∝ 〈A(ω)B(−ω)〉 - here the
symbol 〈...〉 refers to the average value for the stochastic
QTB dynamics. This yields:

Re [C∆v∆F (ω)] = Re [χvx(ω)]C∆F∆F (ω), (9)

We then notice that:

C∆v∆F (ω) = Cv∆F (ω)− Cv′∆F (ω) (10)

This relation can be simplified by noting that
Cv′∆F (ω) ∝ 〈v′(ω)∆F (−ω)〉 = 0. To prove this
statement, we make use of the fact that the differ-
ent frequency-components of F are uncorrelated random
variables: 〈F (ω)F (ω′)〉 ∝ δ(ω+ω′). This property is ver-
ified by construction by the colored Langevin force and
it is valid for any system (see appendix A for details on
the generation of the random force). It implies that v′,
which is generated by the random force F ′, is statistically
independent of ∆F , so that:

〈v′(ω)∆F (−ω)〉 = 〈v′(ω)〉〈∆F (−ω)〉 = 0,

where we have used the fact that the frequency compo-
nents of F have zero mean value. Equation (9) is then
rewritten as:

Re [Cv∆F (ω)] = Re [χvx(ω)]C∆F∆F (ω) (11)

Furthermore, for ω in the interval
[
ω0 − ∆ω

2 , ω0 + ∆ω
2

]
,

∆F (ω) = F (ω), therefore the following relations hold:

Cv∆F (ω) = CvF (ω) and C∆F∆F (ω) = CFF (ω)

Substituting the identities above in eq. (11), we finally
obtain an expression for the dissipative part of the sus-
ceptibility Re [χvx(ω)] in terms of the correlation func-
tions CFF (ω), that is known, and CvF (ω), that can be
computed along a QTB trajectory. This expression is
given by:

Re
[
χvx(ω)

]
=

Re
[
CvF (ω)

]
CFF (ω)

(12)

The proof derived above only applies for ω close to ω0,
but since no particular assumption was made on ω0, the
relation (12) holds for any value of ω.

It might seem surprising at first sight that the random
force is treated here as a perturbation in the determina-
tion of χvx. Indeed, in Langevin simulations the random
force is essential to drive the system to its equilibrium
and it cannot be considered small. Nevertheless, what
the argument reported above shows is that CvF (ω) can
be related to the linear susceptibility, without the need to
consider possible contributions of the nonlinear response
to the random force F (t). It should be stressed that this
is a statistical property that follows from the fact that
the different frequency-components of F are uncorrelated
random variables with zero mean value. The nonlinear
response to F (t) can still be significant, and although the
corresponding contributions average to zero when com-
puting CvF (ω), they increase the noise on its estimate
from the QTB trajectory.

C. ZPEL diagnosis

We rewrite eq. (5) using eq. (12) and the expression
for the random force autocorrelation function CFF (ω) as
given by eq. (2) within the QTB method. This yields:

Re
[
CvF (ω)

]
= mγCvv(ω) (13)

As both sides of eq. (13) can be computed along QTB
trajectories, this reformulation of the FDT can be ap-
plied directly to quantify the ZPEL. The terms in
eq. (13) can also be given a direct physical interpreta-
tion: Re

[
CvF (ω)

]
corresponds to the spectrum of the

power injected into the system by the random force, while
the power dissipated by the friction force is given by
mγCvv(ω).

From a computational point of view it is worth stress-
ing that the fluctuation-dissipation theorem - from which
equation (13) is derived in the framework of the QTB -
holds independently for each degree of freedom of a quan-
tum system and its verification does not require a nor-
mal mode decomposition or any knowledge a priori of
the system under study.
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Let us illustrate the use of eq. (13) on the model Hamil-
tonian introduced in Ref. 32:

H =
ẋ1

2

2
+
ẋ2

2

2
+ω2

1

x1
2

2
+ω2

2

x2
2

2
+c3(x1−x2)3+c4(x1−x2)4

(14)
It consists of two harmonic oscillators at frequencies ω1

and ω2 (the degrees of freedom x1 and x2 are dimension-
less and the masses are equal to 1), coupled via anhar-
monic terms characterized by the two coefficients c3 and
c4. In this system, the amount of ZPEL is controlled by
the tunable parameters c3 and c4, and exact reference
results can be easily obtained through the numerical so-
lution of the associated Schroedinger equation. The sim-
ulations are performed at low temperature T � ω1, ω2

(kB = } = 1 in our system of units), so that the energy
in each degree of freedom consists mainly of zero-point
energy.
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FIG. 1. Injected power spectrum Re
[
CvF (ω)

]
(dashed or-

ange) and dissipated power spectrum mγCvv(ω) (dark ma-
genta) for oscillator 1 (high frequency, panels a and c) and
oscillator 2 (low frequency, panels b and d) in the model of
equation (14). The value of ω1 is fixed to 1. In panel (a) and
(b), ω2 = 0.5, c4 = 0 and c3 = 3.8 × 10−3. In panel (c) and
(d), ω2 = 0.25, c3 = 0 and c4 = 1.9 × 10−3. These values
are chosen in order to generate significant ZPEL32. We use
natural units, } = 1, kB = 1 and T = 0.03 � ω1, ω2. The
timestep is dt = 0.063 and the angular frequency cutoff38 is
ωcut = 2.

Each figure shows the curves obtained for γ = 0.01 and
γ = 0.08.

In the harmonic case (c3 = c4 = 0, not shown) the
spectra on the right and left hand side of eq. (13) are
equal, presenting Lorentzian peaks of width γ and cen-
tered at the frequencies ωk: in that case there is no ZPEL
and the injected power equals the dissipated power. Each
oscillator is then thermalized by the QTB with the cor-
rect thermal energy distribution θ(ωk, T ) and the quan-
tum FDT is satisfied. On the contrary, when anhar-
monicity is introduced, leakage occurs: for the high-
frequency mode (Fig. 1.b and 1.d), the injected power

spectrum lies above the dissipated power spectrum, while
the reverse is true for the low-frequency mode (Fig. 1.a
and 1.c).

The results are sensitive to the coupling constant γ.
For γ = 0.01, the difference between the injected and
dissipated power spectra is large. This reflects a massive
ZPEL that causes significant errors in the evaluation of
the average energy in each mode, as examined in detail in
section IV. Increasing γ to 0.08 makes the ZPEL less im-
portant compared to the total power exchanged with the
bath. Although the leakage is not completely suppressed,
its impact is reduced and the average thermal energy in
each mode approaches the correct quantum distribution
θ(ωk, T ), as it was noted in Ref. 32.

IV. ADAPTIVE QUANTUM THERMAL BATH

A. Principles of the adaptive QTB

In the previous section, we re-expressed the quantum
fluctuation-dissipation theorem in a form suitable to de-
tect and quantify the ZPEL in QTB simulations. Note
that, since eq. (13) relates two spectra, it naturally pro-
vides an estimate of the leakage at each frequency. In this
section, we build on this framework to present an adap-
tive QTB scheme in which the quantum FDT is actively
enforced on the fly using frequency-dependent coefficients
for the system-bath coupling. To that end, let us begin
by introducing the following generalized version of the
QTB Langevin equation:

mv̇ = −∂V
∂x
−m

∫ ∞
0

γ̃f (τ)v(t− τ) dτ + F (t), (15)

where F (t) is now a Gaussian random force with an au-
tocorrelation function given by:

CFF (ω) = 2mγr(ω)θ(ω, T ). (16)

In the generalized Langevin equation proposed above,
two distinct system-bath coupling coefficients were in-
troduced: the friction coefficient γ̃f , and the random
force coefficient γr. Furthermore, these coefficients were
made time or frequency dependent. With these nota-
tions, the standard QTB method corresponds to the
choice γr(ω) = γf (ω) = γ, with γf (ω) the Fourier trans-
form of the friction kernel γ̃f (τ). Taking into account
the frequency dependence of γr and following the argu-
ments of section III, the fluctuation-dissipation theorem
now takes the form:

Re
[
CvF (ω)

]
= mγr(ω)Cvv(ω) (17)

In the following, this equation will be referred to as the
quantum FDT. It is worth stressing that, because we now
distinguish between γr and γf , equation (17) is not sim-
ply the expression of the equality between injected and
dissipated power. Indeed, the dissipated power would be
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obtained by replacing γr by γf in the right-hand side of
eq. (17). We also define the deviation from the FDT:

∆FDT (ω) = Re [CvF (ω)]−mγr(ω)Cvv(ω) (18)

In an adQTB simulation, ∆FDT (ω) is evaluated along
the QTB dynamics and the memory kernels γr(ω) and
γf (ω) are adapted in order to minimize this deviation and
reach the correct average energy distribution for each fre-
quency. The basic idea of this scheme is schematized in
Fig. 2.c: in order to compensate for the leakage, the ran-
dom force amplitude γr(ω) is increased at high frequen-
cies and decreased at low frequencies, while the friction
coefficient Re

[
γf (ω)

]
is varied in the opposite direction.

