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Abstract We present a theoretical framework to analyze the 3D coronal vector magnetic-
field structure. We assume that the vector magnetic field exists and is a priori smooth. We
introduce a generalized connectivity phase space associated with the vector magnetic field in
which the basic elements are the field line and its linearized variation: the Spatial Propaga-
tor. We provide a direct formulation of these elements in terms of the vector magnetic field
and its spatial derivatives, constructed with respect to general curvilinear coordinates and
the equivalence class of general affine parameterizations. The Spatial Propagator describes
the geometric organization of the local bundle of field lines, equivalent to the kinematic de-
formation of a propagated volume tied to the bundle. The Spatial Propagator’s geometric
properties are characterized by dilation, anisotropic stretch, and rotation. Extreme singular
values of the Spatial Propagator describe quasi-separatrix layers (QSLs), while true sepa-
ratrix surfaces and separator lines are identified by the vanishing of one and two singular
values, respectively. Finally, we show that, among other possible applications, the squash-
ing factor [Q] is easily constructed from an analysis of particular sub-matrices of the Spatial
Propagator.

Keywords Magnetic fields, corona · Corona, structures

1. Introduction

Geometry describes the measurable lengths and angles associated with a system’s config-
uration, whereas topology is concerned with those properties preserved under continuous
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deformation. Over the past several decades the importance of the geometric and topologi-
cal features to fluid and plasma dynamics has become increasingly clear (see, e.g., Moffatt
et al., 1991; Arnold and Khesin, 1998; Ricca, 2001). Algebraic and geometric analyses of
magnetic and hydrodynamic structures have provided significant development in the context
of general plasma equilibria (e.g. Moffatt, 1985, 1986), stability (e.g. Bulanov and Sasorov,
1978; Syrovatskii, 1981; Bulanov et al., 1999), reconnection (Hesse and Schindler, 1988;
Schindler, Hesse, and Birn, 1988; Ruzmaikin and Akhmetiev, 1994; Bulanov et al., 2002;
Pontin et al., 2005), heating, and wave generation (Ruzmaikin and Berger, 1998). In par-
ticular, geometric and topological analyses of the solar coronal magnetic field have focused
on understanding heating and dynamics (Antiochos, 1987; Berger, 1994; Priest, Longcope,
and Heyvaerts, 2005), as well as investigations into the eruptive phenomenology of flares
(Mandrini et al., 1995; Démoulin et al., 1997; Titov and Démoulin, 1999; Aulanier et al.,
2000) and coronal mass ejection (CME) initiation (Antiochos, DeVore, and Klimchuck,
1999; Lynch et al., 2008; Lynch and Edmondson, 2013).

The build-up, storage, transport, and subsequent release of magnetic energy in the low-β
solar corona is widely accepted as the basic requirement for solar coronal heating, the origin
and generation of the solar wind, as well as eruptive phenomenology and space-weather pre-
diction (see, e.g., Klimchuk, 2006, for a review). It is the geometric and topological features
of the coronal magnetic field that govern these dynamics in the low-β coronal plasma envi-
ronment (see Longcope, 2005, for a review). In general, non-trivial geometric and topologi-
cal features such as null-point structure (Lau and Finn, 1990; Parnell et al., 1996), separator
lines (Longcope and Cowley, 1996), bald patches (Seehafer, 1986; Wolfson, 1989; Low,
1992; Titov, Priest, and Démoulin, 1993), separatrix surfaces (Low, 1987; Somov, 1992;
Priest, Heyvaerts, and Title, 2002), and quasi-separatrix layers (QSLs: Priest and Démoulin,
1995; Démoulin et al., 1996, 1997; Titov, 1999; Milano et al., 1999) appear ubiquitously
in the coronal magnetic field. In fact, the current state of global solar-wind generation mod-
els (see, e.g., Abbo et al., 2016, for a recent review), differ in the extent and complexity of
these geometric and topological structures within the coronal magnetic field (e.g. Wang and
Sheeley, 1990; Fisk, Schwadron, and Zurbuchen, 1998; Arge and Pizzo, 2000; Fisk, 2003;
Cranmer, van Ballegooijen, and Edgar, 2007; Antiochos et al., 2011; Antiochos, 2013).

Since the vector magnetic field is reference-frame dependent, so too is the magnetic-
connectivity description (Hornig and Schindler, 1996); in fact, the entire concept of a
magnetic-field line is not Lorentz invariant (Hornig, 1997). However, in a fixed reference
frame, the geometric and topological features of the magnetic field constrain the dynam-
ics. In general, the geometric features and topological constraints of the magnetic field are
primarily important to understand where and how energy is stored and released in low-
β plasma environments such as the solar corona. In the presence of resistive (non-ideal)
physics, field-line connectivity topology is no longer preserved, although separatrix struc-
tures remain. Separatrix surfaces and QSLs are associated with electric-current-sheet forma-
tion and reconnection, and therefore it is the geometry of these structures that constrain the
storage of magnetic energy throughout the coronal volume, and determine both the location
and the ability to release free energy (see the references above). In particular, QSL locations
are related to observations of sudden flare brightening in Hα for a wide variety of solar-
flare phenomenology such as circular ribbon flares, two ribbon flares, and twisted flux rope
(sigmoidal active region) morphologies (see, e.g., Janvier, 2017, and the references therein).
Furthermore, separatrix surfaces and QSLs are the boundaries dividing regions of disparate
connectivity in complex, multi-polar coronal structures. Hence, QSLs feature prominently
in the rapid reorganization of the vector magnetic field and subsequent energy release in
CME initiation mechanisms (see, e.g., Aulanier, Démoulin, and Grappin, 2005; Effenberger
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et al., 2011; Janvier et al., 2014; Schmieder, Aulanier, and Vršnak, 2015; Lynch et al., 2016,
and the references therein).

The features of the magnetic connectivity map such as helicity, separatrix and QSL
structures, and their effect on the system dynamics find their most explicit representa-
tions in terms of the algebraic and geometric descriptions of the field line and the field-
line bundle. In other words, the constraints on the system dynamics become transparent
when cast in terms of the geometric structure and topological invariants of the field-line
bundle and its behavior. Numerical magnetohydrodynamic (MHD) methodologies allow
one to explore the locus of system dynamics for various magnetic-field models, thermo-
dynamic heating models, and boundary conditions. While the MHD method (where appli-
cable) is correct, the MHD equations and numerical solutions are often opaque to these
explicit geometric structures (e.g. QSLs, separatrices, and separators) and their behavior.
Moreover, many numerical difference schemes employ linear interpolation, which has the
potential to limit these codes as an accurate representation of the system, especially in the
vicinity of sharp gradients and other small-scale structures. Effectively, linear interpolation
shifts the problem of the small-scale dynamics from the physical quantities on to finer and
more complex numerical-grid resolutions. This is an extremely popular approach to numer-
ical/computational solar- and space-plasma physics, but arguably leads to spurious effects
(see, e.g., Edmondson, 2012, for a discussion); we offer no judgment regarding the veracity
of these approaches. This perspective, however, requires the development of new mathemat-
ical tools/description/framework to analyze the geometric organization of the magnetic-field
connectivity map.

The purpose of this article is the introduction, development, and presentation of a gen-
eralized connectivity phase space of field-line geometry associated to the vector magnetic
field, in which the geometric structure and topological constraints are made explicit. This
formalism does not alter the physics of Maxwell’s equations, or MHD, but it is a funda-
mentally different framework that describes and analyzes vector magnetic fields. The basic
assumptions of this framework are:

i) the vector magnetic field is the primary (observable) quantity that satisfies some standard
physical evolutions (e.g. Maxwell’s equations, MHD induction, etc.), and the connectiv-
ity map is the secondary (derived) quantity; and

ii) while large gradients may exist, the vector magnetic field is a priori smooth everywhere.

Under these assumptions, we derive a generally covariant measure of the local field geom-
etry, called the Spatial Propagator, from the linearized variation of a field line. We demon-
strate that the Spatial Propagator characterizes the geometric organization of a local bundle
of field lines. Moreover, we identify topological invariants derived from the Spatial Propa-
gator, as well as demonstrate the proper limiting connection to QSLs, separatrix surfaces,
and separator lines. Beyond the limiting cases, the inclusion and analysis of existing and/or
generated singular structures within the vector field are outside the scope of the present
work.

The roadmap for this article is as follows: In Section 2 we lay out a precise mathematical
definition for the field lines of a vector field (Section 2.1). We introduce the Spatial Propa-
gator (Section 2.2) as a generalized spatial variation of an entire field-line solution, which
describes the local bundle of field lines. Furthermore, we derive a direct relation between the
Spatial Propagator and the local gradient of the vector field (Section 2.3), and hence the pre-
cise mathematical formulation of the geometric phase space, consisting of the integral curve
solutions and their associated Spatial Propagators. Finally, we discuss the various represen-
tations of the Spatial Propagator (Section 2.4): covariance with respect to local curvilinear
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Table 1 Summary of major objects and main equations of this framework.

Symbol Quantity name Equations Section

B(r) Vector field 2 2.1

λ Connectivity parameter 2 2.1

r0 Reference point 3 2.1

r(λ, r0) Field line (for single fixed r0) 2 2.1

r(λ, r0) Congruence (for all r0 ∈ �0 ⊂ R
3) 2 2.1

∇B(r) Covariant differential vector field matrix 15, 21 2.2, 2.4

F(λ, r0) Spatial Propagator 11, 16 2.2

v(λ, r0) Propagated shift vector 12 2.2

h = v(0, r0) Reference shift vector 10, 12 2.2

d�(λ, r0) Signed differential volume element 29 3.1

�(λ, r0) Total propagated volume 31 3.1

σα(λ, r0) Singular values of F(λ, r0) 37 3.2

l̂α(λ, r0), r̂α(λ, r0) Left-, right-singular vectors of F(λ, r0) 42 3.2

V(λ, r0), U(λ, r0) Left-, right-stretch matrices 40, 46 3.2

R(λ, r0) Rotation matrix 41, 46 3.2

Q(λ, r0) Squashing factor [Q-Value] 56, 60 3.3

coordinates, and equivalence with respect to affine transformations of the coordinate defined
along the field line.

In Section 3 we characterize the geometric organization (dilation, rotation, anisotropic
stretch, and connectivity gradient) of a local bundle of field lines using a mathematically
equivalent kinematic analysis of a volume propagated along and deformed by the bundle.
We explore the vector-field geometry using the Spatial Propagator in terms of volumetric
dilation (Section 3.1), from which we identify a topological invariant measure that reflects
the divergence-free condition of physical magnetic fields. We demonstrate that the singu-
lar values and singular vectors of the Spatial Propagator characterize the anisotropic stretch
and rigid-body rotation deformations of the geometry (Section 3.2). Lastly (Section 3.3),
we identify quasi-separatrix structures directly from the Spatial Propagator as extreme kine-
matic deformations, and we demonstrate the construction of the Q-factor (see, e.g., Titov,
Hornig, and Démoulin, 2002; Titov, 2007) by a simple example.

We close with a description of other potential applications of the Spatial Propagator
in Section 4. The major objects and main equations of this framework are summarized in
Table 1.

2. The Integral Curve Description of Vector Field Geometry

Let M ⊆ R
3 be a subset of three-dimensional space, possibly with boundary ∂M . Let B (r)

be a vector field for all positions r ∈ M . This field satisfies some set of dynamic evolu-
tion equations for some known initial and boundary conditions. Written with respect to a
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Cartesian1 basis {êx, êy, êz}, the vector field B (r) has component functions,

B(r) · êx = (B|r)x = Bx(x, y, z),

B(r) · êy = (B|r)y = By(x, y, z),

B(r) · êz = (B|r)z = Bz(x, y, z),

(1)

where r is the spatial position with coordinates {x, y, z}.
In general, the vector field B (r) is time-dependent, and therefore, strictly speaking, so

too are the integral curves (Section 2.1), and the Spatial Propagator (Section 2.2), as well as
all other objects constructed therefrom. For ease of notation, throughout this work we sup-
press the functional time-dependence of all quantities; this may be interpreted as analyzing
the system at a fixed time, or for very-low frequency dynamics, f � c/L where c is the
characteristic speed of communication, and L is a characteristic length scale. The dynami-
cal description of the integral curves (Section 2.1), the Spatial Propagator (Section 2.2), etc.
require a treatment of the full four-dimensional electromagnetic-field tensor (Jackson, 1999,
Section 11.9), which is outside the scope of this work.

