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DISTRIBUTION OF CHERN-SIMONS INVARIANTS

JULIEN MARCHÉ

Abstract. Let M be a 3-manifold with a finite set X(M) of conjugacy
classes of representations ρ : π1(M) → SU2. We study here the distribu-
tion of the values of the Chern-Simons function CS : X(M) → R/2πZ.
We observe in some examples that it resembles the distribution of qua-
dratic residues. In particular for specific sequences of 3-manifolds, the
invariants tends to become equidistributed on the circle with white noise
fluctuations of order |X(M)|−1/2. We prove that for a manifold with
toric boundary the Chern-Simons invariants of the Dehn fillings Mp/q

have the same behaviour when p and q go to infinity and compute fluc-
tuations at first order.

1. Introduction

1.1. Distribution of quadratic residues. Let p be a prime number. We
consider the weighted counting measure on the circle T = R/2πZ defined by
quadratic residues modulo p, that is:

µp =
1

p

p−1
∑

k=0

δ 2πk2

p

.

We investigate the limit of µp when p goes to infinity and to that purpose, we

consider its ℓ-th momentum i.e µℓ
p =

∫

eiℓθdµp(θ) =
1
p

∑p−1
k=0 exp(2iπℓk

2/p).

We have µℓ
p = 1 if p|ℓ, and else by the Gauss sum formula, µℓ

p =
(

ℓ
p

)

1√
p where

(

ℓ
p

)

is the Legendre symbol.

This shows that µp converges to the uniform measure µ∞ whereas the
renormalized measure

√
p(µp − µ∞) -that we call fluctuation- has l-th mo-

mentum ±1 depending on the residue of l modulo p and hence is a kind of
“white noise”.

1.2. Distribution of Chern-Simons invariants. On the other hand, such
Gauss sums appear naturally in the context of Chern-Simons invariants
of 3-manifolds. Consider an oriented and compact 3-manifold M and de-
fine its character variety as the set X(M) = Hom(π1(M),SU2)/SU2. In
what follows, we will confuse between representations and their conjugacy
classes. The Chern-Simons invariant may be viewed as a locally constant
map CS : X(M) → T. We refer to [3] for background on Chern-Simons
invariants and give here a quick definition for the convenience of the reader.
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Let ν be the Haar measure of SU2 normalised by ν(SU2) = 2π and let

π : M̃ → M be the universal cover of M . There is an equivariant map
F : M̃ → SU2 in the sense that F (γx) = ρ(γ)F (x) for all γ ∈ π1(M) and
x ∈ M . The form F ∗ν is invariant hence can be written F ∗ν = π∗νF . We set
CS(ρ) =

∫

M νF and claim that it is independent on the choice of equivariant
map F modulo 2π.

Definition 1.1. Let M be a 3-manifold whose character variety is finite.
We define its Chern-Simons measure as µM = 1

|X(M)|
∑

ρ∈X(M)

δCS(ρ).

1.2.1. Lens spaces. For instance, ifM = L(p, q) is a lens space, then π1(M) =
Z/pZ and X(M) = {ρn, n ∈ Z/pZ} where ρn maps the generator of Z/pZ to

a matrix with eigenvalues e
± 2iπn

p . We know from [3] that CS(ρn) = 2π q∗n2

p

where qq∗ = 1 mod p. Hence, the Chern-Simons invariants of L(p, q) behave
exactly like quadratic residues when p goes to infinity.

1.2.2. Brieskorn spheres. To give a more complicated but still manageable
example, consider the Brieskorn sphereM = Σ(p1, p2, p3) where p1, p2, p3 are
distinct primes. This is a homology sphere whose irreducible representations
in SU2 have the form ρn1,n2,n3

where 0 < n1 < p1, 0 < n2 < p2, 0 < n3 < p3.
From [3] we have

CS(ρn1,n2,n3
) = 2π

(n1p2p3 + p1n2p3 + p1p2n3)
2

4p1p2p3
Setting n = n1p2p3 + p1n2p3 + p1p2n3, we observe that -due to Chinese

remainder theorem- n describes (Z/p1p2p3Z)
× when ni describes (Z/piZ)

×

for i = 1, 2, 3. Hence, we compute that the following ℓ-th momentum:

µℓ
p1p2p3 =

1

|X(Σ(p1, p2, p3))|
∑

ρ∈X(M)

exp(iℓCS(ρ)) ∼ 1

p1p2p3

p1p2p3−1
∑

n=0

e
iπℓn2

2p1p2p3 .