Importantly, these adjustments are performed on the fly,
based on a self-tuning procedure that relies only on quan-
tities computed from the QTB trajectory (a detailed de-
scription of this procedure is provided in appendix B).
The quantum FDT (17) is independently valid for each
degree of freedom of the system. Consistently, in the
adQTB, specific coefficients γf and γr are associated to
each degree of freedom and each pair of coefficients is
adjusted separately to enforce the corresponding FDT.

In the following, we consider two variants of the
method and compare their performances. In the first one,
denoted adQTB-r, γr(ω) is adapted, while the friction
kernel is kept at a fixed value γf (ω) = γ, independently
of ω. In the second variant, denoted adQTB-f, γf (ω) is
adjusted, while the random force kernel is kept at the
value γr(ω) = γ. In all the applications presented in this
paper, at the beginning of the simulations both kernels
are initialized at the value γr(ω) = γf (ω) = γ, then one
of the two (depending on the adQTB variant) is dynami-
cally adapted to enforce the FDT. However, the adaptive
scheme might also be used with a different choice of ini-
tial value for γf and γr. In the following, we will refer
to γ as the system-bath coupling constant, irrespective
of the simulation method, whether it is QTB, adQTB-r
or adQTB-f. However, it should be stressed that γ plays
a different role in each of the three cases.

In the remaining of this section, we describe and com-
pare the main features of the two variants of the pro-
posed adaptive approach. A detailed description of the
algorithm to integrate the generalized Langevin equation
and of the self-tuning procedure for the system-bath cou-
pling coefficients is provided in appendices A and B, and
summarized in Fig.11.

In the adQTB-r method, the friction force is in fact
Markovian, with an expression similar to that of the stan-
dard QTB. In order to adapt γr, the QTB trajectory is
decomposed into a sequence of segments. At the end
of each segment, the spectra Cvv(ω) and CvF (ω) are es-
timated from the previous segment of trajectory. The
function γr(ω) is then adapted for each frequency in or-
der to reduce ∆FDT in the following of the simulation.

In the adQTB-f method, γf depends on ω and as a
consequence the memory kernel γ̃f (τ) is not a δ-function:
the friction is non-Markovian. To compute it and inte-
grate the generalized Langevin equation (15) efficiently,

we use an extended phase-space approach in which γf (ω)
is decomposed as a sum of Lorentzian terms. This de-
composition also provides a way to evaluate ∆FDT and
adapt the value of γf (ω) at each time step of the simu-
lation (see appendix B 2).

Note that, while γr(ω) is real by definition, γf (ω), de-
fined as the Fourier transform of the friction kernel γ̃f (τ),
is in general complex. In fact, since γ̃f (τ) is causal, the
real and imaginary parts of its Fourier transform are re-
lated by Kramers-Kroning relations and the only case in
which γf (ω) is real is when it is independent of ω, which
corresponds to the standard Markovian friction case. In
the adQTB-f method, it is the real part Re

[
γf (ω)

]
that

should be adapted, since it is responsible for energy dis-
sipation. However, modifying the Re

[
γf (ω)

]
implies the

presence of a non-zero imaginary part Im
[
γf (ω)

]
, which

causes frequency shifts in the adQTB spectra. If these
shifts are large, the dynamical properties obtained via
adQTB-f might be significantly altered. Therefore in
practical applications, Im

[
γf (ω)

]
should be computed

(using the formula in appendix A) and compared to the
width of the relevant spectral features to evaluate its in-
fluence.

B. Two-oscillator system

We first illustrate the performance of the adQTB
method on the two-oscillator model system described
by eq. (14). Fig. 2.a and 2.b report the average en-
ergy in each harmonic oscillator obtained in QTB simula-
tions as a function of c3 and c4, respectively (see details
in the figure captions). The numerical solution of the
Schroedinger equation provides an exact reference for this
system (black lines in Fig. 2) and shows that the average
energies should be almost independent of c3 and c4 in the
range of values explored here. However, due to the ZPEL,
the QTB results (shown in blue) are strongly sensitive to
the anharmonicity: when the mode coupling is increased
(via c3 or c4), the energy in the high-frequency mode
decreases and the energy in the low-frequency mode in-
creases.

In contrast, in both adQTB variants (green and red
curves), nearly perfect compensation for the ZPEL is ob-
tained over the whole range of coupling parameters us-
ing γ = 0.02. This value is much smaller than the one
needed to reach the correct quantum energy distribution
in standard QTB (see section III C). The value γ = 0.01
also provides satisfactory results except for the adQTB-r
method in the case of strong anharmonicity, as analyzed
below.

Fig. 3 shows the converged value of the adapted
Re
[
γf (ω)

]
and γr(ω), used to restore the quantum FDT

in the adQTB method. As expected, in adQTB-r, γr(ω)
is reduced at low frequencies and increased at high fre-
quencies, while the reverse happens for Re

[
γf (ω)

]
in

adQTB-f. In both cases, the adaptation is driven by the
discrepancy from the FDT, therefore γf (ω) and γr(ω) are
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FIG. 2. Panels a and b: Average total energy in each har-
monic oscillator of the model of equation (14), as a function
of the coupling coefficients c3 and c4, for QTB and different
versions of adQTB. The value of ω1 is fixed to 1. In panel (a),
ω2 = 0.5 and c4 = 0 while c3 varies. In panel (b), ω2 = 0.25,
c3 = 0 and c4 is varied. Other simulation parameters are cho-
sen as in Fig. 1. The different curves correspond to different
values of the system-bath coupling constant γ and the black
lines show the exact result obtained through a numerical so-
lution of the Schroedinger equation.

The panel c is a schematic representation of the adQTB
scheme with adapted γr and γf .

only modified close to the resonance frequencies ω1 and
ω2 and hardly affected otherwise.

Despite the on-the-fly adaptation of γf (ω) and γr(ω),
the choice of the coupling constant γ is not indiffer-
ent. In particular, in the adQTB-r method the condition
γr(ω) > 0 must hold, but it may not be always achievable
in practice if γ is chosen too small. Indeed, the algorithm
tends to reduce γr(ω ' ω2) - close to the low-frequency
mode - until the FDT is fulfilled. If γr(ω ' ω2) vanishes
before this condition is met, eq. (18) becomes inopera-
tive, and the ZPEL is not fully compensated for. This is
why the low-frequency mode energy in Fig 2.a and 2.b
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FIG. 3. Adapted value of the coefficients Re [γf (ω)] and γr(ω)
for the two-oscillator model with c3 = 3.8 × 10−3 (panel a)
and c3 = 1.9 × 10−3 (panel b). On each panel, curves of the
same color are used for the coefficients for the oscillators 1
and 2, which are easily distinguished as the changes in the
system-bath coefficients mostly occur close to the resonance
frequencies ω1 and ω2 respectively. All the curves presented
correspond to γ = 0.02.

is markedly overestimated by the adQTB-r method for
γ = 0.01, whereas it becomes correct for γ = 0.02. Al-
though the adQTB-f variant seems less affected by this
limitation, since Re

[
γf (ω)

]
can in principle become neg-

ative, this algorithm too will eventually fail for very small
values of γ. In practical applications of the method, it
is thus important to check that the adaptation of the
coefficients actually reduces ∆FDT (ω) to values close to
zero for all angular frequencies ω. A non-zero ∆FDT (ω)
or a vanishing γr(ω) (in the adQTB-r method) indicate
that the constant γ should be increased to enable full
compensation for the ZPEL.