2.1. The Integral Curves of a Vector Field

In differential equation theory, a general vector field B (r) is everywhere tangent to a set of
integral curves r (λ, r0) that satisfy the initial value problem

∂r(λ, r0)

∂λ
= B(r), (2)

r(0, r0) = r0. (3)

The family of integral curve solutions r (λ, r0) are parametrized by a real number λ ∈ R,
referred to as the connectivity parameter, and a three-component vector r0 ∈ M , referred to
as the reference point. A single integral curve, as a particular solution to Equations 2 and 3,
is identified by a single fixed reference point r0. The connectivity parameter λ denotes the
distance per unit field strength along a particular solution curve issuing from a particular
reference point. We note that the rate of change with respect to λ is simply the directional
derivative along the vector field, which may be written with respect to the coordinate repre-
sentation

∂

∂λ
≡ B(r) · ∇. (4)

The integral curve solutions to Equations 2 and 3 represent position vectors r = r(λ, r0),
the components of which are functions of (λ, r0); written with respect to a Cartesian basis
{êx, êy, êz}

r(λ, r0) · êx = (r|λ,r0)
x = x(λ, x0, y0, z0),

r(λ, r0) · êy = (r|λ,r0)
y = y(λ, x0, y0, z0),

r(λ, r0) · êz = (r|λ,r0)
z = z(λ, x0, y0, z0).

(5)

1We remark, unless specifically noted otherwise, throughout this article we work with respect to the standard
Cartesian coordinates {x, y, z} and orthonormal Cartesian unit basis vectors {êx, êy , êz}.
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Figure 1 Illustration of a
general congruence, viz. field
lines and reference points.
A particular field line r(λ, r0) is
associated with a single fixed
reference point r0. A congruence
is defined by a set of reference
points in some neighborhood
r0 ∈ �0 ⊆ R

3.

The integral curve solutions r(λ, r0) are known by various names depending on the na-
ture and interpretation of the differential equations and vector field. In physics, integral
curves for electric and magnetic fields are known as field lines, whereas the integral curves
for a velocity field are called streamlines. In general dynamical systems theory, the integral
curves of the governing differential equation system are referred to as trajectories or orbits.

Since we find application to solar magnetic fields, throughout this article we use field
line to denote a particular solution to Equations 2 and 3 with fixed r0. Moreover, a flux tube
is a congruence of integral curves (or simply a congruence); that is a local bundle of field
lines defined by a particular set of reference points in some neighborhood r0 ∈ �0 ⊆ M (see
Figure 1).

We make a few observations and define some nomenclature regarding the field lines in
physical systems of interest. The reference point r0 is a free parameter, typically chosen on
the system boundary, or to coincide with some known initial state within the system interior;
for example, in a magnetized plasma this choice typically coincides with a highly-conductive
parcel of plasma material. The λ = 0 datum defined by the reference point r0 = r(0, r0) is
typically referred to as the launch footpoint in magnetic systems. The point r = r(L, r0)

for a finite λ = L, corresponding to the final point of integration of Equations 2 and 3 is
often referred to as the target footpoint in magnetic systems; typically, the target footpoint
is where the integral curves crosses the system boundary, or encounters a singular structure
in the vector field.

The congruence of integral curves of a smooth vector field represents an equivalence
class under general affine transformations of the connectivity parameter of the form λ �→
�(λ) = f (r)λ + b, where f (r) is a smooth, positive definite, scalar-valued function,2 and
b ∈ R an arbitrary constant.3 The re-parametrized flow r(�, rb) satisfies Equations 2 and 3
for vector field X(r) = B(r)/f (r) and reference condition rb; that is,

∂r(�, r0)

∂�
= X(r), (6)

r(b, r0) = rb. (7)

2The function f must be at least C1 differentiable. The positivity condition preserves field-line orientation.
Furthermore, a solenoidal vector field ∇ · B = 0 with X = B/f leads to a constraint ∇ · X + X · ∇f = 0;
then choosing a function f such that the vector field X is everywhere tangent to the level surfaces of f

(i.e. X · ∇f = 0) preserves the solenoidal property to the vector field X. Furthermore, including a temporal
dependence on f imposes a constraint equation on the X-evolution to preserve consistency with B .
3The value of the constant b represents a simple relabeling of the reference point on the particular field-line
solution; i.e. r0 �→ rb .
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A simple application of this λ �→ �(λ) re-parametrization is the analysis of the B field in a
system with boundaries ∂M . One has the freedom to choose the function f (r) (and constant
b = 0) in order that the values � = 0 and � = 1 coincide with the initial and final points of
the field lines taken at the boundary surfaces, r0 ∈ ∂M and r(1, r0) ∈ ∂M ; typically at the
photosphere for solar coronal applications. With � = 0 and � = 1 as boundary values, the
connectivity parameter � is not the physical (dimensional) arc length, but rather a normalized
dimensionless arc-length parameter.

As a second application, consider f (r) = |B(r)|; assuming |B(r)| 
= 0. The vector field
X(r) = B(r)

|B(r)| = b(r) is well defined and is identified with the unit magnetic-field direction.
For simplicity and without loss of generality, we may set the constant b = 0. Under this
transformation, the system of Equations 2 and 3 becomes

∂r(�, r0)

∂�
= b(r), (8)

r(0, r0) = r0 (9)

In this example, the connectivity parameter � represents the physical arc length along the
magnetic-field line. We refer to the representation constructed from the unit magnetic-field
direction vector field and in which the connectivity parameter represents the physical arc
length along the field line issuing from the reference point, as the arc-length representation.

2.2. The Spatial Propagator: A Local Congruence of Integral Curves

The relative geometry of a local congruence (i.e. dilation, anisotropic stretch, and rotation
of the bundle of curves) is completely described by examining a field line under a spatial
variation of the reference point r0 �→ r0 +h. We denote the spatial variation of the reference
point by the reference shift vector h.

Recall that a fixed reference point r0 is equivalent to a single field line r(λ, r0); hence,
when considering solutions r(λ, r0) to Equations 2 and 3 for a set of r0 ∈ �0, a variation in
the reference point r0 → r0 +h is equivalent to a variation of the entire field line. To see this,
consider two spatially neighboring field-line solutions within the congruence, respectively:
r(λ, r0) and r(λ, r0 + h). We may relate the component functions of the neighboring field
lines by a Taylor expansion, such that for all λ and |h| � hm,

(r|λ,r0+h)
i − (r|λ,r0)

i =
∑

j

∂(r|λ,r0)
i

∂r0
j

hj + O
(|h|2), (10)

where hm is a local characteristic length scale defined by comparing the magnitude of the
first-order with the higher-order variational terms (see Appendix A).

Equation 10 describes the local organization of all field lines with reference points within
an initial volume �0 of characteristic size |�0|1/3 � hm; that is to say, the congruence is
local with respect to reference points r0 + h ∈ �0 with |h| � hm.

We remark, there is an implicit assumption in Equation 10 that the magnetic vector field
B(r) is described by smooth component functions everywhere within the domain. In future
work, we will explore the consequences of relaxing this assumption.

We define this first-order variation of the field line r(λ, r0) with respect to a spatial
variation in the reference point r0 to be the Spatial Propagator F(λ, r0). Then for all λ, the
variational derivative may be represented as a 3 × 3 matrix whose component functions are
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Figure 2 Illustration of the
action of the Spatial Propagator.
The spatial variation of a
particular field line (solid red) in
the direction r0 → r0 + h is
indicated by the dashed red line.

simply the derivatives of Equation 5 with respect to the reference point components,

(F|λ,r0)
i
j ≡ ∂(r|λ,r0)

i

∂r0
j

=

⎛

⎜⎜⎝

∂x
∂x0

∂x
∂y0

∂x
∂z0

∂y

∂x0

∂y

∂y0

∂y

∂z0
∂z
∂x0

∂z
∂y0

∂z
∂z0

⎞

⎟⎟⎠ . (11)

Note that, at λ = 0, the field line reduces to the reference point r(0, r0) = r0, and similarly
r(0, r0 + h) = r0 + h. Hence, Equation 10 reduces to the definition of the reference shift
vector r(0, r0 + h) − r(0, r0) = h, and Equation 11 at λ = 0 is simply the 3 × 3 identity
matrix, (F|0,r0)

i
j = δi

j ; where δi
j is the Kronecker delta.

The Spatial Propagator F(λ, r0) may be considered to be the generalized gradient of an
entire field line r(λ, r0) issuing from the reference point r0 for all λ. The difference vector
v(λ, r0) represents the spatial shift at each λ along the particular field line r(λ, r0) to the
corresponding point at λ along the neighboring field line r(λ, r0 + h) (see Figure 2); the
components of v(λ, r0) are given by

(v|λ,r0)
i ≡

∑

j

(F|λ,r0)
i
jh

j (12)

For a given spatial variation h, Equation 12 may be interpreted as a generalized directional
derivative of an entire field line r(λ, r0) in the direction v(λ, r0). In other words, the Spatial
Propagator F “propagates” every spatial variation h of the reference point r0 along the
particular field line in 3D space.

The matrix representation of the Spatial Propagator F(λ, r0) contains all of the geomet-
ric information of the local congruence; that is, it carries the local geometric organization
of the field lines within a neighborhood �0 � h3

m of a particular field-line solution r(λ, r0).
We give a precise meaning to this statement in Section 3.

2.3. Direct Relation Between the Spatial Propagator and the Vector Field

Like the field lines of the congruence, the Spatial Propagator F(λ, r0) is a function of both
the connectivity parameter λ and reference point r0. In order to calculate the Spatial Prop-
agator, one may integrate all field lines, and then construct the difference Equation 10 be-
tween any two neighboring field lines, taking care to evaluate the scale length hm for every
field line. However, in typical physical systems of interest the governing equations describe
the evolution of the vector field (e.g. Faraday’s law, MHD induction, etc.), and the associated
field lines are derived therefrom. Hence, we seek a formulation of the Spatial Propagator di-
rectly from the vector field, which allows the simultaneous calculation of the spatial behavior
of all field lines within the hm neighborhood.
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To illustrate, we give a simple, qualitative derivation as follows. The connectivity param-
eter λ and the reference point r0 may be considered independent variables in the family of
smooth integral curve solutions r(λ, r0) to the system of Equations 2 and 3. From this per-
spective, the spatial variation with respect to the reference point may be constructed directly
from Equation 2 by

∂

∂r0

(
∂r(λ, r0)

∂λ

)
= ∂

∂r0

(
B(r)

)
. (13)

Since the vector field B(r) is assumed to have smooth components, then the family of
integral curve solutions r(λ, r0) is smooth in the variables λ and r0; hence, mixed partial
derivatives commute, and Equation 13 may be written

∂

∂λ

(
∂r(λ, r0)

∂r0

)
=

(
∂B(r)

∂r

∣∣∣∣
r=r(λ,r0)

)
·
(

∂r(λ, r0)

∂r0

)
. (14)

By Equation 11, Equation 14 is a matrix evolution equation for the (unknown) Spatial
Propagator F(λ, r0). The ∂B(r)

∂r
term is simply the rate of change of the vector field with

respect to the spatial position r = r(λ, r0); represented as a 3 × 3 matrix with respect to
Cartesian basis,

(∇B|r)i
j ≡ ∂(B|r,t )

i

∂rj
=

⎛

⎜⎜⎝

∂Bx

∂x
∂Bx

∂y
∂Bx

∂z

∂By

∂x
∂By

∂y
∂By

∂z

∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

⎞

⎟⎟⎠ , (15)

where each partial derivative component is evaluated along the field-line component func-
tions, Equation 5.

Substituting Equations 11 and 15 into Equation 14, the Spatial Propagator F(λ, r0) sat-
isfies the following first-order matrix differential equation, in components with respect to a
Cartesian basis {êx, êy, êz}:

∂(F|λ,r0)
i
j

∂λ
=

∑

k

(∇B|r)i
k(F|λ,r0)

k
j , (16)

(F|0,r0)
i
j = δi

j , (17)

where δi
j is the Kronecker delta.

We remark that by Equation 4 the matrix ODE, Equation 16, is the Lie transport (see,
e.g., Kobayashi and Nomizu, 1963, p. 29) of the propagated shift vector v along the vector
field B ,

LB(v) = 0 (18)

where the reference shift vector h is a constant vector independent of the coordinates; that
is (B · ∇)h = 0.

In general, Equations 2 and 16, along with their respective initial conditions given by
by Equations 3 and 17, are generally referred to as the equations of variation (see, e.g.,
Arnold, 1992, pp. 223 – 225), and they constitute a well-posed problem. Hence, the Spatial
Propagator F(λ, r0) solution exists and is unique for all λ and r0 (see, e.g., Bernstein, 2018,
pp. 1193 – 1195, for existence and uniqueness proof).
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For any reference point r0 and all λ, the congruence of scale hm is a particular solution
to the equations of variation consisting of both the integral curve r(λ, r0) and corresponding
Spatial Propagator F(λ, r0). The congruence may be interpreted as a local phase-space of
scale hm for the field-line connectivity consisting of elements r(λ, r0) and F(λ, r0). With
respect to the global Cartesian coordinates, these phase space elements are represented by a
three-component vector and 3 × 3-component matrix,

r(λ, r0) =
∑

i

(r|λ,r0)
i êi ,

F(λ, r0) =
∑

i,j

(F|λ,r0)
i
j êi ⊗ ê

j
,

(19)

where {êx, êy, êz} are the orthonormal basis vectors, and {êx
, ê

y
, ê

z} the dual basis (see Ap-
pendix B.1).