Assuming ℓ is coprime with p = p1p2p3 we get from [1] the following
estimates where ǫn = 1 is n = 1 mod 4 and ǫn = i if n = 3 mod 4:

µℓ
p ∼











ǫp√
p

(ℓ/4
p

)

if ℓ = 0 mod 4

0 if ℓ = 2 mod 4
1+i

2
√
pǫl

(p
ℓ

)

else.

Again we obtain that µp converges to the uniform measure when p goes to
infinity. The renormalised measure

√
p(µp−µ∞) have ℓ-th momentum with

modulus equal to 1, 1√
2
, 0, 1√

2
depending on ℓ mod 4.

1.3. Dehn Fillings. The main question we address in this article is the
following: fix a manifold M with boundary ∂M = T×T. For any p

q ∈ P1(Q),

we denote by Tp/q the curve on T2 parametrised by (pt, qt) for t in T. We
define the manifold Mp/q by Dehn filling i.e the result of gluing M with a
solid torus such that Tp/q bounds a disc.
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We recall from [3] that in the case where M has boundary, there is a prin-
cipal T-bundle with connection L → X(∂M) such that the Chern-Simons
invariant is a flat section of Res∗ L

L

��
X(M)

CS

99
s
s
s
s
s
s
s
s
s
s
s

Res // X(∂M)

where Res(ρ) = ρ ◦ i∗ and i : ∂M → M is the inclusion.
We will denote by |dθ| the natural density on X(T) = T/(θ ∼ −θ).
We also have X(T2) = T2/(x, y) ∼ (−x,−y) and for any p, q the map

Resp/q : X(T2) → X(Tp/q) is given by (x, y) 7→ px+ qy.
Moreover, for any p

q , ℓ > 0 and 0 ≤ k ≤ ℓ, there are natural flat sections

CS
k/ℓ
p/q of Lℓ over the preimage Res−1

p/q(
πk
ℓ ). These sections are called Bohr-

Sommerfeld sections and they coincide for k = 0 with CSℓ. See [3] or [2] for
a detailed description.

Theorem 1.2. Let M be a 3-manifold with ∂M = T2 satisfying the hypoth-

esis of Section 2.2. Let p, q, r, s be integers satisfying ps − qr = 1 and for

any integer n, set pn = pn− r and qn = qn− s. Then setting

µℓ
n =

1

n

∑

ρ∈X(Mpn/qn )

eiℓCS(ρ)

we get first

µ0
n =

∫

X(M)
Res∗r/s |dθ|+O

( 1

n

)

and for ℓ > 0

µℓ
n =

1√
2n

l
∑

k=0

∑

ρ,k/Resr/s(ρ)=π k
l

exp(−2iπn
k2

4ℓ
+ iℓCS(ρ)− iCS

k/l
r/s(ρ))+O(

1

n
)

Hence, we recover the behaviour that we observed for Lens spaces and
Brieskorn spheres. The measure converges to a uniform measure µ∞ and the
renormalised measure

√
n(µn − µ∞) has an oscillating behaviour controlled

by representations in X(M) with rational angle along Tr/s.

1.4. Intersection of Legendrian subvarieties. We will prove Theorem
1.2 in the more general situation of curves immersed in a torus. Indeed, the
problem makes sense in an even more general setting that we present here.

1.4.1. Prequantum bundles.

Definition 1.3. Let (M,ω) be a symplectic manifold. A prequantum bun-
dle is a principal T-bundle with connection whose curvature is ω.
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It is well-known that the set of isomorphism classes of prequantum bundles
is homogeneous under H1(M,T) and non-empty if and only if ω vanishes in
H2(M,T). Let us give three examples:

Example 1.4. (i) Take R2×T with λ = dθ+ 1
2π (xdy−ydx). This gives

a prequantum bundle on R2. Dividing by the action of Z2 given by

(1) (m,n) · (x, y, θ) = (x+ 2πm, y + 2πn, θ +my − nx)

gives a prequantum bundle π : L → T2.
(ii) Any complex projective manifoldM ⊂ Pn(C) has such a structure by

restricting the tautological bundle whose curvature is the restriction
of the Fubini-Study metric.

(iii) The Chern-Simons bundle over the character variety of a surface.

In all these cases, there is a natural subgroup of the group of symplec-
tomorphisms of (M,ω) which acts on the prequantum bundle. The group
SL2(Z) acts in the first case and the mapping class group in the third case.
In the second case, a group acting linearly on Cn+1 and preserving M will
give an example.