C. Energy fluctuations

Computing the energy fluctuations is an even more
stringent test for the adQTB method, since they are re-
lated to the fourth-order moments of the position and
momentum probability distributions, on which the FDT
criterion does not provide any direct information. For the
two-oscillator model, we show in Fig. 4.a and 4.b the root
mean square deviation (RMSD) of the energy in the low-
frequency mode, as a function of c3 and c4. The results
obtained in adQTB are systematically improved with re-
spect to standard QTB, but the energy fluctuations still
tend to be slightly overestimated when the anharmonic-
ity is strong, even in some cases in which the average
energy is efficiently corrected from the ZPEL (see Fig 2).
The high-frequency mode is not affected by this effect
and its energy RMSD computed in adQTB agrees with
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the reference.
This result shows that the adQTB remains an approx-

imate method: although the strict enforcement of the
FDT allows compensating the effect of the ZPEL on the
average energies, it does not guarantee that all moments
of the equilibrium probability distribution are correct.
However, the discrepancy between the adQTB and the
exact energy RMSD only appears when a substantial part
of the energy in the low-frequency mode comes from the
ZPEL: when γ is increased from 0.02 to 0.04, the in-
teraction with the bath is strengthened and the relative
importance of the ZPEL reduced, so that the adQTB re-
sult for the RMSD is improved. Therefore, an appropri-
ate choice of γ (potentially larger than required to merely
correct the average energy) should in general allow for a
satisfactory simulation of the energy fluctuations.
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FIG. 4. RMSD of the total energy in oscillator 2 as a function
of the anharmonicity parameters c3 (panel a) and c4 (panel b),
as obtained in QTB and adQTB. All simulation parameters
are similar to Fig 2. The results are compared to the reference
value (black line) obtained from the numerical solution of the
Schroedinger equation.

D. Numerical overhead compared to standard QTB

The adQTB approach presents two types of numeri-
cal overhead with respect to the standard QTB. Firstly,
the FDT criterion must be evaluated and the coeffi-
cients γf (ω) or γr(ω) must be tuned to ensure that it
is satisfied for each frequency. The associated numerical
cost is very limited in the case of the adQTB-r variant,
about 5% overhead compared to standard QTB in our
current implementation (for an equal number of time

steps). In the case of adQTB-f, the implementation of
the non-Markovian friction force requires introducing and
propagating in time a set of auxiliary variables (see ap-
pendix A). The number of auxiliary variables is typically
a few hundreds for each degree of freedom in the sys-
tem. They obey a very simple evolution equation that
does not involve the interatomic potential or its deriva-
tives. The numerical overhead associated to the time
propagation of the auxiliary variables is therefore sub-
stantial when interatomic interactions are represented via
inexpensive analytical potentials (for example, adQTB-
f is about 200 times slower than standard QTB for the
two-oscillator model), but this extra cost becomes es-
sentially negligible in the case of first-principle molec-
ular dynamics. The second source of numerical over-
head is the fact that adQTB trajectories must include
an adaptation time during which the coefficients γr or
γf are adjusted (see appendices). We expect the associ-
ated computational cost to depend on the system under
study: in the two-oscillator model presented above, we
noticed that the random force spectrum CvF (ω) becomes
increasingly noisy when the anharmonicity is increased.
Therefore a longer adaptation time is required to con-
verge the system-bath coupling coefficients when c3 or c4
is large. In the most anharmonic cases, we estimated that
the minimum number of adaptation time steps needed to
converge the coefficients γf or γr is around 1 − 3 × 105.
This figure is of the same order as the number of time
steps required in standard QTB to converge the average
energies with enough precision to obtain an accurate es-
timation of the ZPEL. However, in this work, we wish to
provide a proof of principle for the adQTB scheme and we
did not attempt a systematic study and optimization of
the adaptation procedure, which is detailed in appendix
B. In this appendix we provide some hints that might
allow to speed-up the adaptation substantially and that
will be pursued in further work. In the realistic appli-
cations presented in section V, long trajectories are re-
quired (whether in classical MD, QTB or adQTB sim-
ulations) in order to reach convergence on the relevant
statistical indicators. Therefore we were able to use a
slow adjustment of the system-bath coupling coefficients
and a long adaptation time, while retaining a relatively
limited numerical overhead compared to standard QTB
simulations.

V. APPLICATION TO REALISTIC SYSTEMS

In this section we experiment the adQTB method on
two realistic systems that are known to exhibit signifi-
cant ZPEL during QTB simulations, i.e. a model alu-
minium crystal31,32, and small clusters of neon33. In the
Al crystal, the ZPEL results in an unbalance in the ef-
fective kinetic energy per mode with respect to the ex-
pected quantum result. An even more striking effect can
be observed in the simulation of the solid-liquid phase
transition of small clusters of rare gas, neon in particu-
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lar. In that case, the ZPEL destabilizes the geometrical
structure of the cluster and dissociates the weak Van der
Waals bonds, leading to a large error in the evaluation
of the phase transition temperature or even suppressing
the transition completely.

The modus operandi for these more realistic simula-
tions is similar to the one employed in the previous sec-
tion: a random force kernel γr,k(ω) and a dissipative ker-
nel γf,k(ω) are associated to each degree of freedom k. In
the adQTB-r (resp. adQTB-f) method, the coefficients
γr,k(ω) (resp. γf,k(ω)) are slowly adjusted all along the
adQTB dynamics in order to compensate for the ZPEL,
while the γf,k(ω) (resp. γr,k(ω)) are kept constant and
equal to γ. The adjustment is performed independently
for each degree of freedom k, according to the corre-
sponding FDT. The relevant observables are computed
after an adaptation time sufficient to reach convergence
on the system-bath coupling coefficients (see appendix B
for more details on the adaptation procedure).

A. Aluminium crystal

QTB and adQTB molecular dynamics were carried out
on a fcc crystal made of N = 256 atoms at T = 10 K. The
atom-atom interaction is described by a Lennard-Jones
pair potential:

V (rij) =

N∑
i=1

N∑
j>i

4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(19)

with ε/kB = 1450.6 K, σ = 2.54 Å, as in Ref. 31 and
32. Interactions between particles with interatomic dis-
tance rij ≥ rcut = 2.49σ were neglected. We used pe-

riodic boundary conditions with a box length of 4
√

2σ.
In the QTB dynamics, we used a time step of 5fs, a
coupling constant γ = 2 THz, and a frequency cutoff
ωcut = 128×1012 rad/s. The adQTB trajectories consist
of 3000 segments of 4000 steps each. Only the last 1500
segments are used to compute statistical averages, in or-
der to allow for the prior adaptation of the system-bath
coupling coefficients γr(ω) or γf (ω).

Previous QTB studies of this system31,32 relied on nor-
mal mode analysis and the harmonic approximation in
order to evaluate the ZPEL. Fig. 5 shows the effective
temperature of the normal modes (i.e. acoustic phonon
modes) as a function of their frequency, as obtained with
the standard QTB and adQTB methods. This effective
temperature is proportional to the average kinetic energy
per mode, computed by re-expressing the atomic veloc-
ities in the normal mode basis. Following Refs 31 and
32, the effective temperature is compared to θ(ω, T )/kB ,
which is the result expected from the quantum harmonic
approximation. At this low temperature, T = 10K, the
kinetic energy in the normal modes consists almost ex-
clusively of zero-point energy.

The standard QTB result exhibits significant ZPEL:
the kinetic energy in the high-frequency modes (above
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FIG. 5. Al crystal: Effective normal mode temperature com-
puted from the average kinetic energy per mode, 2EK/kB .
The results obtained from QTB, adQTB-r, and adQTB-f sim-
ulations are compared to the reference θ(ω, T )/kB , expected
from the quantum harmonic approximation.

50×1012 rad/s) is lower than expected from the harmonic
approximation while the kinetic energy in the low fre-
quency modes is higher than the reference. The use of
either adQTB-r or adQTB-f restores the reference quan-
tum distribution almost exactly. Both adQTB-r and
adQTB-f reach similar results, confirming the accuracy
and robustness of the adaptive procedure.

The results of the normal mode analysis are consis-
tent with the those obtained from the average devia-
tion from the fluctuation-dissipation theorem, ∆FDT (ω),
which are presented in Fig. 6.a. In the standard QTB
simulation, ∆FDT (ω) assumes large positive and nega-
tive values, changing sign around 50×1012 rad/s. In con-
trast, in both adQTB variants, this difference is close
to zero on the whole frequency range, confirming that
the adaptation of the system-bath coupling coefficients
is successful in enforcing the FDT and therefore in com-
pensating for the ZPEL. The value of 50×1012 rad/s for
the sign change is consistent with the results of Fig. 5.

It is worth stressing that the FDT criterion is more
general than the normal mode analysis since it does not
rely on the harmonic approximation. This approxima-
tion is relevant here because at this low temperature, the
system only explores configurations of relatively weak an-
harmonicity but it cannot be used as a completely general
tool. The vibrational density of states (DOS) displayed
in Fig. 6.b shows that both adQTB-r and adQTB-f redis-
tribute the energy from low frequencies to high frequen-
cies with respect to the standard QTB results.