2.4. General Representations of the Spatial Propagator

There are two fundamental representation categories of the Spatial Propagator F(λ, r0): the
matrix representation with respect to a particular basis set êi , and the representation with
respect to the connectivity parameter λ.

First, we consider the basis representation of the congruence; that is the field line r(λ, r0)

and associated Spatial Propagator F(λ, r0) are, respectively, a three-component vector and
3 × 3 matrix representation constructed with respect to a particular basis set. Fundamen-
tally, the matrix representation of the congruence follows from the vector field B(r) and
its gradient matrix ∇B(r); that is constructing B and ∇B with respect to Cartesian basis
vectors lead to the Cartesian representation of the congruence: Equation 19.

In the Cartesian representation, the basis vectors are independent of the spatial position
and hence Equations 11 and 15 find a particularly simple form. However, general curvi-
linear basis vectors are position dependent (see Appendix B.1); for example, consider the
spherical–polar orthonormal4 basis vectors,

êr (θ,φ) = sin θ cosφêx + sin θ sinφêy + cos θ êz

êθ (θ,φ) = cos θ cosφêx + cos θ sinφêy − sin θ êz

êφ(θ,φ) = − sinφêx + cosφêy,

(20)

prevalent within solar and space physics. In order to incorporate the spatial position depen-
dence of general curvilinear basis vectors in this formulation, we impose the condition that
the Spatial Propagator F(λ, r0) transform as a tensor under general coordinate transfor-
mations.

The tensor-condition requires the ∇B(r) object to be the matrix representation of the
covariant differential of the vector field (see, e.g., Kobayashi and Nomizu, 1963, pp. 143 –
144). The components of the matrix representation of the covariant differential of the vector
field with respect to general local curvilinear coordinates qi is given by

(∇B|r)i
j = ∂

∂qj
(B|r)i +

∑

k

(�|r)i
jk(B|r)k (21)

4We reserve the hat-notation for strictly orthonormal basis vectors.
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(see Appendix B.1 for derivation and discussion). The first term is simply the rate of change
of the component functions with respect to the local coordinates. The (�|r)i

jk in the second
term are coefficients that account for the spatial position dependence of the basis vectors
q i (q

j ). Equation 16 with Equation 21, and the initial condition Equation 17, generalizes the
field-line deviation to general curvilinear coordinates (see, e.g., Tassev and Sevcheva, 2017,
for application in spherical–polar orthonormal coordinates). In Appendices B.2 and B.3 we
develop explicit matrix representations of the covariant differential of the vector field ∇B(r)

with respect to the common spherical–polar bases used by the solar and space-physics com-
munity (see, e.g., Tassev and Sevcheva, 2017).

Second, we consider the connectivity parameter representation of the congruence. For a
given vector field B(r), the congruence solution r(λ, r0) and F(λ, r0) to Equations 2 and
16 with respect to λ is said to be given in the natural representation. That is the connectivity
parameter λ has units of arc length per vector field magnitude, and the congruence elements,
r(λ, r0) and F(λ, r0), reflect this functional dependence.

Recall from the end of Section 2.1, the congruence represents an equivalence class un-
der general affine transformations of the connectivity parameter, λ �→ �(λ) = f (r)λ + b

for smooth, positive-definite functions f (r) and scalars b. Hence, the matrix differential
Equations 16 and 17 transform accordingly; with respect to Cartesian coordinates

∂(F|�,rb
)i

j

∂�
=

∑

k

(
(∇X|r)i

k + (X|r)i

f (r)

∂f (r)

∂rk

)
(F|�,rb

)k
j , (22)

(F|b,rb
)i

j = δi
j . (23)

where X(r) = B(r) /f (r), and the positions are evaluated along r = r(�, rb). Equation 22
with initial condition 23, generalizes the field-line deviation to include affine transformations
in the connectivity parameter representations (see, e.g., Tassev and Sevcheva, 2017; Scott,
Pontin, and Hornig, 2017, for application).

Explicitly, recall the arc-length representation example, Equations 8 and 9, with f (r) =
|B(r)|, and |B(r)| 
= 0. The vector field X(r) = b(r) is well defined and identified with the
unit magnetic-field direction. In this example, the arc-length representation of the Spatial
Propagator with respect to Cartesian coordinates satisfies

∂(F|�,r0)
i
j

∂�
=

∑

k

(
(∇b|r)i

k + (b|r)i

|B(r)|
∂|B(r)|

∂rk

)
(F|�,r0)

k
j , (24)

(F|0,r0)
i
j = δi

j . (25)

where the positions are evaluated along the arc-length representation of the field line, r =
r(�, r0).

In the application to solar magnetic fields, constructing the congruence solution from data
(e.g. Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images) requires
the solutions to Equations 8 and 24, with initial conditions 7 and 25, respectively. From this
perspective, we have decoupled the magnetic-field strength estimation from the field-line
trajectory estimation in the construction of the Spatial Propagator.

3. Geometric Deformation of a Congruence

Geometry describes the measurable lengths and angles associated with the system configu-
ration. The value of the congruence formalism is that all of the geometric behavior of a local
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bundle of field lines is contained within a single integration of Equations 2 and 16, along
with their respective initial conditions 3 and 17. The field line r(λ, r0) and corresponding
Spatial Propagator F(λ, r0) implicitly incorporate all geometric information of the local
bundle, which follows naturally from the vector magnetic-field structure: B and ∇B . The
generic geometric configuration of the congruence may be described by a combination of
dilation (Section 3.1), stretch, rotation (Section 3.2), and gradients in the connectivity struc-
ture (Section 3.3).

We recall that by assumption the vector field components are smooth functions. Hence,
by standard theorems of existence, uniqueness, and extension for ordinary differential equa-
tions (see, e.g., Hirsch and Smale, 1974; Arnold, 1992; Taylor, 1996), each field-line refer-
ence point r0 ∈ �0 is mapped smoothly and uniquely to the point r = r (λ, r0) ∈ �λ (see
Figure 1); that is the neighborhood volume �0 is mapped, smoothly and uniquely, to the
neighborhood volume �λ. Hence, the geometric deformation of the local congruence is re-
flected in the deformation of the initial volume �0 by propagation along the congruence
into �λ.

3.1. Congruence Dilation and the Determinant of the Spatial Propagator

The dilation of a congruence is the compression/expansion of the constituent field lines,
and it is completely described by the determinant of the 3 × 3, non-singular (invertible)
matrix representation of the Spatial Propagator F(λ, r0). This type of geometric deformation
is quantified by the dilation of a volume �λ ⊆ R

3 propagated through each λ along the
congruence. In this section, we make explicit the functional dependence of the deformed
volume on both the connectivity parameter λ and the reference point r0, by denoting �λ =
�(λ, r0).

The signed differential volume element in Cartesian coordinates is constructed from the
coordinate differentials dxi êi ,

d3x = (dz êz) · ((dx êx) × (dyêy)
) = êz · (êx × êy)dx dy dz. (26)

We may choose differential-reference-shift vectors to coincide with the Cartesian coordi-
nate differentials dhi ≡ dxi êi , and hence write the local signed differential volume element
at the reference point d�(0, r0) = d3x.

Each differential-reference-shift vector dhi may be propagated along the congruence un-
der the action of F(λ, r0) (see Figure 3), such that

dvi (λ, r0) = F(λ, r0) · dhi = dxi F(λ, r0) · êi , (27)

Figure 3 Illustration of the
volumetric propagation under the
action of the Spatial Propagator.
Each dhi is propagated to dvi .
The propagated vectors
illustrated are linearly
independent, and otherwise
completely general.
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where for each i = x, y, z, the F(λ, r0) · êi is a vector; expanded with respect to Cartesian
basis (see Appendix C.1),

F(λ, r0) · êi = (F|λ,r0)
x
i êx + (F|λ,r0)

y
i êy + (F|λ,r0)

z
i êz. (28)

Hence, the local signed differential volume element propagated along the congruence is
completely determined by the action of the Spatial Propagator on the basis vectors:

d�(λ, r0) = dvz(λ, r0) · (dvx(λ, r0) × dvy(λ, r0)
)

= (
F(λ, r0) · êz

) · ((F(λ, r0) · êx

) × (
F(λ, r0) · êy

))
dx dy dz. (29)

By a standard result from vector calculus in three dimensions, the ratio of propagated
volume element to initial volume element is given by the determinant of the matrix repre-
sentation of F(λ, r0):

d�(λ, r0)

d�(0, r0)
= (F(λ, r0) · êz) · ((F(λ, r0) · êx) × (F(λ, r0) · êy))

êz · (êx × êy)
,

= det F(λ, r0). (30)

In Appendix C.1, we calculate Equation 30 explicitly for a Cartesian basis. Furthermore,
identity 30 is valid for arbitrary orthonormal basis sets (see, e.g., Nickerson, Spencer, and
Steenrod, 1959, pp. 95 – 97, for a standard treatment). From a geometric perspective, the
determinant of the 3 × 3 matrix representation of F(λ, r0) acts as the Jacobian in a change
of basis for the signed volume element propagated along the congruence (see Figure 3).

Since the differential-reference-shift vectors dhi are mapped under the action of the Spa-
tial Propagator into the propagated differential vectors dvi (λ, r0), the signed differential vol-
ume elements d�(0, r0) and d�(λ, r0) are centered on the respective points r0 = r(0, r0)

and r = r(λ, r0). Hence, 3D integration with respect to the volume measure d�(λ, r0) gen-
erates a total volume �(λ, r0), deformed with respect to the initial shape �(0, r0) and cen-
tered on the field line r(λ, r0) at each value of λ. Moreover, by Equation 30 the deformed
total volume at every λ may be cast as an integral with respect to the reference volume
measure d�(0, r0) at the reference point r0,

�(λ, r0) =
∫

�(λ,r0)

d�(λ, r0) =
∫

�(0,r0)

det F(λ, r0)d�(0, r0). (31)

The dilation of the total volume �(λ, r0) by propagation along the congruence is there-
fore completely determined by the determinant of the Spatial Propagator det F(λ, r0) at
each λ. Geometrically, the total volume �(λ, r0) decreases (volumetric compression) for
0 < det F(λ, r0) < 1, remains constant (isochoric propagation) for det F(λ, r0) = 1, or in-
creases (volumetric expansion) for det F(λ, r0) > 1, respectively.

We remark, det F(λ, r0) < 0 corresponds to a mapping from a proper right-handed basis
set, to a left-handed basis set. Such an F(λ, r0) is discontinuous and requires singularities in
the vector field B , which we do not consider in this work.

Moreover, using Equation 31, we can quantify the rate of volumetric dilation by propa-
gation along the congruence,
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∂�(λ, r0)

∂λ
=

∫

�(0,r0)

∂ det F(λ, r0)

∂λ
d�(0, r0),

=
∫

�(0,r0)

Tr
(∇B(r)

)
det F(λ, r0)d�(0, r0) (32)

where we have made use of the identity

∂ det F(λ, r0)

∂λ
= Tr

( ∇B(r)
)

det F(λ, r0), (33)

(see Appendix C.2 for derivation).
In Equations 32 and 33, the Tr(∇B(r) ) term is evaluated at each point r = r(λ, r0). In

particular, every physical magnetic vector field is everywhere divergence-free: Tr(∇B(r)) =
∇ · B(r) = 0 for all r ∈ M . Hence, by Equations 17 and 33, for all finite λ,

detF(λ, r0) = det F(0, r0) = det I = 1. (34)

This implies that the total volume is conserved under propagation along a congruence;
that is �(λ, r0) = �(0, r0) is constant regardless of deformation. Hence, we identify
det F(λ, r0) = 1 for all λ and every r0 as the simplest topological invariant of a congru-
ence generated by a smooth magnetic vector field. This true topological invariant reflects
the divergence-free condition.

3.2. Congruence Stretch and Rotation and the Singular Value Decomposition
of the Spatial Propagator

The anisotropic stretch and rigid-body rotation of a congruence are equivalent to the kine-
matic description of the propagated volume undergoing similar deformation; that is, the
λ-evolution of the propagated vectors v(λ, r0) with respect to a local volume-centered or-
thogonal reference frame. The congruence stretch and rotation is described by a deformation
scaled along mutually orthogonal, body-centered axes of the propagated volume. This basic
geometric picture is illustrated in Figure 4.

We seek a geometric description in which the orthogonality of the reference frame is
preserved under rotation and the lengths of the direction vectors are scaled. This descrip-
tion initially suggests the λ-evolution of the eigen-decomposition of the Spatial Propagator
matrix F, in which the eigenvalues and eigenvectors play the role of scale factors and basis

Figure 4 Illustration of an
anisotropic stretch and rigid-body
rotation of an orthogonal frame
centered about the central
field-line trajectory r(λ, r0)

within the propagated volume. In
contrast to Figure 3, a specific
orthogonal frame r̂α is shown
centered on r(0, r0). It is rotated
along the central field line into
the specific orthogonal frame l̂α
centered at r(λ, r0) while the
vector lengths are simultaneously
scaled by the corresponding σα

as defined in Section 3.2.
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directions. The eigenvalues for a general, non-singular, 3 × 3 matrix F are determined by a
cubic polynomial with real coefficients, the roots of which may be real or complex-valued
depending on the sign of the classical cubic discriminant. In the case of non-negative cu-
bic discriminant, the eigenvalues are all real (perhaps with multiplicity > 1), the geometric
interpretation is scaling along linearly independent eigenvectors (since F is a non-singular
matrix). However, mutual orthogonality of the eigenvectors follows only in the special case
that the Spatial Propagator matrix is symmetric, F = FT (where FT denotes the matrix trans-
pose). Moreover, a negative cubic discriminant corresponds to complex-valued eigenvalues
and eigenvectors, the geometric interpretation of which is not a stretch and rotation of the
propagated volume. Hence, the eigen-decomposition of the Spatial Propagator F does not
provide the correct stretch and rotation description.