Fig. 7 shows the converged γr(ω) (adQTB-r, panel
a) and γf (ω) (adQTB-f, panel b) coefficients that al-
low for ZPEL compensation. These quantities display
the expected behavior. Panel (a) shows that, starting
from the initial value γ = 2 THz, the coefficient γr(ω)
adapted with adQTB-r decreases at low frequencies, with
a minimum value around ω ' 20 × 1012 rad/s, and it
increases at high frequencies with a maximum around
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value of mγr(ω)Cvv(ω). Panel (b) : vibrational density
of states obtained from the velocity autocorrelation spectra
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ω ' 70 × 1012 rad/s. The angular frequency for which
γr(ω) is maximum (resp. minimum) is close to that of the
highest (resp. lowest) normal modes of the system. On
the other hand, Fig. 7.b shows that the friction coefficient
Re [γf (ω)], adapted with adQTB-f, follows the opposite
behavior: it increases below 50×1012 rad/s and decreases
above this angular frequency, with variations similar in
magnitude to that of γr(ω). The imaginary part of the
dissipative kernel Im[γf (ω)] also varies, taking positive
values at very low frequencies and negative values as low
as -1 THz on most of the relevant frequency range. This
imaginary part induces small shifts of the peaks in the
vibrational DOS (of the order of 0.5×1012 rad/s), ap-
parent in the slight difference between the adQTB-r and
adQTB-f spectra in Fig. 6.b (see also appendix A). In
spite of these small discrepancies, the spectra obtained
with the two adQTB variants display an overall good
agreement, indicating that the spurious dynamical effects
introduced by the adQTB method (particularly adQTB-
f) are limited. This is because the adapted friction coef-
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FIG. 7. Panel (a) : converged value of γr(ω) adapted with
adQTB-r, starting from the initial value γ = 2 THz. Panel
(b) : converged value of Re[γf (ω)] and Im[γf (ω)] adapted
with adQTB-f, starting from the same initial value. The fig-
ure shows only the non-Markovian part, γf (ω) − γ, of the
friction kernel (see appendix A). In both panels, the coeffi-
cients γr,k(ω) and γf,k(ω) are averaged over all 3N equivalent
degrees of freedom k of the system.

ficient remains small compared to the angular frequency
of the relevant vibrational modes of the system. The
coupling constant γ = 2THz is also considerably smaller
than those required to limit the ZPEL in standard QTB
calculations: it should be compared, for instance, with
the coupling used in Ref. 32 to reinstate the correct av-
erage energy per mode, i.e. γ = 10THz.

B. The Ne13 cluster

A recent study33 pointed out the consequences of the
zero-point energy leakage in QTB simulations of low-
temperature phase transitions in Lennard-Jones clusters.
The results obtained for the solid-liquid transition in
these systems were shown to be highly sensitive to the
ZPEL. Indeed, the QTB provides a satisfactory (though
slightly underestimated) estimate for the transition tem-



11

perature in the case of argon clusters, but it is completely
unable to describe the transition in the case of neon clus-
ters: due to ZPEL, the QTB simulations predict an ab-
normal liquid-like phase even at the lowest temperatures.
Due to this strong influence of the ZPEL, and considering
the low temperatures involved and the large anharmonic-
ity of the weak inter-atomic forces, neon clusters are a
challenging test case for the adaptive QTB method.

In order to characterize the solid-liquid transition in
Ne clusters, we focus primarily on the pair correlation
function g(r), whose profile changes significantly between
the two phases.

We also present the results obtained for the Lindemann
index δL, defined from the root-mean-square bond length
fluctuation averaged on all atomic bonds in the cluster:

δL =
2

N(N − 1)

N∑
i=1

N∑
j>i

√
〈r2
ij〉 − 〈rij〉2

〈rij〉
(20)

The Lindemann index is commonly used to pinpoint
solid-liquid phase transitions33,41, however, as we will
show, its interpretation in the present context is not
straightforward and should be complemented by the
study of the pair correlation function.

1. Parameters

We carried out simulations for the Ne13 cluster, plac-
ing the atoms in a starting configuration of Ih symmetry.
A Lennard-Jones pair potential is used to describe inter-
atomic interactions with the parameters ε/kB = 34.9 K,
σ = 2.78 Å, as in Ref. 33. A confining potential of the
form:

Vconf (rij) =

N∑
i=1

N∑
j>i

ε (rij − rref )
4
, (21)

is added to avoid cluster vaporization, with rref = 10 Å.
We compare classical Langevin (LGV), standard QTB
and both adQTB methods (adQTB-r and adQTB-f) for
a range of temperatures between 1 and 18.3K. We use
a coupling constant γ = 2THz, a time step ∆t = 1 fs
and the angular frequency cutoff38 is fixed to ωcut =
63×1012 rad/s. In this system, the convergence of the
relevant statistical quantities (particularly δL) requires
very long dynamics, therefore the adQTB adaptation
time (see sec. IV D) has a minor impact on the efficiency
of the simulation and a slow adjustment of the system-
bath coupling coefficients can be used. More precisely,
the trajectories consist of a sequence of 30000 segments
of 16000 steps each. The first 1250 segments are used to
slowly adjust the set of coefficients γr(ω) and γf (ω). Ref-
erence results are obtained with path integral molecular
dynamics (PIMD) simulations that consist of 4×108 steps
of 1 fs (5×105 of which are used for thermalization). The
PIMD simulations use 32 beads at all temperatures. The

convergence with the number of beads was checked for
the lowest temperature case (2.5 K): using 64 beads (and
a shorter timestep) at this temperature did not produce
noticeable changes in the observables.

2. Results

A comparison between the results obtained by the dif-
ferent simulation techniques for the pair correlation func-
tion g(r) is shown in Fig. 8 at a temperature T = 4 K,
just below the expected transition temperature. First,
one can notice the striking difference between the classi-
cal Langevin and the reference PIMD simulations. The
classical result (denoted LGV on Fig. 8) displays sharp
peaks at 2.8, 4.6 and 5.4 Å, corresponding to the first,
second and third nearest-neighbor distances respectively.
In the quantum PIMD simulations, these peaks are sig-
nificantly broadened (the third one remaining only as a
shoulder to the second) and slightly shifted to 2.9, 4.8
and 5.6 Å. This broadening of the peaks is characteristic
of the quantum delocalization of the neon nuclei and the
difference between the classical and the quantum results
shows that nuclear quantum effects must be taken into
account in order to describe correctly the system at such
low temperatures.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  1  2  3  4  5  6  7  8  9  10

g(
r)

 (
ar

b.
 u

.)

r (Å)

QTB
adQTB−r
adQTB−f

LGV
PIMD

FIG. 8. Ne13 cluster pair correlation function g(r) computed
with Langevin (LGV), standard QTB, adaptive random QTB
(adQTB-r), adaptive friction QTB (adQTB-f). The temper-
ature is T = 4 K and the coupling constant is γ = 2THz.
Reference results are obtained from path integral molecular
dynamics (PIMD).

All QTB and adQTB pair correlation functions present
broader peaks than the classical Langevin results, in-
dicating that the zero-point energy introduced by the
colored noise increases the nuclear delocalization, as ex-
pected. However, the QTB result presents a profile char-
acteristic of the abnormal liquid-like phase that was re-
ported in Ref. 33: the peaks of g(r) are much broader
than those of the PIMD reference, and the second and
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third neighbor distances become indistinguishable. Cru-
cially, around r = 4 Å, between the first and second
neighbor distances, the minimum of g(r) is non-zero,
in sharp contrast with the PIMD reference. This is
a signature of the loss of the ordered structure and
a consequence of the important atom diffusion occur-
ring in the liquid-like phase. This is due to the ZPEL,
which causes an unphysical excess of energy in the low
frequency modes, spuriously breaking the weak atomic
bonds in the system. This abnormal liquid-like state
persists in the standard QTB simulations down to 1 K
(the lowest temperature explored in this work). Figure
8 shows that, remarkably, both adQTB variants restore
the proper physical behavior: the pair correlation func-
tions obtained are in excellent agreement with the PIMD
simulations. The most significant difference between the
adQTB and the reference curve is that, around r = 4 Å,
the minimum value of g(r) is slightly overestimated by
both adQTB methods. This small discrepancy (hardly
visible in Fig. 8) is most probably related to the effect
noted in section IV C: even when successful in correct-
ing the average energy per mode, the adQTB method
may slightly overestimate the energy fluctuations in the
low-frequency modes.