To determine the correct description, consider that a general stretch is described by a
change in the length of propagated vectors v (λ, r0) within the propagated volume. The
length of a vector is described by the norm

∣∣v(λ, r0)
∣∣ = (

v(λ, r0) · v(λ, r0)
)

1/2

= (
h · FT (λ, r0) · F(λ, r0) · h)

1/2. (35)

Equation 35 is a real-valued function of λ that involves the symmetric matrix FT · F, as
opposed to the Spatial Propagator F alone. By a standard theorem of linear algebra (see,
e.g., Halmos, 1958, Section 79), the eigenvalues of the symmetric matrix FT · F are all real
(possibly with multiplicity > 1), and the eigenvectors are everywhere mutually orthogonal.
More generally, the symmetric matrices FT · F and F · FT have identical eigenvalues, as
well as orthogonal, albeit different, eigenvector bases. Hence, for a general, non-singular
Spatial Propagator F, the real eigenvalues and real orthogonal eigenvectors of the symmetric
matrices F · FT , respectively FT · F, may be used to infer indirectly the geometric stretch
and rotation interpretation of F.

Formally, for each r0 and all λ, there exists a factorization of F(λ, r0), called the singular
value decomposition (SVD), given by

F(λ, r0) = Rl (λ, r0) · P(λ, r0) · Rr (λ, r0), (36)

where P(λ, r0) is a 3 × 3 diagonal matrix, and the Rl (λ, r0) and Rr (λ, r0) are 3 × 3 or-
thogonal matrices (e.g. Bernstein, 2018, pp. 555 – 558). The diagonal entries of the matrix
P(λ, r0) are non-negative functions σα(λ, r0) for α = 1,2,3, given by

σα(λ, r0) = √
qα(λ, r0), (37)

where qα(λ, r0) are the eigenvalues of the matrices FT · F and F · FT . The columns of
Rl (λ, r0), denoted by l̂α(λ, r0), are the mutually orthogonal eigenvectors of the symmetric
matrix F ·FT ; respectively, the columns of Rr (λ, r0), denoted by r̂α(λ, r0), are the mutually
orthogonal eigenvectors of the symmetric matrix FT · F.

For each reference point r0 and fixed λ, the set of values σα for α = 1,2,3 are called the
singular values of F(λ, r0), and the corresponding set of vectors l̂α and r̂α are called the sin-
gular vectors of F(λ, r0). The anisotropic stretch and rigid-body rotation of the propagated
volume, equivalently the congruence geometry, is completely determined by the singular
values and singular vectors of the Spatial Propagator F(λ, r0). Geometrically, an orthogonal
frame r̂α in the reference volume �0 is rotated into the orthogonal frame l̂α in the propa-
gated volume �λ while the vector lengths are simultaneously scaled by the corresponding
σα , as shown in Figure 4.
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We may decompose this simultaneous stretch and rigid-body rotation effect through a
polar decomposition of the Spatial Propagator. Since Rl (λ, r0) is an orthogonal matrix
(R−1 = RT , where superscript “T ” denotes the matrix transpose) for each r0 and all λ,
then RT

l (λ, r0) · Rl (λ, r0) = I, where I is the identity. Hence, we may rewrite Equation 36
as

F(λ, r0) = Rl (λ, r0) · P(λ, r0) · I · Rr (λ, r0)

= Rl (λ, r0) · P(λ, r0) · ( RT
l (λ, r0) · Rl (λ, r0)

) · Rr (λ, r0)

= (
Rl (λ, r0) · P(λ, r0) · RT

l (λ, r0)
) · (Rl (λ, r0) · Rr (λ, r0)

)

= V(λ, r0) · R(λ, r0). (38)

By the exact same arguments, making use of the orthogonality of Rr (λ, r0), we find an
equivalent rewrite of Equation 36 as

F(λ, r0) = R(λ, r0) · U(λ, r0). (39)

The equivalent decompositions in Equations 38 and 39 are referred to as the left-polar de-
composition and right-polar decomposition, respectively, of the Spatial Propagator (see, e.g.,
Halmos, 1958, Section 83). Unlike the general Spatial Propagator F(λ, r0) itself, the matri-
ces V(λ, r0) and U(λ, r0), denoted, respectively, the left-stretch and right-stretch, are sym-
metric, positive definite, 3 × 3 matrices defined by

V(λ, r0) ≡ Rl (λ, r0) · P(λ, r0) · RT
l (λ, r0),

U(λ, r0) ≡ RT
r (λ, r0) · P(λ, r0) · Rr (λ, r0).

(40)

Moreover, the matrix R(λ, r0) is a 3 × 3, orthogonal matrix defined by

R(λ, r0) ≡ Rl (λ, r0) · Rr (λ, r0). (41)

The left-stretch V(λ, r0), right-stretch U(λ, r0), and rotation R(λ, r0) matrices all naturally
inherit their (global) coordinate representation from the matrix representation of the Spatial
Propagator F(λ, r0).

Equation 40 represent two coordinate rotations by the orthogonal matrices Rl (λ, r0) and
Rr (λ, r0) that diagonalize, respectively, the V(λ, r0) and U(λ, r0) matrices. The anisotropic
stretch and rigid-body rotation geometric interpretation, however, becomes explicit by ap-
plication of the standard spectral decomposition theorem of linear algebra (see, e.g., Hal-
mos, 1958, Section 79). Since the matrices V(λ, r0) and U(λ, r0) are symmetric, there exist
orthogonal eigen-bases l̂α(λ, r0) and r̂α(λ, r0), with respect to which the matrix represen-
tations are

V(λ, r0) =
∑

α

σα(λ, r0)l̂α(λ, r0) ⊗ l̂α(λ, r0),

U(λ, r0) =
∑

α

σα(λ, r0)r̂α(λ, r0) ⊗ r̂α(λ, r0).

(42)

By Equations 40 and 41, the eigen-bases l̂α(λ, r0) and r̂α(λ, r0), of the left-stretch V(λ, r0),
respectively right-stretch U(λ, r0), matrices are the singular vectors of the Spatial Propaga-
tor F(λ, r0).
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Figure 5 Illustration of the
polar decomposition of the
Spatial Propagator. The
right-polar decomposition,
F = R · U, stretches/compresses
by a factor of σα along the
corresponding direction r̂α ,
followed by a rotation aligning
with l̂α ; the left-polar
decomposition, F = V · R, rotates
r̂α to align with l̂α , followed by
a stretch/compression by a factor
of σα along the corresponding
direction l̂α .

Moreover, the singular vectors l̂α(λ, r0) and r̂α(λ, r0) are related via the rotation matrix
R(λ, r0): Equation 41. By Equations 38 and 39, the right- and left-polar decompositions
are equal, and hence, V = R · U · R−1. Moreover, using the eigen-basis representations of
Equation 42, and the orthogonality of the rotation matrix R−1 = RT , we find

∑

α

σα l̂α ⊗ l̂α = R ·
(∑

α

σα r̂α ⊗ r̂α

)
· RT

=
∑

α

σα(R · r̂α) ⊗ (
r̂α · RT

)
.

Hence, matching terms

l̂α(λ, r0) = R(λ, r0) · r̂α(λ, r0) = r̂α(λ, r0) · RT (λ, r0). (43)

Furthermore, inverting Equation 43 yields,

r̂α(λ, r0) = l̂α(λ, r0) · R(λ, r0) = RT (λ, r0) · l̂α(λ, r0). (44)

Using Equations 42 and 44 in the left-polar decomposition Equation 38, the Spatial Propa-
gator F(λ, r0) matrix may be represented with respect to the singular vector basis l̂α(λ, r0)

and r̂α(λ, r0),

F(λ, r0) =
∑

α

σα(λ, r0)l̂α(λ, r0) ⊗ r̂α(λ, r0). (45)

Geometrically, for each λ, the action of the matrices V(λ, r0) and U(λ, r0) is to scale the
propagated volume by the singular values of the Spatial Propagator F(λ, r0), and the action
of the rotation matrix R(λ, r0) is to rotate the singular directions of the reference state �0

to align with the singular directions of the propagated state �λ (see Figure 5). Thus, the
symmetric matrices V(λ, r0) and U(λ, r0), and orthogonal matrix R(λ, r0), respectively,
characterize the smooth anisotropic stretch and rigid-body rotation of the propagated vol-
ume along the congruence.

The basis l̂α(λ, r0) describes the singular axes of the stretched and rotated state �λ.
Similarly, for any λ the basis r̂α(λ, r0) identify the singular axes of the stretched but un-
rotated reference state �0. Hence, for any λ the basis r̂α(λ, r0) are the singular directions
of the reference state �0. We note, however, a spherical reference state �0 has no preferred
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directions; this follows from the fact that the initial condition F(0, r0) = I possesses a single
degenerate singular value (eigenvalue) σ = 1 of multiplicity 3. The resolution of this is that
a unique, non-degenerate, orthogonal basis r̂α(λ, r0) in the reference state �0 only exists
and follows from a Spatial Propagator F(λ, r0) with non-degenerate singular values.

From a computational standpoint, since F is non-singular, the matrices V, U, and R may
be determined directly from F, F · FT , and FT · F. Using Equations 38 and 39, and that R is
an orthogonal matrix, V, U, and R follow immediately:

V(λ, r0) =
√

F(λ, r0) · FT (λ, r0),

U(λ, r0) =
√

FT (λ, r0) · F(λ, r0), (46)

R(λ, r0) = F(λ, r0) · U−1(λ, r0) = V−1(λ, r0) · F(λ, r0).

Since the matrices F ·FT and FT ·F are diagonalizable with respect to their respective eigen-
bases, the square-root operation is well defined.

It may be shown the full 3 × 3 matrix representation of the Spatial Propagator F(λ, r0) is
directly dependent on the current distribution. Consider a quasi-static magnetic field B(r)

with a non-trivial current distribution J (r) that satisfies Ampere’s Law: μ0J (r) = ∇ ×
B(r). The covariant differential of the vector field ∇B may be decomposed into symmetric
and anti-symmetric parts,

(∇B|r)i
j = 1

2

(
(∇B|r)i

j + (∇B|rT
)
i
j

) + μ0

2

(
J×|r

)
i
j . (47)

where the superscript T denotes the matrix transpose. The matrix J×(r), denoted “J-
supercross”, is an antisymmetric, 3 × 3 matrix representation of the current distribution
(with respect to a Cartesian basis),

(
J×|r

)
i
j ≡

⎛

⎝
0 Jz(r) −Jy(r)

−Jz(r) 0 Jx(r)

Jy(r) −Jx(r) 0

⎞

⎠ . (48)

The Spatial Propagator governing matrix ODE Equation 16 may be written

∂(F|λ,r0 )i
j

∂λ
= 1

2

∑

k

(
(∇B|r)i

k + (∇B|rT
)
i
k + μ0

(
J×|r

)
i
k

)
(F|λ,r0)

k
j . (49)

The initial condition Equation 17 remains unchanged. We note that dropping the quasi-
steady assumption leads to a similar ODE with the addition of a “supercross” displacement-
current-density matrix term; we do not pursue such high-frequency dynamics here.

Since the left-stretch V(λ, r0) and right-stretch U(λ, r0) matrices are symmetric, through
Equation 49, the rotation matrix R(λ, r0) implicitly requires a non-trivial anti-symmetric
part of the covariant differential ∇B(r), equivalently a non-trivial (parallel) current distri-
bution J (r). Moreover, under reasonable conditions we identify a class of magnetic fields
B(r) for which the rotation matrix R(λ, r0) depends only on the parallel current distribution
J (r). Geometrically, the congruence rotation describes the twist of all neighboring integral
curves about a central axis field line, and is therefore a measure of the twist helicity. The
relationship between the Spatial Propagator, rotation matrix, (twist-) magnetic helicity, and
(parallel) current distribution is beyond the scope of this work.
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3.3. Quasi-Separatrix Layers and the Q-Factor from the Spatial Propagator

We have shown in the previous Sections 3.1 and 3.2 that the congruence geometry is equiv-
alent to the kinematics of a volume undergoing dilation, stretch deformation, and rigid-body
rotation under the action of the Spatial Propagator F(λ, r0). Hence, a separatrix surface
reflects the total-collapse of the 3D volume into a 2D surface as it is propagated by the con-
gruence. The quasi-separatrix layer is similarly identified by an “extreme” kinematic defor-
mation of the 3D volume; “extreme” being a subjective term and requiring a (user-defined)
quantified threshold.

We remark, recalling from Section 3.1 that the divergence-free condition for vector mag-
netic fields leads to the topological invariant det F(λ, r0) = 1. Geometrically, the volumetric
kinematics are incompressible;5 that is, the 3D shape deforms under the action of F(λ, r0)

while the total volume remains constant. Hence, the separatrix surfaces in a vector magnetic
field are described by infinite stretch deformation of the volume.

For a fixed reference point r0, the 3D stretch deformation of a congruence at each λ

is quantified by the three non-negative singular values σα ∈ R≥0 of the Spatial Propagator
F(λ, r0). There is an inter-dependence between the singular values that is governed by the
divergence-free condition. The relative magnitudes of the singular values effectively reflect
the ∇B matrix eigenvalue structure; the full algebraic proof is beyond the scope of this
work. Hence, from a geometric perspective, the relative strengths of the set of singular val-
ues may be used to identify 2D separatrix surfaces, 1D separator lines, and 0D null points
within the field structure. These topological features are identified by the basic geometric
interpretations of the singular values following from the following features.

i) If any one singular value becomes zero, σi → 0, then the other two correspondingly
diverge to infinity, σj , σk → ∞; geometrically, the 3D field-line bundle has collapsed
into a 2D surface.

ii) If any two of the singular values become zero, σi, σj → 0, then the remaining one cor-
respondingly diverges to infinity, σk → ∞; geometrically, the 3D field-line bundle has
collapsed into a 1D line.

iii) The divergence-free condition prevents all three singular values from approaching zero
simultaneously; geometrically, the 3D incompressible field-line bundle cannot collapse
to a 0D point.

For example, in the natural representation the fan surface and spine line(s) associated
with a magnetic null are identified in the limit as |λ| → ∞ by the vanishing of one and two
singular values, respectively; the sign of λ depends on the field-line polarity. More generally,
however, the identification of other non-trivial topological features that exhibit the vanishing
of one, or multiple, singular values at finite and/or infinite |λ| remains an open question.

Truly infinite singular values σα → ∞ determine 2D separatrix surfaces and 1D separator
lines. “Extreme” singular values identify quasi-separatrix layers (QSLs); that is, e.g., σi ≤
1/ε and correspondingly σj , σk ≥ ε, for some user-defined threshold ε � 1. Analogous
“extreme” threshold arguments may be made around separator lines.

Up to this point, we have investigated the geometric meaning, consequences, and rela-
tions between the singular values of the full-3D Spatial Propagator in various limiting cases.
The QSL is often described in terms of the “squashing” of a flux tube (see, e.g., Titov, 2007;
Tassev and Sevcheva, 2017; Scott, Pontin, and Hornig, 2017); essentially, a relational mea-
sure between the eccentricity of the flux-tube cross-sectional area at the system boundaries,

5Compressible vector fields are outside the scope of this work.
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Figure 6 Illustration of the QSL
geometry. Simple example with
top (bottom) boundaries at
z = ±Lz . An initial circle
defined by {h1,h2} deforms into
an ellipsoid defined by the

projections {v(t)
1 ,v

(t)
2 } of the

propagated vectors {v1,v2} onto
the plane z = Lz .

and hence is inherently 2D. Moreover, the squashing of a flux tube is defined entirely in-
dependent of rotation. For the remainder of this section, we demonstrate the dimensional
reduction of the full-3D Spatial Propagator to describe the 2D squashing of the congruence.
In particular, we illustrate a simple construction of the popular squashing factor Q (Titov,
Hornig, and Démoulin, 2002; Titov, 2007), from the Spatial Propagator. We note, our aim
here is neither a reformulation, nor a more efficient computation of the squashing factor
Q over that available in the open literature (see, e.g., Tassev and Sevcheva, 2017). Rather
the purpose is simply to show exactly how the popular Q-value may be derived from, and
therefore fits within, the general Spatial Propagator framework.

Throughout this article we have assumed that the vector magnetic field B(r) has smooth
component functions, Equation 1, that may be described with respect to a single global
Cartesian coordinate chart. Hence the congruence solution components, Equation 19, de-
scribed with respect to the same global Cartesian coordinate chart, are also smooth, single-
valued functions of the connectivity parameter λ, and reference condition coordinates r0.
Furthermore, by construction, this framework is valid for any global coordinate chart that
covers the system (see Appendix B.1 for general coordinate chart formulations, and Appen-
dices B.2 and B.3 for spherical–polar formulations).

Recall from Section 2.1 that we identify λ = 0 with the reference point r0, corresponding
to the beginning of the congruence, and we identify the fixed, finite value λ = L with r =
r(L, r0), corresponding to the end of the congruence. In general, we take the reference point
r0 and end point r(L, r0) on the system boundary.6 From this perspective, each particular
field-line solution with L > 0 provides a unique connectivity map between disjoint points on
the system boundary, and the Spatial Propagator quantifies the local geometric organization
of this connectivity map within its characteristic scale.

Consider for simplicity a smooth vector field B(r) in a bounded Cartesian box; that is,
we let the coordinate domains be x ∈ [−Lx,Lx], y ∈ [−Ly,Ly], and z ∈ [−Lz,Lz]. The
(inward) unit normal n̂ at the boundaries is parallel (up to a sign) to the respective Cartesian
basis vectors {êx, êy, êz}. Moreover, consider a congruence solution, r(λ, r0) and F(λ, r0)

(Equation 19) with characteristic scale hm, consistent with the given vector field B(r) such
that the reference point r0 is chosen at the z = −Lz boundary, and the end point r(L, r0)

follows on the z = Lz boundary (see Figure 6).

6In solar- and coronal-physics applications, the system boundary is typically taken to be the photosphere-
photosphere, or photosphere-source surface ansatz.
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At r0, the boundary surface z = −Lz has a unit normal n̂(r0) = êz. We may construct
two orthogonal reference shift vectors {h1,h2} tangent to the z = −Lz boundary plane; that
is, both {h1,h2} satisfy a tangency constraint, hα · n̂(r0) = 0 for each α = 1,2. Without loss
of generality, we may choose the {h1,h2} proportional to the basis vectors {êx, êy}. Written
with respect to the global {êx, êy, êz} basis, the reference shift vectors are

h1 = (|h1|
)
x êx,

h2 = (|h2|
)
y êy .

(50)

Moreover, the components of each reference shift vector hα are subject to the characteristic
scale constraint; for α = 1,2,

|hα| =
√∑

i

(hα)i(hα)i � hm. (51)

where hm is defined in Appendix A.
By Equation 12, these reference shift vectors {h1,h2} are propagated along the congru-

ence to the target footpoint r(L, r0). The propagated vectors at λ = L are also written with
respect to the global {êx, êy, êz} basis,

v1(L, r0) =
∑

i

(F|L,r0)
i
x

(|h1|
)
x êi ,

v2(L, r0) =
∑

i

(F|L,r0)
i
y

(|h2|
)
y êi .

(52)

Since by assumption the vector field B(r) is everywhere smooth, the Spatial Propagator
F(λ, r0) is non-singular for all λ, and hence all linearly independent {h1,h2} are mapped
to linearly independent {v1(L, r0),v2(L, r0)}. Furthermore, while we have the freedom to
choose the reference shift vectors hα tangent to the boundary surface at the launch footpoint
r0, in general the propagated vectors vα(L, r0) at the target footpoint r(L, r0) are not tan-
gent to their respective boundary surface. However, we may project the vα(L, r0) onto the
tangent boundary plane (see Figure 6)

v(t)
α (L, r0) = (

I − n̂(r) ⊗ n̂(r)
) · vα(L, r0), (53)

with r = r(L, r0) at the target footpoint. The superscript (t) denotes the projection tangent
to the boundary. In our simple example, at the target footpoint, r = r(L, r0), the relation
n̂(r) = −êz and Equation 53 yield

v
(t)

1 (L, r0) = (F|L,r0)
x
x

(|h1|
)
x êx + (F|L,r0)

y
x

(|h1|
)
x êy,

v
(t)

2 (L, r0) = (F|L,r0)
x
y

(|h2|
)
y êx + (F|L,r0)

y
y

(|h2|
)
y êy .

(54)

We remark that the construction/projection procedure Equation 53 is valid for any surface
with normal n̂(r) on the system boundary.

The local properties of the mapping of vectors hα tangent to the boundary plane at r0,
into vectors v(t)

α (L, r0) tangent to the boundary plane at r = r(L, r0) are described by the
2 × 2 matrix D; the components of which are

(D)i
j ≡ (v(t)

α |L,r0)
i

(hα)j
=

(
(F|L,r0)

x
x (F|L,r0)

y
x

(F|L,r0)
x
y (F|L,r0)

y
y

)
. (55)
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The matrix D is the sub-matrix of F(L, r0) obtained by removing the column corresponding
to the coordinate direction parallel to the launch-surface normal and row corresponding
to the coordinate direction parallel to the target-surface normal; in this example, remove
the column (F|L,r0)

z
j and remove the row (F|L,r0)

i
z. This principle is the same for general

curvilinear coordinate systems, where general boundary-surface unit normals are not parallel
to coordinate basis directions at all positions on the boundary surface. Hence the tensorial
nature of the Spatial Propagator allows one simply to rotate the proper components of the
3 × 3 matrix into coordinates parallel to the surface normals at the point on appropriate
boundaries, and then remove the appropriate rows/columns to construct the proper 2 × 2
sub-matrix; we leave such analysis for future work.

The field lines define a map from h-coordinates with origin at r0, to v(t)-coordinates with
origin at r = r(L, r0). By Equations 16 and 17, the basis vectors hα are propagated, via Lie
transport (Scott, Pontin, and Hornig, 2017), from r0 to r = r(L, r0). The matrix D may
be interpreted as the Jacobian of this map, given by the corresponding components of the
matrix representation of the Spatial Propagator (F|L,r0)

i
j . The squashing factor Q, may be

immediately constructed; in the notation of Titov, Hornig, and Démoulin (2002),

Q = N2

�
, (56)

where the norm N (Démoulin et al., 1996) is given by

N2 = (
(F|L,r0)

x
x

)
2 + (

(F|L,r0)
y
y

)
2 + (

(F|L,r0)
x
y

)
2 + (

(F|L,r0)
y
x

)
2,

(57)

and � is the determinant of the Jacobian matrix D,

� = (F|L,r0)
x
x(F|L,r0)

y
y − (F|L,r0)

x
y(F|L,r0)

y
x. (58)

In general, Equation 58 is the minor of the sub-matrix corresponding to the (F|L,r0)
i
j matrix

component, where the i-index corresponds to the coordinate direction parallel to the launch-
surface normal, and the j -index corresponds to the coordinate direction parallel to the target-
surface normal.

Moreover, the eigenvalues {d1, d2} of the 2 × 2 Jacobian matrix D, given by the roots of
the characteristic equation

det(D − dI) = 0,

are related to the Q-value via

|d1|
|d2| = Q

2
+

√(
Q

2

)2

− 1, (59)

which, after some algebra, reduces to

Q = d1

d2
+ d2

d1
. (60)

We remark that the line-tying condition does not imply a fixed Spatial Propagator; only
the proper sub-matrices and their combinatorics forming the squashing factor Q are pre-
served.
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The Q-Map (Titov, 2007), identifies the separatrix and QSL field structures. However,
on their own, these regions offer only the possible current-sheet formation sites in the
field structure. Whether or not electromagnetic stresses accumulate resulting in subsequent
current-sheet formation depends on the details of energization and stress injection; e.g. sep-
aratrix and QSL structures undergoing rigid-body motion will not develop a current sheet
(Aulanier, Pariat, and Démoulin, 2005; Aulanier et al., 2010; Janvier et al., 2014); whereas
more general motions, such as shearing or twisting motions, will develop a current sheet un-
stable to reconnection (Aulanier et al., 2006; Effenberger et al., 2011; Janvier et al., 2013).

4. Conclusion and Future Applications

In this article we introduce a generalized field-line connectivity phase space associated with
the vector magnetic field in which the geometric and topological features of the system
are made explicit. The fundamental assumption is that the vector magnetic field is a priori
smooth everywhere. The basic elements are the field line and its linearized variation, the
Spatial Propagator: Equation 19. Equations 2 and 16, with initial conditions from Equations
3 and 17, provide a direct formulation of these phase-space elements in terms of the vector
magnetic field and its spatial derivatives. Furthermore, the field line and Spatial Propagator
are constructed with respect to general curvilinear coordinates and the equivalence class of
general affine parameterizations.