To complete this analysis, we display on Fig. 9.a the
average deviation from the fluctuation-dissipation the-
orem ∆FDT (ω) obtained in QTB and in adQTB. The
∆FDT (ω) curve is close to zero for both adaptive vari-
ants, showing that the adaptive scheme successfully com-
pensates for the massive ZPEL observed in standard
QTB simulations. Fig. 9.b, shows the corresponding
adapted system-bath coupling coefficients at temperature
T = 4K and, for comparison, at T = 18.3K (i.e. above
the expected solid-liquid transition). In adQTB-r simu-
lations, for high frequencies (above ω = 7Trad/s), γr(ω)
increases from its starting value γ = 2THz, while it de-
creases for low frequencies. Its minimum value is approx-
imately 0.5 THz at T = 4 K. This result indicates that,
in this case, γ should be at least 2 THz: since γr(ω) only
takes positive values, a smaller γ would lead to a resid-
ual ZPEL that the adQTB procedure would not fully
compensate for, as discussed in section IV. The adapted
dissipative kernel Re[γf (ω)] shows the opposite trend: it
increases below 7×1012 rad/s and decreases above this
angular frequency. The main departure from the sym-
metric behavior of the system-bath coupling coefficients
in the two adQTB variants is that, contrary to γr(ω)
that reaches a minimum at ω = 2× 1012 rad/s, the fric-
tion coefficient Re[γf (ω)] tends to a maximum towards
zero frequency. This difference is most probably a conse-
quence of the modifications induced by the adQTB-f on
the dynamical properties of the system (additional broad-
ening of the vibrational modes and frequency-shifts due
to the imaginary part Im[γf ]). At the higher tempera-
ture T = 18.3K, the cluster is liquid-like and the ZPEL
has less impact. Therefore the variations of the system-
bath coupling coefficients are of smaller amplitude over
the whole range of frequency, and even standard QTB
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FIG. 9. Panel a: Deviation from the quantum fluctuation-
dissipation theorem ∆FDT defined in eq. (18), as obtained
with QTB and both adQTB variants at T =4 K and γ = 2
THz in the Ne13 cluster. Panel b : Set of adapted coefficients
γr(ω) and Re[γf (ω)]−γ obtained with adQTB-r and adQTB-
f, respectively. Two temperatures are represented: T = 4K
and T = 18.3K, γ is fixed to 2 THz.

performs reasonably well at this temperature.
To conclude, we discuss the results obtained for the

Lindemann index δL, defined in eq. (20), which describes
the thermal fluctuations of the atomic bond lengths. This
parameter was used in particular in Ref. 33 to character-
ize the abnormal liquid-like phase induced by the ZPEL.
The results are shown in fig. 10. We first compare the
classical (LGV in Fig. 10) and the reference (PIMD)
quantum results. For the classical nuclei, δL goes to zero
linearly at low temperatures, whereas the PIMD result
stabilizes around 0.07 due to the zero-point motion. In
both cases a sharp increase of δL is observed between 5
and 7 K, signalling the solid-liquid phase transition. As
expected, this transition is shifted to a slightly lower tem-
perature when nuclear quantum effects are included33.
Figure 10 also shows that, due to the ZPEL, no such
transition is observed in the standard QTB simulations.
As it was already apparent from the results for g(r), the
cluster remains liquid-like down to the lowest temper-
atures simulated (the results for g(r) at T = 1 K are
qualitatively similar to that of Fig. 8 for T = 4 K), con-
sequently δL > 0.3 for all temperatures. In the case of the
adQTB simulations, the interpretation of the Lindemann
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from path integral molecular dynamics (PIMD).

curve is not straigthforward. We recall that, at T =4 K,
the adQTB successfully corrects the ZPEL, and that the
pair correlation function is close to that of the correct
solid state, and very different from the standard QTB
result. In spite of that, the Lindemann index obtained in
adQTB at 4K is significantly above the PIMD reference
and closer to the values typical of the liquid-like phase.
This apparent contradiction is explained as follows: al-
though the adQTB simulations reproduce satisfactorily
the overall structure of the cluster, they slightly overes-
timate the probability of the atomic diffusion events, by
which two or more Ne atoms change sites. This over-
estimation also shows from the detailed analysis of the
pair correlation function around 4Å, where g(r) is very
small but non-zero, confirming that atoms can occasion-
ally change site in the cluster. These events are rare but
they strongly contribute to enhancing δL towards values
close to that of the liquid-like phase, even though the
average geometrical structure of the solid cluster is well
described. Therefore δL cannot be used as a unique in-
dicator of the phase transition which is more robustly
described through the pair correlation function g(r).

The value γ = 2THz that is used in this section is
sizable compared with the typical vibration frequencies
of the system. Such a large γ is needed to fully com-
pensate for the ZPEL due to the weakness and strong
anharmonicity of the atomic bonds in the Ne13 clusters.
However, the spectral broadening induced by γ also af-
fects the accuracy of the QTB results. In appendix C,
we show that increasing γ to 4THz in the adQTB sim-
ulations reduces the probability of the atomic diffusion
events (consistently with the analysis of section IV C),
and therefore improves the adQTB predictions for δL.
But increasing γ also enhances the spectral broadening
which in turn impacts the accuracy of the simulations.
The optimal choice for γ therefore implies a compromise,
as discussed in more details in appendix C.

VI. SUMMARY AND CONCLUSION

Previous works on the problem of the ZPEL in simula-
tions using a quantum thermal bath31–33 (QTB) have
underlined the caution required when employing this
method to approximate nuclear quantum effects in com-
plex chemical and physical systems, and introduced the
possibility of increasing the system-bath coupling to re-
duce the importance of the leakage. However, this ap-
proach to mitigate the ZPEL can have a strong impact
on the statistical estimates. In this work, we aimed at un-
derstanding the ZPEL in more detail and reduce it sub-
stantially without increasing the system-bath coupling to
large values.

First, we have established a quantitative connec-
tion between ZPEL and deviations from the quantum
fluctuation-dissipation theorem (FDT). In the context of
the QTB, the FDT can be expressed as a relation be-
tween the real part of the velocity random force correla-
tion function and the velocity autocorrelation function:
equation (13). This result is completely general and gives
access to a quantitative estimate of the ZPEL without
resorting to normal mode calculations or to comparisons
with path integral simulations.

Second, we have proposed a new method in which the
quantum FDT is actively enforced by adjusting the cou-
pling between the quantum bath and the classical degrees
of freedom. Rather than a constant γ, we have used a
frequency-dependent coupling which is finely tuned all
along the simulation, in order to suppress the ZPEL. This
new type of bath, which we named adaptive QTB, can
be realized in practice by tuning either the random force
memory kernel (adQTB-r) or the dissipative memory ker-
nel (adQTB-f). After detailed assessment on a system of
coupled oscillators, the adQTB was experimented on two
more realistic cases, testing the scalability and the accu-
racy of the new algorithms: a model aluminium crystal
at low temperature and the more challenging problem of
the solid-liquid phase transition in small neon clusters.

In the Al crystal, the FDT criterion provided an on-
the-fly evaluation of the importance of the ZPEL, and the
adQTB method allowed to compensate for the leakage as
evidenced in the average energy distribution within the
acoustic phonon modes. This study confirmed the ap-
plicability of the adQTB approach to anharmonic solids
and extended systems. The Ne13 cluster is a particularly
challenging case for the adQTB method: the potential
is strongly anharmonic and the atomic bonds are weak,
so that the system exhibits many imaginary frequencies
in its mode analysis close to the melting temperature
and above it. Nonetheless, both adQTB-f and adQTB-r
methods were successful in compensating for the ZPEL
at low temperature (T = 1K to 18.3K). In particular, the
new algorithms enabled recovering a solid-like cluster at
low temperatures at which the standard QTB predicted
an abnormal liquid-like phase.

In general, adQTB-f proved slightly more efficient
than adQTB-r in compensating for the ZPEL. However,
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adQTB-f should be used with particular care, due to the
possible frequency shifts induced by the imaginary part
of the memory kernel. We noted that enforcing the FDT
enables to compensate for the ZPEL and correct the first
moment of the energy distribution. As discussed in the
text, this does not guarantee that higher moments are
accurately reproduced. Nonetheless, the general and sys-
tematic method proposed here substantially extends the
range of possible applications of QTB-based approaches.
The first tests performed in this work indicate that the
numerical overhead of the adaptive algorithms compared
to standard QTB can be kept relatively low. A notable
feature of these algorithms is that the number of eval-
uations of the physical force per step is the same as in
standard QTB, a crucial and promising property in view
of applications involving first-principle potentials. Future
work will consider improvements in the efficiency of our
algorithms and a more detailed comparison with alter-
native (e.g. path integral) methods. A problem of par-
ticular interest will be the applicability of the adQTB to
anharmonic liquids (flexible water models for instance)
that can display strong ZPEL from the high-frequency
intra-molecular vibration modes to the inter-molecular
modes.