The geometric interpretation is that the Spatial Propagator characterizes the organization
of the local bundle of field lines. Since the vector field is everywhere smooth, so too are the
field-line and Spatial Propagator solutions smooth and unique. The geometric organization
of the local bundle is completely equivalent to a kinematic description of a volume centered
on the particular field-line solution and undergoing deformation by transport along the field.
This deformation kinematics is characterized by volumetric dilation, anisotropic stretch,
and rotation. The volumetric dilation (expansion/compression) is completely described by
the determinant of the Spatial Propagator: Equation 30. For the vector magnetic field, the
determinant of the Spatial Propagator is a topological invariant everywhere equal to unity,
Equation 34, which reflects the divergence-free condition. The anisotropic stretch and ro-
tation kinematics are described by the singular values and singular vectors of the Spatial
Propagator. The singular values, Equation 37, characterize the general anisotropic stretch of
the congruence volume. The congruence rotation is a simple rigid-body rotation kinematics
between the orthonormal principal-direction bases: Equation 43, from the reference volume
�0 to the propagated volume �λ.

Extreme singular values identify QSLs within the system; true separatrix surfaces and
separator lines within the system are identified in the limiting cases of one, or two, zero
singular values, respectively. Moreover, the Q-factor is simply constructed from analysis
of the particular sub-matrix of the Spatial Propagator obtained by removing the column
corresponding to the coordinate direction parallel to the launch-surface normal and row
corresponding to the coordinate direction parallel to the target-surface normal.

This magnetic connectivity phase-space framework opens up extensive directions in ge-
ometric and topological analysis of vector magnetic fields. For example, in future work we
will relax the a priori smooth vector magnetic-field assumption in order to analyze both ex-
isting singular structures such as current sheets and their formation. Moreover, the magnetic
helicity may be decomposed into twist and writhe components (Moffatt and Ricca, 1992);
in future efforts we will show that, accounting for relative shearing of the volume, twist
helicity may be described with the congruence rotation, while the writhe helicity is related
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to the embedding of the field-line trajectory and propagation of the reference shift vector in
3D space.

In the present article the field-line bundle and Spatial Propagator are presented and ana-
lyzed from a geometric perspective. Since the field lines are curves (i.e. spatial positions) in
a three-dimensional space whose tangent vector is everywhere parallel to the magnetic-field
vector, evolutionary dynamics (ideal or otherwise) of the field-line bundle are often de-
scribed by imposing the frozen-in condition (e.g. infinite plasma conductivity) somewhere
within the system domain (typically at the system boundary). This allows one to describe
and follow the dynamics, not of the field line itself, but rather of the parcel of plasma to
which the field line is connected. In non-ideal systems; the difference between the ideal mo-
tion and the actual motion of the field is attributed to resistive slipping; this is the origin of
“slip-running reconnection” and other resistive slip phenomenology. In follow-up analysis,
we use this formalism to describe the dynamics of a field-line bundle and associated Spatial
Propagator without reference to plasma conductivity, or material parcels, but rather with re-
spect to pure electric and magnetic fields; such a description necessarily requires a treatment
of the full four-dimensional electromagnetic-field tensor.

In particular, we will show that the magnetic field generalizes to the antisymmetric, dual
electromagnetic-field tensor ∗Fμν(t,x) (see, e.g., Jackson, 1999, Section 11.9). The field
line generalizes to a 4-vector flow field φμ(λ; t0, r0), where the spatial components are iden-
tified with the canonical notion of a field line. In addition, the propagator generalizes to a
second-order mixed tensor field Fμ

ν(t,x) where the spatial components are identified with
the Spatial Propagator described in this article. Moreover, we will show that expanding these
four-dimensional generalizations into explicit spatial and temporal components recovers the
definition of a magnetic-field line as three spatial constraint equations,

(B · ∇)φi = Bi, (61)

and three time-dynamic equations for the field-line components,

B2

4π

∂φi

∂t
+ (S · ∇)φi = Si. (62)

where S is the Poynting vector (Jackson, 1999, pp. 608 – 610). An explicit spatial and tem-
poral decomposition of the propagator follows similarly.

Finally, this framework allows for the analysis of extrinsic thermodynamic properties,
such as the total mass or total magnetic energy, of the field-line bundle through Equations
31 and 32. In particular, we derive an analogous first law of thermodynamics applied to the
pure magnetic-congruence geometry,

�E(L,0;�0) = E(L,�0) − E(0,�0)

=
∫ L

0

∫

�0

(
Tr

(
T · (∇B)

) + ρE · B + 1

c2
E · (∇ × S)

)
d3x dλ, (63)

where E and B are the electric and magnetic fields, T is the matrix representation of the
electromagnetic stress tensor, ρ is the net charge density, and S is the Poynting vector (Jack-
son, 1999, pp. 608 – 610); all quantities are evaluated along the field line r = r(λ, r0). Equa-
tion 63 is the total electromagnetic energy of a congruence formulated in terms analogous
to mechanical work and energy generation. We will derive Equation 63 and explore appli-
cations to coronal phenomenology (e.g. coronal heating, active-region stability, flares, and
CME initiation) in future work.
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Appendix A: Characteristic Scale hm of the Spatial Propagator

In this appendix, we derive the local characteristic scale hm over which the Spatial Propa-
gator F(λ, r0) describes the relative behavior of field lines within a congruence. The family
of integral curve solutions r(λ, r0) to the system of Equations 2 and 3 are written in com-
ponents with respect to a generally valid global basis ei (see Appendix B.1),

r(λ, r0) =
∑

i

(r|λ,r0)
iei (64)

where the component functions (r|λ,r0)
i are smooth functions of the connectivity parameter

λ and reference condition coordinates r0.
Consider two spatially neighboring field lines within the congruence: r(λ, r0) and

r(λ, r0 + h). We may relate the neighboring field lines via a Taylor expansion of the com-
ponent functions,

(r|λ,r0+h)
i − (r|λ,r0)

i =
∑

j

(F|λ,r0 )i
j h

j + 1

2

∑

j,k

(M|λ,r0)
i
jkh

jhk + O
(|h|3). (65)

In the most general case, the congruence solution r(λ, r0) is a non-linear function of the
reference point r0. In this case, the components (at least one) of the second-order variation
are non-trivial; i.e. (M|λ,r0)

i
jk 
= 0. Hence, we may define the characteristic scale hm of the

Spatial Propagator F(λ, r0) by considering the relative size of the first- and second-order
variational terms.

∣∣(r|λ,r0+h)
i − (r|λ,r0)

i
∣∣

=
∣∣∣∣
∑

j

(F|λ,r0)
i
j h

j + 1

2

∑

j,k

(M|λ,r0)
i
jkh

jhk + O
(|h|3)

∣∣∣∣

≤
∣∣∣∣
∑

j

(F|λ,r0)
i
j h

j

∣∣∣∣ +
∣∣∣∣
1

2

∑

j,k

(M|λ,r0)
i
jk hjhk

∣∣∣∣ + O
(|h|3)
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≤
∣∣∣∣
∑

j

(F|λ,r0)
i
j

∣∣∣∣|h| + 1

2

∣∣∣∣
∑

j,k

(M|λ,r0)
i
jk

∣∣∣∣|h|2 + O
(|h|3). (66)

Since the vector field B(r) is assumed smooth everywhere, it may be shown that the L1,2

norm of the first- and second-order variation matrices ‖F‖ and ‖M‖ are non-singular; that
is, there exists a finite F,M ∈ R such that

F ≡ ‖F|r0‖ = max
λ

(∑

i

(∑

j

(F|λ,r0)
i
j

)2)1/2

, (67)

M ≡ ‖M|r0‖ = max
λ

(∑

i

(∑

j,k

(M|λ,r0)
i
jk

)2)1/2

. (68)

Hence, Equation 66 becomes

∣∣(r|λ,r0+h)
i − (r|λ,r0)

i
∣∣ ≤ F |h| + M

2
|h|2 + O

(|h|3)

≤ F |h|
(

1 + M

2F
|h| + O

(|h|2)
)

≤ F |h|
(

1 + |h|
hm

+ O
(|h|2)

)
, (69)

where we defined the characteristic scale hm ≡ 2F/M ; that is, the characteristic scale is the
minimum scale such that the linear term is at least of the same magnitude as the second-
order term. Then, for all |h| � hm, the higher-order terms of Equation 69 are all negligible
relative to the first-order term, and the first-order variation F(λ, r0) describes the relative
behavior of the congruence.

In the special case that the congruence solution r(λ, r0) is linear in reference point
r0, then all components of (M|λ,r0)

i
jk = 0 and all higher-order derivatives vanish, and

hm → ∞. Hence, for all h ∈R
3,

(r|λ,r0+h)
i − (r|λ,r0)

i =
∑

j

(F|λ,r0)
i
jh

j . (70)

Furthermore, for completeness, in cases of high symmetry the higher-order variations
may vanish through some finite order n. In such examples, the characteristic scale is defined
as hm ≡ ( (n+1)!F

M(n+1) )1/n with n ≥ 2, where M(n+1) is the L1,2 norm of lowest-order non-zero
variation matrix. We do not pursue such cases here.

An extremely popular approach to computational solar and space-plasma physics is the
linear interpolation methodologies employed in numerical algorithms for the computation
of vector-field components between grid points (see, e.g., Tassev and Sevcheva, 2017). Such
approaches simply shift the problem of investigating small-scale dynamics from the physical
vector magnetic field on to finer and more complex numerical-grid resolutions. Depending
on the size of hm relative to the characteristic scales of the system, this may be a funda-
mental limitation as an accurate representation of the vector-field structure. The formalism
presented here is a fundamentally different approach in which the investigative burden re-
mains on the physical quantities, as opposed to simply increasing the computational expense
to handle finer and finer mesh structure.
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Appendix B: Matrix Representation of the Covariant Differential
of a Vector Field with Respect to General Basis

In this appendix, we briefly review some aspects of canonical differential geometry (e.g.
general coordinate charts, basis and dual basis vectors, and the differential operator ∇). In
particular, we construct the 3 × 3 matrix representation of the covariant differential ∇B(r)

with respect to general, local curvilinear bases. The term covariant is standard nomencla-
ture; in this context meaning the object transforms as a tensor under general coordinate trans-
formations. We construct the matrix representation of the covariant differential ∇B(r) with
respect to a general coordinate chart (Appendix B.1), followed by respective applications to
the spherical–polar curvilinear coordinate basis (Appendix B.2), and the spherical–polar or-
thonormal basis (Appendix B.3) in common use by the solar and space-physics community
(see, e.g., Tassev and Sevcheva, 2017).

We note that this appendix is not intended to be a full exposition of differential geometry.
We describe only those aspects necessary and sufficient for the construction of the covariant
differential of the vector field in curvilinear coordinates; see Kobayashi and Nomizu (1963)
for a full axiomatic approach.

B.1 General Construction of the Covariant Differential of a Vector Field

B.1.1 General Curvilinear Coordinates, Basis and Dual Basis Vectors

Let M ⊆ R
3 be a subset of three-dimensional space. Consider a general curvilinear co-

ordinate chart (M,q) such that the position of each point p ∈ M is described by smooth
coordinate functions q : M →R

3,

r(p) = {
q1(p), q2(p), q3(p)

}
. (71)

For ease of notation, we drop the formal dependence on the point p ∈ M , labeling it with
only the coordinates qi .

The coordinate chart (M,q) admits a natural set of coordinate basis vectors, {q1,q2,q3}.
The (not necessarily orthonormal) basis vector q i is the unique element of the tangent bun-
dle that acts on the (smooth) position vector by taking its derivative with respect to the
coordinate qi ,

q i ≡ ∂r

∂qi
, (72)

such that the position vector Equation 71 has components written with respect to the
{q1,q2,q3} basis,

r =
∑

j

qjqj . (73)

The coordinate basis vectors {q1,q2,q3} are often written explicitly with respect to
Cartesian basis set {êx, êy, êz}. Assume that the general curvilinear coordinates are smoothly
related to Cartesian coordinates; that is, there exist smooth coordinate transformation func-
tions,

xj = xj
(
qi

)
, (74)
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such that the position vector Equation 71 has components written with respect to the
{êx, êy, êz} basis

r =
∑

j

xj êj . (75)

Since the Cartesian basis vectors êi are independent of position, the definition in Equation 72
leads to each basis vector q i expanded in components with respect to the standard Cartesian
basis

q i =
∑

j

∂xj

∂qi
êj . (76)

In general, the components of the Jacobian are functions of position: q i = q i (q
j ).

Moreover, for a given basis q i there exists a unique dual basis q i defined as those linear
functionals that satisfy

q i · qj ≡ δi
j . (77)

(see, e.g., Kobayashi and Nomizu, 1963, pp. 4 – 6 for details). Since the coordinate transfor-
mation functions Equation 74 are assumed smooth, that is the Jacobian is locally invertible,
the inverse coordinate transformation functions exist. Hence, similar to Equation 76, the
dual basis q i may be written in components with respect to the standard Cartesian basis

q i =
∑

j

∂qi

∂xj
êj . (78)

In general, the components of the inverse Jacobian are functions of position, q i = q i (qj ).

B.1.2 The Metric and the Inner-Product

The standard inner-product between two Cartesian vectors u and u′ is a binary operation
defined by u · u′ = ∑

i u
iu′ i , where ui and u′ i are the components with respect to the stan-

dard Cartesian basis. Moreover, the inner-product operation is symmetric [u · u′ = u′ · u],
non-degenerate [u ·u′ = u ·u′′] if and only if u′ = u′′, and positive definite [u ·u ≥ 0] where
the equality holds if and only if u = 0,

More generally, the inner-product operation between two vectors with components given
with respect to a general (curvilinear) basis is defined by a bilinear form g known as the met-
ric (see, e.g., Kobayashi and Nomizu, 1963, p. 24), g(u,u′) ≡ u · u′. The metric g is sym-
metric [g(u,u′) = g(u′,u)], non-degenerate [g(u,u′) = g(u,u′′)], if and only if u′ = u′′,
and positive definite [g(u,u) ≥ 0] where the equality holds if and only if u = 0.

Any vector u may be represented as a linear combination of smooth components with
respect to the basis q i :

u =
∑

i

uiq i . (79)

Hence, the inner-product between two vectors with components given with respect to the
basis q i is

u · u′ = g
(
u,u′) =

∑

i,j

uiu′ j g(q i ,qj ) =
∑

i,j

uiu′ j gij . (80)
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The scalar values gij = g(q iqj ), are simply the inner-products between basis vectors q i .
The gij may be calculated using Equation 76,

gij = q i · qj =
∑

k,l

∂xk

∂qi

∂xl

∂qj
(êk · êl ) =

∑

k,l

∂xk

∂qi

∂xl

∂qj
δkl =

∑

k

∂xk

∂qi

∂xk

∂qj
. (81)

By similar arguments, we may construct (inverse) scalars gij = g(q i ,qj ) using Equation 78,

gij = q i · qj =
∑

k,l

∂qi

∂xk

∂qj

∂xl
(êk · êl ) =

∑

k,l

∂qi

∂xk

∂qj

∂xl
δkl =

∑

k

∂qi

∂xk

∂qj

∂xk
. (82)

In general, the scalars gij = gij (q
k) and gij = gij (qk), are functions of position. Further-

more, Equations 81 and 82 satisfy

∑

k

gikg
kj =

∑

k

gikgkj = δi
j . (83)

The scalars gij and gij may be represented as 3 × 3 invertible matrices,

g =
∑

i,j

gijq
i ⊗ qj , and g−1 =

∑

i,j

gijq i ⊗ qj . (84)

We remark that it is conventional to define the gij to be the components of the metric g and
the gij the components of the inverse metric g−1.

By the non-degeneracy assumption, Equations 76, 78, 81, and 82, the metric and inverse
metric provide a natural isomorphism between the q i and q i . By Equations 82 and 76

∑

j

gijqj =
∑

j

(∑

k

∂qi

∂xk

∂qj

∂xk

)(∑

l

∂xl

∂qj
êl

)

=
∑

j,k,l

∂qi

∂xk

∂qj

∂xk

∂xl

∂qj
êl

=
∑

k,l

∂qi

∂xk
δk

l êl

=
∑

k

∂qi

∂xk
êk

= q i , (85)

where in the last step we used the definition in Equation 78. A similar calculation with
Equations 81, 78, and 76 yields

∑

j

gijq
j = q i . (86)
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B.1.3 Curvilinear Coordinates and Orthonormal Bases

On the other hand, one may always construct an orthonormal basis q̂ i , respectively dual
basis q̂

i , from linear combinations of the curvilinear coordinate basis q i and dual q i basis,

q̂ i ≡
∑

j

Mi
jqj and q̂

i ≡
∑

j

Ni
jq

j . (87)

The components of the transformation matrices are smooth functions of the coordinates
Mi

j = Mi
j (qk), respectively Ni

j (q
k). In particular, the matrix components Mi

j and Ni
j

are determined by orthonormality conditions,

q̂ i · q̂j ≡ δij =
∑

k,l

Mi
kMj

lgkl,

q̂
i · q̂j ≡ δij =

∑

k,l

Ni
kN

j
lg

kl .

(88)

Here the gkl and gkl are given by Equations 81 and 82. Furthermore, orthogonality between
the orthonormal basis and dual q̂ i · q̂

j = δi
j implies that the transformation matrices are

related by N = M−1.
We remark that by Equations 85 and 86, the coordinate basis q i and dual basis q i are

strictly proportional when these basis sets are mutually orthogonal; that is when the metric
is diagonal: q i = giiq i and q i = giiq

i . In particular, for every orthonormal basis set the
basis and dual basis vectors are identified, q̂

i = q̂ i ; specifically, the Cartesian basis ê
i = êi .

B.1.4 The Covariant Differential Operator ∇

The covariant differential ∇ is a differential operator that satisfies the standard axioms (see,
e.g., Kobayashi and Nomizu, 1963, pp. 123 – 124). In curvilinear coordinates, ∇ is repre-
sented with respect to the dual basis q i via its action on smooth functions of position qi .

Let f :R3 →R be a differentiable scalar function, then the covariant differential of f is

∇f =
∑

j

(∇j f )qj =
∑

j

∂f

∂qj
qj (89)

(see, e.g., Kobayashi and Nomizu, 1963, p. 143); in Cartesian coordinates the basis and dual
are identified, ê

i = êi , and Equation 89 reduces to the standard gradient. Furthermore, the
standard differential is given by

df = ds · ∇f =
∑

i,j

dqi ∂f

∂qj

(
q i · qj

) =
∑

i

dqi ∂f

∂qi
, (90)

where ds = ∑
i dqiq i , and by Equation 77, q i · qj ≡ δi

j .
Since the local bases q i are themselves smooth functions of position qi , the action of the

operator ∇ on the basis vectors is a linear operation,

∇q i =
∑

j

(∇jq i )q
j =

∑

j,k

�k
jiqk ⊗ qj . (91)
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where the linear connection coefficients are functions of position: �k
ji = �k

ji(q
l) (see, e.g.,

Kobayashi and Nomizu, 1963, p. 143).
A vector field B is a linear combination of smooth component functions Bi = Bi(qj )

with respect to the basis q i :

B =
∑

i

Biq i . (92)

The covariant differential ∇B of the vector field B is then

∇B =
∑

j

∇j

(∑

i

Biq i

)
qj

=
∑

i,j

((∇jB
i
)
q i + Bi(∇jq i )

)
qj

=
∑

i,j

(
∂Bi

∂qj
q i + Bi

(∑

k

�k
jiqk

))
qj

=
∑

i,j

∂Bi

∂qj
q i ⊗ qj +

∑

i,j,k

�i
jkB

kq i ⊗ qj

=
∑

i,j

(
∂Bi

∂qj
+

∑

k

�i
jkB

k

)
q i ⊗ qj , (93)

where we used Equations 89 and 91 in the second step, and we relabeled dummy summation
indices in the third step. Hence, the i, j th component of the matrix representation of ∇B(r)

with respect to the local basis q i ⊗ q i is Equation 21:

(∇B)i
j = ∂Bi

∂qj
+

∑

k

�i
jkB

k

(see, e.g., Kobayashi and Nomizu, 1963, p. 144).
The matrix representation of the covariant differential with respect to general curvilinear

bases explicitly includes terms that describe both the rate of change of the vector compo-
nents, as well as the manner in which the bases vectors change from point-to-point in the
system.

The determination of the linear connection coefficients � depends on the nature of the
basis vectors. In the case of a curvilinear coordinate basis, the linear connection coefficients
�i

jk may be written explicitly in terms of coordinate derivatives of the metric

�i
jk = 1

2

∑

m

gim

(
∂gmj

∂qk
+ ∂gmk

∂qj
− ∂gjk

∂qm

)
(94)

(see, e.g., Kobayashi and Nomizu, 1963, p. 160).
In the case of an orthonormal basis, the linear connection coefficients �i

jk are given by

�i
jk = 1

2

∑

m

δim(ckmj + cjmk − cmjk), (95)
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(see, e.g., Kobayashi and Nomizu, 1963, p. 78). The cijk in Equation 94 are called structure
constants, and they are determined by the smooth component functions and derivatives of
the transformation matrices in Equation 87; explicitly,

cij
k =

∑

m,n

(
Mi

m ∂Mj
n

∂qm

(
M−1

)
n

k − Mj
n ∂Mi

m

∂qn

(
M−1

)
m

k

)
. (96)

Since, in general, the components and their derivatives of the transformation matrices are
functions of position, so also are the structure constants functions of position: cij

k = cij
k(ql).

Finally, in the case of the Cartesian basis, the linear connection coefficients are all trivial,
� = 0, since both the basis and dual basis are independent of position. Therefore, for vectors
with components constructed with respect to a Cartesian basis, the covariant differential
reduces to the standard partial derivatives with respect to the Cartesian coordinates (see, e.g.
Equation 15).

B.2 Spherical–Polar Coordinate Basis

The position of each point p ∈ M is written in terms of the spherical–polar curvilinear
coordinate functions,

r(p) = {
r(p), θ(p),φ(p)

}
(97)

with r ∈ [0,∞), θ ∈ [0,π ], and φ ∈ [0,2π). The Cartesian spherical–polar coordinate trans-
formation functions are

x = r sin θ cosφ,

y = r sin θ sinφ, (98)

z = r cos θ.

The position vector is written,

r = xêx + yêy + zêz

= (r sin θ cosφ)êx + (r sin θ sinφ)êy + (r cos θ)êz. (99)

Hence, using the definition of the coordinate basis vectors of Equation 72, the spherical–
polar coordinate basis vectors are written in components with respect to the standard Carte-
sian basis:

er = sin θ cosφêx + sin θ sinφêy + cos θ êz,

eθ = r cos θ cosφêx + r cos θ sinφêy − r sin θ êz, (100)

eφ = −r sin θ sinφêx + r sin θ cosφêy .

Using Equation 81 and the fact that the Cartesian basis are orthonormal, the metric com-
ponents are immediately identified:

er · er = grr = 1, eθ · eθ = gθθ = r2, eφ · eφ = gφφ = r2 sin2 θ. (101)
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All other scalar products are zero. Hence, the spherical–polar coordinate basis vectors
{er , eθ , eφ} are orthogonal, but not orthonormal. Furthermore, the inverse metric compo-
nents follow immediately:

grr = 1, gθθ = 1

r2
, gφφ = 1

r2 sin2 θ
. (102)

We construct the dual basis using Equation 86 with the inverse metric components of
Equation 102,

er = er , eθ = eθ

r2
, eφ = eφ

r2 sin2 θ
. (103)

Since the metric and inverse components are not orthonormal, the linear connection co-
efficients are determined by Equation 94. The only non-trivial metric component derivatives
are

∂gθθ

∂r
= 2r,

∂gφφ

∂r
= 2r sin2 θ,

∂gφφ

∂θ
= 2r2 sin θ cos θ. (104)

Hence, the only non-trivial linear connection components are

�r
θθ = −r, �r

φφ = −r sin2 θ,

�θ
rθ = �θ

θr = 1

r
, �θ

φφ = − sin θ cos θ, (105)

�φ
rφ = �φ

φr = 1

r
, �φ

θφ = �φ
φθ = cot θ.

Thus, with respect to the spherical–polar curvilinear basis the vector field is

B = Br(r, θ,φ)er + Bθ(r, θ,φ)eθ + Bφ(r, θ,φ)eφ, (106)

and the matrix representation of the covariant differential ∇B (Equation 21) is

(∇B)i
j =

⎛

⎜⎜⎝

∂Br

∂r
∂Br

∂θ
− rBθ ∂Br

∂φ
− r sin2 θBφ

∂Bθ

∂r
∂Bθ

∂θ
+ Br

r
∂Bθ

∂φ
− sin θ cos θBφ

∂Bφ

∂r
+ Bφ

r
∂Bφ

∂θ
+ cot θBφ ∂Bφ

∂φ
+ Br

r
+ cot θBθ

⎞

⎟⎟⎠ . (107)

B.3 Spherical–Polar Orthonormal Basis

By Equation 87, the spherical–polar coordinate basis Equation 100, and the dual basis Equa-
tion 103, may be orthonormalized using the transformation matrices M and N:

M =
⎛

⎜⎝
1 0 0

0 1
r

0

0 0 1
r sin θ

⎞

⎟⎠ , N = M−1 =
⎛

⎝
1 0 0
0 r 0
0 0 r sin θ

⎞

⎠ . (108)

The spherical–polar orthonromal basis, respectively dual basis, are defined by linear combi-
nations of the spherical–polar coordinate basis {er , eθ , eφ} Equation 100,

êr = er , êθ = 1

r
eθ , êφ = 1

r sin θ
eφ, (109)
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and the dual basis {er , eθ , eφ} Equation 103,

ê
r = er , ê

θ = reθ , ê
φ = r sin θeφ. (110)

The transformation matrices, Equation 108, were constructed specifically so that with
respect to the basis Equation 109 and dual basis Equation 110, the metric and inverse com-
ponents are, respectively, gij = δij and gij = δij . Hence, the linear connection coefficients
are determined by Equation 95. In this case, the non-trivial structure constants determined
by Equation 96 are

crθθ = −cθrθ = crφφ = −cφrφ = −1

r
, cθφφ = −cφθφ = −cot θ

r
, (111)

and the non-trivial linear connection components are

�θ
rθ = �φ

rφ = −�r
θθ = −�r

φφ = 1

r
,

�φ
θφ = −�θ

φφ = cot θ

r
.