We conclude by observing that some of the con-
cepts developed in this work might find application
in other semi-classical methods that are also affected
by the ZPEL, such as the quantum thermostat15,16 or
techniques based on quantum averages over classical
distributions12–14,42.
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A. INTEGRATION OF THE GENERALIZED LANGEVIN
EQUATION

In this appendix we detail the numerical procedure
adopted for the integration of the generalized Langevin
equation (eq. (15) of the main text):

mv̇ = −∂V
∂x
−m

∫ ∞
0

γ̃f (τ)v(t− τ) dτ + F (t) (22)

Section A 1 describes the integration scheme used for the
colored random force, which is common to the QTB and
both adQTB variants, while the section A 2 presents the
extended variable strategy that is used for the propaga-
tion of the generalized friction force in the implemen-
tation of the adQTB-f method. The integration algo-
rithms are schematized in Figure 11, which also presents
the additional steps introduced for the adaptation of the
system-bath coupling coefficients (the adaptation proce-
dure is described in detail in appendix B).

1. Modification of the BAOAB algorithm for colored noise

Our integration scheme is based on the BAOAB algo-
rithm for the integration of the Langevin equation, which
was shown to be remarkably accurate43,44. This section
presents its generalization to the case of a colored random
force as in the QTB dynamics.

The BAOAB algorithm is a time-splitting method:
during a time step ∆t, five successive steps of three dif-
ferent types (B, A and O) are applied to the phase space
vector. Step A corresponds to the evolution of the posi-
tions owing to the momentum during a half-step ∆t

2 . Step
B corresponds to the evolution of the momentum in the
field of the conservative forces during ∆t

2 . Finally Step O
is the one in which the velocity is propagated under the
action of the friction and random forces, according to:

v̇(t) = −γv(t) +
F (t)

m
(23)

In the case of a classical white-noise Langevin dynam-
ics, the equation above corresponds to an Ornstein-
Uhlenbeck process and it can be integrated analytically.
In the colored-noise case, it is still possible to integrate
this block exactly by applying a timestep-dependent cor-
rection to the random force spectrum. To prove this, we
first integrate equation (23) and write:

v(t+ ∆t) = e−γ∆tv(t) +
1

m
e−γ∆t

∆t∫
0

dτeγτF (t+ τ)

︸ ︷︷ ︸
Rt

(24)

We now consider the autocorrelation of the discretized
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noise Rt:

〈RtRt′〉

=
1

m2
e−2γ∆t

∆t∫
0

dτ

∆t∫
0

dτ ′ eγ(τ+τ ′)〈F (t+ τ)F (t′ + τ ′)〉

=
e−2γ∆t

2πm2

∆t∫
0

dτ

∆t∫
0

dτ ′eγ(τ+τ ′)

+∞∫
−∞

dω eiω(t′+τ ′−t−τ)CFF (ω)

=
1

2π

+∞∫
−∞

dω eiω(t′−t) 1− 2e−γ∆tcos(ω∆t) + e−2γ∆t

γ2 + ω2

CFF (ω)

m2
,

where we used the time translation invariance of the ran-
dom force autocorrelation function to derive the third
line of the equation above. The last line shows that the
discretized noise Rt used in the propagation of step O
should be generated with a correlation spectrum equal
to the target spectrum CFF (ω)/m2, given by eq. (2) for
the QTB, multiplied by the correction factor:

g(ω) =
1− 2e−γ∆tcos(ω∆t) + e−2γ∆t

γ2 + ω2
(25)

Note that in the limit ∆t→ 0, the correction reduces to:

g(ω) = ∆t2 +O(∆t3) (26)

Thus in the small time step limit, Rt has a spectrum
similar to F (t), except for a factor ∆t2 coming from the
integration over the finite timestep. In practice, the cor-
rection g(ω) is included in the colored noise generator.
For the latter, two different implementations have been
proposed in the context of standard QTB17,38. Although
algorithmically different, these two methods are concep-
tually similar: they are based on a convolution between
a white noise r(t) and the function H(t) derived from the
square root of the power spectrum:

F (t) =

+∞∫
−∞

dτH(τ)r(t− τ) (27)

with

H(t) =
1

2πm

+∞∫
−∞

dω eiωt
√
CFF (ω) (28)

To implement the noise correction, the power spectrum
CFF (ω) is simply replaced by CFF (ω)g(ω).

2. Integration of the generalized friction

In the case of the adQTB-f method, the integration
algorithm must be modified to account for the generalized

friction force. To proceed, we first rewrite the generalized
Langevin equation (22) as:

mv̇ = −∂V
∂x
−mγv(t)−m

∫ ∞
0

γ̃′f (τ)v(t− τ) dτ + F (t)

(29)
In the expression above, we have split the friction force
in two parts: a Markovian term with a coefficient γ
that remains constant along the trajectory, and a non-
Markovian term with a friction kernel γ̃′f (τ) that is ad-
justed on the fly during the dynamics to enforce the
quantum FDT. To compute the convolution product in
eq. (29), we use an extended-variable strategy16,45,46 and
decompose γ′f (ω) as a sum of Lorentzian functions cen-
tered on discrete frequencies ωj separated by ∆ω. This
approach is convenient with respect to direct summation
over the past time steps, due to the potentially slow decay
of the non-Markovian memory kernel γ̃′f (t). This kernel
is written as:

γ̃′f (τ) =
2∆ω

π
Θ(τ)

nω∑
j=0

γj e−ατ cos(ωjτ) (30)

Or, equivalently,

γ′f (ω) =
∆ω

π

nω∑
j=0

γj
α+ i(ω − ωj)

+
γj

α+ i(ω + ωj)
(31)

The Heaviside function Θ(τ) ensures the causality of γ̃′f ,
and the normalizing constants are such that if all γj are
chosen equal to γ0, then Re[γ′f (ω)] ' γ0 is nearly inde-

pendent of ω and γ̃′f (τ) ' γ0δ(τ), which corresponds to

a Markovian friction with rate γ0. In equation (29), the
non-Markovian term describes only the difference from
the Markovian friction, therefore all coefficients γj are
initialized to zero (which corresponds to the standard
QTB method), and only vary because of the adapta-
tion procedure described in more details in the next sec-
tion. The parameter α characterizes the width of the
Lorentzian functions, in this work we chose α = ∆ω with
a value smaller than γ, to ensure that eq. (31) provides a
sufficiently accurate decomposition of the friction kernel.
The number nω of Lorentzian terms is chosen such that
nω∆ω = ωcut. The non-Markovian friction force is then
rewritten as:

−m
∫ ∞

0

γ̃′f (τ)v(t− τ) dτ

= −m2∆ω

π

nω∑
j=0

γj Re

[∫ ∞
0

e(−α+iωj)τv(t− τ)dτ

]

≡ −m2∆ω

π

nω∑
j=0

γj Re [ṽj(t)] (32)

In this expression, we have defined the (complex) auxil-
iary velocities ṽj(t), so that the integration of the gen-
eralized friction transforms into a simple sum over the
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auxiliary ṽj(t). Based on their definition, the complex
velocities evolve according to:

∂

∂t
ṽj(t) = (−α+ iωj) ṽj(t) + v(t) (33)

The rewriting of the non-Markovian term and the defi-
nition of the auxiliary variables enable the propagation
of eq. (29) with an integration scheme still based on the
BAOAB procedure described in section A 1 with two ex-
tra steps inserted just after step O. These two steps, de-
noted (a) and (b), are designated as O′ in the flux dia-
gram of Fig. 11. In step (a), v(t) is propagated according
to equation (32), while in step (b), the auxiliary velocities
are integrated as:

ṽj(t+ ∆t) = e(−α+iωj)∆tṽj(t) + v(t)∆t (34)

This integration procedure for the adQTB-f method was
chosen for its relative simplicity of implementation, but it
might still be optimized in future work in order to reduce
the computational burden of the method.

In the above, we considered a one-dimensional system
for simplicity. As mentioned in the text, in more general
cases, we apply the same procedure for each degree of
freedom of the system independently.

B. ADAPTATION OF THE SYSTEM-BATH COUPLING
COEFFICIENTS

As outlined in the main text, the adaptation proce-
dures are slightly different for the two flavours of the
adQTB method. The main and common aim of these
two strategies is to enforce the quantum fluctuation-
dissipation theorem for each degree of freedom k and each
frequency ω of the system:

∆FDT,k(ω) = Re [CvF,k(ω)]−mγr,k(ω)Cvv,k(ω) = 0
(35)

To this end, one needs a systematic way to evaluate
CvF,k(ω) and Cvv,k(ω) and to adjust either the noise ker-
nel γr,k(ω) (in the adQTB-r method) or the dissipative
kernel γf,k(ω) (in the adQTB-f method).

1. Adapting the random noise γr,k(ω) with adQTB-r

Within the adQTB-r strategy, the dissipative ker-
nel γf,k(ω) = γ remains constant and frequency-
independent, corresponding to a Markovian friction force
similar to that of the standard QTB. The frequency-
dependent noise kernel γr,k(ω) is introduced so that the
autocorrelation function of the random force Fk(t) is
given by:

CFF,k(ω) = 2mγr,k(ω)θ(ω, T ). (36)

For each degree of freedom k of the system, the adapta-
tion of the random force coefficient γr,k(ω) is carried out

independently, starting from the initial value γr,k(ω) = γ.
To evaluate ∆FDT during the simulation, the total tra-
jectory is decomposed into a series of segments of dura-
tion τ . These segments will be identified by the index n.
At the end of each segment n, estimates of the correla-

tion functions Re
[
C̄

(n)
vF,k(ω)

]
and C̄

(n)
vv,k(ω) are evaluated

through the Fourier transform of the noise and of the
velocity:

Re
[
C̄

(n)
vF,k(ω)

]
=

1

2τ

(
v

(n)
k [ω]F

(n)
k [ω]∗ + v

(n)
k [ω]∗F

(n)
k [ω]

)
(37)

C̄
(n)
vv,k(ω) =

1

τ
|v(n)
k [ω]|2 (38)

Where v
(n)
k [ω] and F

(n)
k [ω] are the Fourier transform of

vk(t) and Fk(t) respectively, taken over the n-th segment:

v
(n)
k [ω] =

nτ∫
(n−1)τ

dt e−iωtvk(t) (39)

F
(n)
k [ω] =

nτ∫
(n−1)τ

dt e−iωtFk(t) (40)

The deviation from the fluctuation-dissipation theorem
∆FDT,k over a given segment n is then easily estimated
by combining eq. (37) and (38). The corresponding

estimate is denoted by ∆̄
(n)
FDT,k(ω). Different adjust-

ment schemes can be used for γr,k(ω) in order to satisfy

∆̄
(n)
FDT,k(ω) ' 0. In this work we follow a simple proce-

dure. For all the relevant values of ω, i.e. all the discrete

values ωj =
2πj

τ
inferior to the cutoff angular frequency

ωcut, the coefficients are slowly adjusted according to the
following differential equation:

d

dt
γr,k(ωj) = Aγγ

∆̄FDT,k(ωj)

‖∆̄FDT,k‖
(41)

Where the norm of the deviation to the fluctuation-
dissipation theorem is defined as:

‖∆̄FDT,k‖ =

√ ∑
ωj<ωcut

∆̄FDT,k(ωj)2 (42)

In practice, at the end of each segment, the value of the
γr,k coefficients is incremented according to:

γ
(n+1)
r,k (ω) = γ

(n)
r,k (ω) +Aγγτ

∆̄
(n)
FDT,k(ω)

‖∆̄(n)
FDT,k‖

(43)

The random force F (n+1)(t) used for the next segment

is then generated using the kernel γ
(n+1)
r,k (ω) and the

procedure is iterated until the γr,k(ω) are converged.
When convergence is reached, the adQTB-r results are
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FIG. 11. Flux diagrams of the two adQTB algorithm. The figure describes the modifications introduced with respect to
the standard BAOAB algorithm for the Langevin equation43,44. The adQTB trajectories are decomposed in a series of Nseg

segments of Nstep time steps each, the segments have a duration τ = Nstep∆t. One-dimensional notations are used for simplicity.

produced, while keeping the adaptation process active
(which means that the γr,k(ω) continue to fluctuate
slightly around their optimal value during the produc-
tion).

The parameter Aγ determines the adaptation velocity
for the random force kernel. In all the examples presented
in this article, we used small values of Aγ , such that the
typical adaptation time for γr,k(ω) is much longer than
τ , and τ itself is chosen greater than γ−1. Using large
values for Aγ might allow a faster convergence towards
the desired energy distribution, as given by the quantum
FDT, but it also increases the fluctuations of the cou-

pling coefficients γ
(n)
r,k (ω). These increased fluctuations

(in the sense of fluctuations as a function of ω as well
as variations between the different segments n) can al-
ter the accuracy of the adQTB method. However, it is
worth noting that in large systems such as the aluminium
crystal of section V A, the fluctuations on the FDT es-
timate ∆̄FDT (ω) might be significantly reduced by aver-
aging over equivalent degrees of freedom, which should

allow for a substantial increase of the parameter Aγ . It
might also be possible to speed-up the adaptation pro-
cedure using a second-order differential equation for the
evolution of the γr or other more elaborate convergence
schemes. Finally, in cases in which a cheap approxima-
tion of the atom-atom interaction potential is available,
it might be useful to perform a preliminary adaptation
run using this approximation. This would allow to start
the more accurate simulation with a partially adapted set
of system-bath coefficients in order to reduce the adap-
tation time. A more detailed and systematic study of
the effect of Aγ on the convergence and accuracy of the
adQTB technique will be performed in future work.

2. Adapting the dissipative kernel γ′f,k(ω) with adQTB-f

In the adQTB-f strategy, γr,k(ω) = γ remains con-
stant and frequency-independent, while the frequency-
dependent friction kernel γ′f,k(ω), defined in eq. (29), is
adjusted on the fly in order to enforce the quantum FDT.
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To propagate the non-Markovian friction force we use the
auxiliary velocities ṽj,k(t) defined for each degree of free-
dom k as in equation (32). In addition, we show in this
section that the auxiliary velocities enable to evaluate
the deviation from the FDT at each timestep. We first
note that, in the limit of small α, |ṽj,k(t)|2 provides an
estimate of Cvv,k(ωj), computed at time t and integrated
over a duration of the order of α−1:

|ṽj,k(t)|2 =
1

2α

∫ ∞
−∞

dτe−α|τ |−iωjτC
(α)
vv,k(τ, t)

with C
(α)
vv,k(τ, t) = 2α

∫ t

−∞
dt′ e−2α(t−t′) vk(t′)vk(t′ − τ)

In order to estimate the velocity-force correlation func-
tion CvF,k(ωj), we define auxiliary forces in analogy with
eq. (32) for the auxiliary velocities:

F̃j,k(t) =

∫ ∞
0

e(−α+iωj)τ Fk(t− τ) dτ (44)

These auxiliary variables are propagated as the ṽj,k and
they provide an estimate of CvF,k(ωj), computed at time
t over a duration of approximately α−1:

Re
[
ṽj,k(t)F̃j,k(t)∗

]
=

1

2α

∫ ∞
−∞

dτ e−α|τ |−iωjτRe
[
C

(α)
vF,k(τ, t)

]
with C

(α)
vF,k(τ, t) = 2α

∫ t

−∞
dt′ e−2α(t−t′)vk(t′)Fk(t′ − τ)

These approximations for the correlation functions are
valid in the limit of small α values, in practice, α should
be chosen at least a few times smaller than γ for the
approximation to be satisfactory in a QTB simulation.
This in turns imposes some constraints on the adap-
tation of the coefficients γj,k, since α−1 is the typical
timescale for the variations of the auxiliary variables ṽj,k
and F̃j,k. Given these estimators, the correlation func-
tions in eq. (35) can then be computed at time t via the
following relations:

Re[C̃vF,k(ωj , t)] = Re[ṽj,k(t)F̃j,k(t)∗] (45)

C̃vv,k(ωj , t) = |ṽj,k(t)2| (46)

The deviation from the FDT at time t and frequency ωj
is obtained combining eq. (45) and (46) and the corre-

sponding estimate is denoted ∆̃FDT,k(ωj , t). The friction
coefficients are then adjusted according to a differential
equation similar to the one introduced in the adQTB-r
case:

d

dt
γj,k = −Aγγ

∆̃FDT,k(ωj , t)

〈‖∆̃FDT,k‖〉
(47)

In this equation, the norm ‖∆̃FDT,k‖ of the deviation
from the FDT is averaged over a duration τ similar to
that used in the adQTB-r variant, this averaging has to
be introduced in order to avoid biases due to the fast fluc-
tuations of the instantaneous value ∆̃FDT,k(ωj , t). Note

that in the adQTB-f variant, the differential equation
(47) is integrated and the values of the γj,k modified at
each time step of the dynamics, and not only at the end of
each segment of trajectory as it is the case in the adQTB-
r strategy. The numerical overhead associated with the
adQTB-f variant is therefore considerably higher than
that of the adQTB-r. However, the propagation of the
auxiliary variables and of the coefficients γj,k does not
require additional evaluations of the inter-atomic forces
with respect to a standard QTB dynamics. Therefore
the associated numerical overhead should remain unim-
portant in the case of ab initio MD simulations, in which
the calculation of the inter-atomic forces constitutes the
main computational burden.