(112)

Thus, with respect to the spherical–polar orthonormal basis the vector field is

B = Br(r, θ,φ)êr + Bθ(r, θ,φ)êθ + Bφ(r, θ,φ)êφ (113)

and the matrix representation of the covariant differential ∇B (Equation 21) is

(∇B)i
j =

⎛

⎜⎜⎜⎝

∂Br

∂r
1
r

∂Br

∂θ
− Bθ

r
1

r sin θ
∂Br

∂φ
− Bφ

r

∂Bθ

∂r
1
r

∂Bθ

∂θ
+ Br

r
1

r sin θ
∂Bθ

∂φ
− cot θBφ

r

∂Bφ

∂r
1
r

∂Bφ

∂θ
1

r sin θ
∂Bφ

∂φ
+ Br

r
+ cot θBθ

r

⎞

⎟⎟⎟⎠ . (114)

Appendix C: On the Determinant of the Matrix Representation
of a Smooth, Non-Singular, Linear Map F

In this appendix, we prove Equations 30 and 33 involving the determinant of a square ma-
trix. In particular, given a linear map F, in Appendix C.1 we show that the determinant of the
matrix representation of F with respect to an arbitrary basis is given by the ratio of (signed)
differential volume elements in bases related by the action of the transformation F. In Ap-
pendix C.2, assuming well-posed ordinary differential equations describing the evolution
of the matrix representation of a Cn (n ≥ 1) linear map F, we calculate the rate of change
of the determinant with respect to the evolution parameter. Furthermore, this treatment is
independent of the basis used to construct the matrix representation of F.

Since we are dealing with the 3 × 3 matrix representation of a linear map F, throughout
this appendix we make use of the permutation group S3 applied to the components of the
matrix. The permutation group S3 contains 3! = 6 elements, S3 = {σ1, . . . , σ6}; written in a
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tabular format,7 we show the action of each element σi ∈ S3 as a column vector

S3 | σ1 | σ2 | σ3 | σ4 | σ5 | σ6

σi(1) | 1 → 1 | 1 → 2 | 1 → 1 | 1 → 3 | 1 → 2 | 1 → 3
σi(2) | 2 → 2 | 2 → 1 | 2 → 3 | 2 → 2 | 2 → 3 | 2 → 1
σi(3) | 3 → 3 | 3 → 3 | 3 → 2 | 3 → 1 | 3 → 1 | 3 → 2

(115)

Each σi ∈ S3 may be considered as a function that transposes the labels (1,2,3). Con-
sider, for example, σ2 denoted by the second column: σ2(1) = 2, σ2(2) = 1, and σ2(3) = 3.
That is, the permutation σ2 exchanges indices 1 and 2.

The determinant of any 3 × 3 matrix may be written in terms of the S3 permutation
group,8

det F =
∑

σi∈S3

sign(σi)

3∏

j=1

Fjσi (j), (116)

where sign : S3 → {±1} is the function sign(σi) = (−1)n such that n is the number of trans-
positions between adjacent labels needed to return from σi to σ1 = (1,2,3); for example,
sign(σ2) = (−1)1 = −1 since σ2 = (2,1,3) requires one transposition between labels 2 and
1 to match σ1 = (1,2,3). Explicitly, given the labels defined by Equation 115,

sign(σ1) = sign(σ5) = sign(σ6) = +1,

sign(σ2) = sign(σ3) = sign(σ4) = −1.
(117)

We note that Equation 116 is independent of the basis in which the matrix F is repre-
sented. Furthermore, the index position in which the pair (j, σi(j)) appears is irrelevant.

C.1 Calculating the Determinant of a Non-Singular, 3 × 3 Matrix F by the
Identity Equation 30 in an Arbitrary Basis

Let (M,hi), with M ⊆ R
3, be a coordinate chart with an arbitrary basis hi . The coordinate

differential basis vectors are dhi = dhihi . Written with respect to this basis, the signed
differential volume element is

d�(hi ) = dh3 · (dh1 × dh2)

= (
dh3h3

) · ((dh1 h1
) × (

dh2 h2
))

= h3 · (h1 × h2)dh1 dh2 dh3. (118)

Suppose the linear map F may be represented as a non-singular, 3×3 matrix with respect
to this basis hi and dual basis hi (see Appendix B.1)

F =
∑

i,j

F i
jhi ⊗ hj . (119)

7The subscript labels 1 – 6 are not unique.
8More generally, the determinant of any n×n matrix may be similarly written in terms of the Sn permutation
group.
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Since F is non-singular, its action is completely described by the transformation of the basis
vectors. The propagated coordinate differentials follow immediately:

dvi = F · dhi =
∑

j

F j
i dhi hj . (120)

The signed differential volume element with respect to the vi basis is then

d�(vi ) = dv3 · (dv1 × dv2
)

=
(∑

k

F k
3 dh3 hk

)
·
((∑

i

F i
1 dh1 hi

)
×

(∑

j

F j
2 dh2 hj

))

=
∑

i,j,k

F i
1F

j
2F

k
3 hk · (hi × hj )dh1 dh2 dh3. (121)

The triple vector product hk · (hi ×hj ) reduces the number of terms in the i, j , k summa-
tion expansion to six; namely, only those involving the permutations of (i, j, k) = (1,2,3)

with i 
= j 
= k. Hence, we renumerate the reduced i, j , k summation according to elements
of the S3 permutation group, Equation 115 (see, e.g., Kobayashi and Nomizu, 1963, p. 283):

d�(vi ) =
∑

σi∈S3

Fσi(1)
1F

σi(2)
2F

σi(3)
3 hσi (3) · (hσi (1) × hσi (2))dh1 dh2 dh3

=
∑

σi∈S3

Fσi(1)
1F

σi(2)
2F

σi(3)
3

(
sign (σi)h3 · (h1 × h2)

)
dh1 dh2 dh3

=
( ∑

σi∈S3

sign(σi)F
σi (1)

1F
σi(2)

2F
σi(3)

3

)
d�(hi )

=
( ∑

σi∈S3

sign(σi)
∏

j

F σi (j)
j

)
d�(hi )

= det F d�(hi ), (122)

where we used Equation 118 in the second step.

Example Consider the Cartesian basis {êx, êy, êz} with êz · (êx × êy) = 1. The differential
basis vectors are dxi = dxi êi . Hence, the initial differential volume element Equation 26 is
given by

d�0 = (dz êz) · ((dx êx) × (dy êy)
)

= êz · (êx × êy)dxdy dz

= dx dy dz. (123)

Furthermore, the differential volume element Equation 29 propagated along the congru-
ence by the 3 × 3 matrix F is

d�λ = (F · dz) · ((F · dx) × (F · dy)
)

= (dz F · êz) · ((dx F · êx) × (dy F · êy)
)
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= (F · êz) · ((F · êx) × (F · êy)
)

dx dy dz

= (F · êz) · ((F · êx) × (F · êy)
)

d�0. (124)

The general 3 × 3 matrix components of F with respect to the (Cartesian) basis êi ⊗ ê
j

are

F i
j =

⎛

⎝
Fx

x F x
y F x

z

F y
x F y

y F y
z

F z
x F z

y F z
z

⎞

⎠ . (125)

The action of the 3 × 3 matrix F on the basis vectors is

F · êi = Fx
i êx + Fy

i êy + Fz
i êz. (126)

Then

(F · êx) × (F · êy) = (
Fy

xF
z
y − Fz

xF
y
y

)
êx

+ (
Fz

xF
x
y − Fx

xF
z
y

)
êy

+ (
Fx

xF
y
y − Fy

xF
x
y

)
êz. (127)

Hence, the triple vector product of the orthonormal Cartesian basis ei under the action of
the linear map F is the determinant of the 3 × 3 matrix of F with the usual meaning,

(F · êz) · ((F · êx) × (F · êy)
) = Fx

z

(
Fy

xF
z
y − Fz

xF
y
y

)

+ Fy
z

(
Fz

xF
x
y − Fx

xF
z
y

)

+ Fz
z

(
Fx

xF
y
y − Fy

xF
x
y

)

= det F. (128)

Finally, combining Equations 124 and 128, we recover Equation 30.

C.2 Differentiation of the Determinant of a Smooth, Non-Singular, Linear Map
F(λ)

In this appendix we demonstrate Equation 33 for the determinant of a square 3 × 3 matrix-
valued Cn (n ≥ 1) function of a single real parameter: F(λ).

Let F,M : R → R
3×3 be smooth, non-singular, linear, 3 × 3 matrix-valued functions of

λ ∈R; that is, the components Fij (λ) and Mij (λ) with respect to any basis representation are
at least C1-functions. Furthermore, assume F(λ) and M(λ) satisfy the linear matrix ordinary
differential equations for all λ ∈R; in components with respect to any basis

∂Fij (λ)

∂λ
=

∑

k

Mik(λ)Fkj (λ), (129)

Fij (0) = (F0)ij . (130)

Equations 129 and 130 are a generalization of Equations 16 and 17. In particular, Mij (λ) =
(∇B|r)i

j with r = r(λ, r0) and initial condition (F0)ij = δi
j . However, the following results

are general, independent of the specifics of the basis representation and physical vector
fields.
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Writing det F with Equation 116, and differentiating with respect to the λ-parameter,

∂ det F
∂λ

= ∂

∂λ

( ∑

σi∈S3

sign(σi)
∏

j

Fjσi (j)

)

=
∑

σi∈S3

sign(σi)
∂

∂λ
(F1σi (1)F2σi (2)F3σi (3))

=
∑

σi∈S3

sign(σi)

(
∂F1σi (1)

∂λ
F2σi (2)F3σi (3)

)

+
∑

σi∈S3

sign(σi)

(
F1σi (1)

∂F2σi (2)

∂λ
F3σi (3)

)

+
∑

σi∈S3

sign(σi)

(
F1σi (1)F2σi (2)

∂F3σi (3)

∂λ

)
.

Using Equation 129,

∂ det F
∂λ

=
∑

σi∈S3

sign(σi)

(∑

k

M1kFkσi (1)

)
F2σi (2)F3σi (3)

+
∑

σi∈S3

sign(σi)F1σi (1)

(∑

k

M2kFkσi (2)

)
F3σi (3)

+
∑

σi∈S3

sign(σi)F1σi (1)F2σi (2)

(∑

k

M3kFkσi (3)

)
. (131)

All terms in Equation 131 that are not of the form F1σi (1)F2σi (2)F3σi (3) cancel as follows.
We may write Equation 131 as

∂ det F
∂λ

=
∑

a,k

CakMak, (132)

where the coefficients Cak are defined by

C1k ≡
∑

σi∈S3

sign(σi)Fkσi (1)F2σi (2)F3σi (3),

C2k ≡
∑

σi∈S3

sign(σi)F1σi (1)Fkσi (2)F3σi (3), (133)

C3k ≡
∑

σi∈S3

sign(σi)F1σi (1)F2σi (2)Fkσi (3).

Each coefficient (Equation 133) is constructed by combinations of the group elements along
with their respective sign functions. Then by a judicious regrouping of the summation terms,
Cak = 0 for a 
= k.

For example, consider the coefficient C1k with k = 2. Upon expanding the summation,
we may regroup the terms by pairing the same value of σi(3) in Equation 115, which defines
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the ensemble A3 = {(σ1, σ2), (σ6, σ3), (σ5, σ4)}. Then the coefficient C12 can be rewritten as

C12 ≡
∑

σi∈S3

sign(σi)F2σi (1)F2σi (2)F3σi (3)

=
∑

(σi ,σj )∈A3

(F2σi (1)F2σi (2) − F2σj (1)F2σj (2))F3σi (3), (134)

where the F3σi (3) term may be factored for each pair, since σi(3) = σj (3) for all i, j =
1,2,3. Furthermore, each pair (σi, σj ) ∈ A3 satisfies σi(1) = σj (2) and σi(2) = σj (1) (see
Table 115). Then the terms in parentheses vanish for each pair (σi, σj ) ∈ A3 and C12 = 0.

Similarly, for k = 3, we have A2 = {(σ1, σ4), (σ6, σ2), (σ5, σ3)} with σi(2) = σj (2) for
each pair, and

C13 =
∑

(σi ,σj )∈A2

(F3σi (1)F3σi (3) − F3σj (1)F3σj (3))F2σi (2) = 0. (135)

The same arguments extend to all Cak for all a 
= k, so that only terms Cak for a = k with
F1σi (1)F2σi (2)F3σi (3) give non-vanishing contributions. Hence,

∂ det F
∂λ

=
∑

σi∈S3

sign(σi)(M11 + M22 + M33)F1σi (1)F2σi (2)F3σi (3)

= (M11 + M22 + M33)

( ∑

σi∈S3

sign(σi)F1σi (1)F2σi (2)F3σi (3)

)

= (Tr M)

( ∑

σi∈S3

sign(σi)
∏

j

Fjσi (j)

)

= Tr M det F. (136)
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