Finally, the remarks made in the previous section
about the choice of the parameter Aγ also apply to the
adQTB-f case.

3. Additional remark

The following remark is valid for both adaptive meth-
ods (adQTB-r and adQTB-f) and regards the correlation

function estimates C̃vF,k(ω, t) and C̄
(n)
vF,k(ω). For the sake

of clarity, in this section, the degree of freedom index k is
dropped and the correlation function is simply denoted
CvF (ω).

Due to our choice of integrator (see appendix A 1), the
numerical values for the random force F (t) and the ve-
locity v(t) do not correspond to the exact same time t.
Indeed, in the BAOAB scheme, the random force is ap-
plied in the middle of the time step (step O), whereas the
velocity is saved at the end of each step, so that they are
shifted by ∆t/2. Therefore, the procedures presented in
the this appendix do not give access to CvF (ω) directly
but to an approximation of it, which will be denoted
by CvF (ω). The discrepancy induced on the correlation
spectrum can be significant, even comparable in ampli-
tude with the ZPEL if the time step ∆t is large. To
correct this discrepancy, we first use eq. (24) to write:

v(t− ∆t

2
) = e+γ∆t

2 v(t)− F (t)
∆t

2m
(48)

= v(t)− ∆t

2

(
F (t)

m
− γv(t)

)
+ o (∆t) (49)

Then, a first-order Taylor expansion of CvF (ω) gives:

Re [CvF (ω)] (50)

=
1

2

+∞∫
−∞

dt e−iωτ
〈
v(t− ∆t

2
)F (t− τ) + F (t)v(t− ∆t

2
− τ)

〉
(51)

= Re [CvF (ω)]− ∆t

2

(
CFF (ω)

m
− γRe [CvF (ω)]

)
+ o (∆t)

(52)
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Finally we find:

Re [CvF (ω)] ≈
Re [CvF (ω)] +

∆t

2m
CFF (ω)

1 + γ∆t
2

(53)

This corrected spectrum CvF (ω) was used throughout
this article for the evaluation of the deviation to the quan-
tum fluctuation-dissipation theorem.

C. LARGE SYSTEM-BATH COUPLING

To illustrate the effects of the magnitude of γ on QTB
and adQTB simulations, we present in this appendix the
results obtained for the Ne13 cluster with a large system-
bath coupling constant, namely γ = 4THz. In order to
analyze these results in more detail, we begin by recalling
the effects of large γ values in standard QTB simulations
in the harmonic oscillator case. This case was examined
in particular in Ref. 38 and 39.

1. The harmonic oscillator case

For a harmonic oscillator at the angular frequency
ω0, the Langevin equations of motion are linear and
the average kinetic and potential energies obtained with
the QTB method are given by the following analytical
expressions38:

〈Epot(ω0)〉 =

∫ ωcut

0

dω

π

γ ω2
0

(ω2 − ω2
0)2 + γ2ω2

θ(ω, T )

≡
∫ ωcut

0

dω

π
fpot(ω) (54)

〈Ekin(ω0)〉 =

∫ ωcut

0

dω

π

γ ω2

(ω2 − ω2
0)2 + γ2ω2

θ(ω, T )

≡
∫ ωcut

0

dω

π
fkin(ω) (55)

As noted in Ref. 38, a cutting angular frequency ωcut has
to be introduced in the definition of the random force
in order to avoid the divergence of the integral defin-
ing the kinetic energy (note that θ(ω, T ) ' }ω/2 when
ω is large). For γ � ω0, the Lorentzian factor in the
integrals can be approximated with a Dirac δ-function
and as a result 〈Epot(ω0)〉 ' 〈Ekin(ω0)〉 ' θ(ω0, T )/2,
which corresponds to the exact quantum result. How-
ever, when γ is comparable with ω0, the spectral broad-
ening alters the QTB estimates for the average energies.
This is illustrated in Fig. 12, with a choice of QTB-
parameters similar to the ones used for the simulations
of the Ne13 cluster. Fig. 12.a presents the difference be-
tween the exact quantum result and the QTB-estimates
for the average potential and kinetic energies for γ = 2
and 4THz. It shows that in the frequency range rele-
vant for the Ne13 cluster (typically between 2×1012 and
10×1012 rad/s), as shown in Fig. 9), the error in the
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FIG. 12. Panel a: Difference ∆E between the QTB av-
erage kinetic and potential energy - as given by (54) and
(55) - and the exact quantum result for a harmonic oscil-
lator as a function of its angular frequency ω0. The tem-
perature is T = 4 K, and the cutting angular frequency is
ωcut =63×1012 rad/s. Panel b: integrand fpot(ω) and fkin(ω)
of the equations (54) and (55) for a harmonic oscillator at fre-
quency ω0 = 5× 1012 rad/s. All the energies are scaled by kb
and given in Kelvin.

QTB-estimates of the energies is significant. For in-
stance, at ω0 = 5 × 1012 rad/s, Epot/kb is underesti-
mated by about 1K (2K for γ = 4THz) while Ekin/kb
is overestimated by about 4K (8K for γ = 4THz). This
represents an important fraction of the exact quantum
result θ(ω0, T )/2kb ' 10K. As shown in Fig. 12.b the
overestimation of the kinetic energy is mostly due to the
high-frequency tail of the integrand in equation (55).

2. Ne13 clusters

Fig. 13 shows the Lindemann index curves obtained
for the Ne13 cluster with γ = 4THz. We first note that
increasing γ seems to systematically improve both the
adaptive and the standard QTB results in comparison
with Fig. 10 of the main text. The value of δL obtained
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with both adQTB variants now diplays a sharp increase,
very similar to the one observed in PIMD, only slightly
shifted to lower temperatures. Even in standard QTB,
such an increase of δL is visible at very low tempera-
ture, which is characteristic of the solid-like state. At
temperature T = 4K, the adQTB now yields a small
value for δL, indicating that the the spurious atomic dif-
fusion events discussed in the main text are essentially
suppressed. These unphysical events are still present in
the standard QTB simulations at this temperature, as
evidenced in the large value for δL and confirmed by the
study of the g(r) function (not shown).
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FIG. 13. Lindemann index δL from eq. (20), as a function of
T, for γ =4THz. The figure shows the results obtained with
Langevin (LGV), standard QTB, adQTB-r and adQTB-f, and
the reference results obtained from PIMD.

However, the improvement of the results for large γ
values should be taken with great caution since it might
result from a fortunate cancellation of errors. Indeed, we
showed in appendix C 1, that for a harmonic oscillator
with a frequency comparable to the typical vibration fre-
quencies of the Ne13 cluster, the value γ = 4THz leads
to sizable errors in the QTB simulations. The kinetic
energy tends to be overestimated but since this excess of
energy is mostly caused by high-frequency fluctuations
of the velocity, it most probably has little impact on the
structural properties of the cluster, as characterized by
the pair correlation function g(r). On the other hand, the
potential energy tends to be increasingly underestimated
when γ increases. This leads to an underestimation of
the zero-point motion of the atoms around their equilib-
rium position and hinders the atomic diffusion events in
the Ne13 cluster. Therefore the better results obtained
for γ =4THz are probably due to the combination of two
different effects: (i) the use of large γ reduces the im-
pact of the ZPEL and therefore tends to make the QTB
(or adQTB) simulations more accurate, (ii) for large γ
values, the zero-point motion of the atoms is underesti-
mated, therefore the diffusion events are spuriously sup-
pressed.

This example illustrates the difficulties associated with
the choice of γ in QTB simulations of very anharmonic

systems at low temperatures: on the one hand increasing
γ reduces the influence of the ZPEL and on the other
hand it increases the spectral broadening of the modes
and the associated errors. For that reason, the Ne13 clus-
ter case is a particularly challenging one, that explores
the limits of the QTB and ad QTB methods. However
it should be stressed that the adQTB simulations consis-
tently outperform the standard QTB, because they make
it possible to control the leakage with smaller values of
γ.
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