1.4.2. Legendrian submanifolds and their pairing. Consider a prequantum
bundle π : L → M where M has dimension 2n and denote by λ ∈ Ω1(L) the
connection 1-form. By Legendrian immersion we will mean an immersion
i : N → L where N is a manifold of dimension n + 1 such that i∗λ = 0.
This condition implies that i is transverse to the fibres of π and hence
π ◦ i : N → M is a Lagrangian immersion.

Definition 1.5. (1) Given i1 : N1 → L and i2 : N2 → L two Legren-
drian immersions, we will say that they are transverse if it is the
case of π ◦ i1 and π ◦ i2.

(2) Given such transverse Legendrian immersions and an intersection
point, i.e. x1 ∈ N1 and x2 ∈ N2 such that π(i1(x1)) = π(i2(x2)) we
define their phase φ(i1(x1), i2(x2)) as the element θ ∈ T such that
i2(x2) = i1(x1) + θ.

(3) The phase measure φ(i1, i2) is the measure on the circle defined by

φ(i1, i2) =
∑

π(i1(x1))=π(i2(x2))

δφ(i1(x1),i2(x2)).

If M is a 3-manifold obtained as M = M1 ∪M2 then, assuming transver-
sality, the Chern-Simons measure of M is given by µM = φ(CS1,CS2) where
CSi : X(Mi) → L is the Chern-Simons invariant with values in the Chern-
Simons bundle.

2. The torus case

2.1. Immersed curves in the torus. Consider the pre quantum bundle
π : L → T2 given in the first item of Example 1.4. We consider a fixed
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Legendrian immersion i : [a, b] → L and for any coprime integers p, q the
Legendrian immersion

ip/q : T → L, ip/q(t) = (pt, qt, 0).

Our aim here is to study the behaviour of φ(i, ip/q) when (p, q) → ∞.

We first lift i to an immersion I : [a, b] → R2 × R of the form I(t) =

(x(t), y(t), θ(t)). By assumption we have θ̇ = − 1
2π (xẏ − yẋ). For instance,

lifting ip/q we get simply the map Ip/q : t 7→ (pt, qt, 0).

Let r, s be integers such that A =

(

p r
q s

)

has determinant 1. Take

FA : R2 → R the function

FA(x, y) =
1

2π
(sx− ry)(qx− py)

A direct computation shows that this function satisfies (m,n).Ip/q(t) =
(pt+2πm, qt+2πn, F (pt+2πm, qt+2πn)). We obtain from it the following
formula:

(2) φ(i, ip/q) =
∑

a≤t≤b,qx(t)−py(t)∈2πZ
δθ(t)−F (x(t),y(t)) .

If we put i = i0/1 this formula becomes φ(i0/1, ip/q) =
∑p−1

k=0 δ2π rk2

p

. This

measure is related to the usual Gauss sum in the sense that denoting by q∗

an inverse of q mod p we have:
∫

eiθdφ(i0/1, ip/q)(θ) =
∑

k∈Z/qZ
exp(2iπ

q∗k2

p
).

Suppose that pn = pn − r and qn = qn − s. A Bézout matrix is given

by An =

(

pn− r p
qn− s q

)

. Up to the action of SL2(Z), we can suppose that

p = s = 1 and q = r = 0 in which case FAn(x, y) = − y
2π (x + ny). We get

from Equation (2) the following formula for µℓ
n = 1

n

∫

eiℓθdφ(i, ipn/−1)(θ):

(3) µℓ
n =

1

n

∑

x(t)+ny(t)∈2πZ
a≤t≤b

exp

(

iℓ(θ(t) +
y(t)

2π
(x(t) + ny(t)))

)

.

Taking ℓ = 0, we are simply counting the number of solutions of x(t) +
ny(t) ∈ 2πZ for t ∈ [a, b]. Assuming that y is monotonic, the number of
solutions for t ∈ [a, b] is asymptotic to |y(b) − y(a)|. Hence the asymptotic
density of intersection points is i∗|dy| and we get

lim
n→∞

µ0
n =

∫ b

a
i∗|dy|.

To treat the case ℓ > 0, we need the following version of the Poisson formula:
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Lemma 2.1. If f, g : [a, b] → R are respectively C1 and continuous and f
is piecewise monotonic, then if further f(a), f(b) /∈ 2πZ we have

∑

a≤t≤b,f(t)∈2πZ
g(t) =

1

2π

∑

k∈Z

∫ b

a
e−ikf(t)|f ′(t)|g(t)dt

Applying it here, we get

µℓ
n =

1

2π

∑

k∈Z

∫ b

a
e−ik(x+ny)+iℓ(θ+ y

2π
(x+ny))| ẋ

n
+ ẏ|dt

We apply a stationary phase expansion in this integral, the phase being
Φ = −ky + ly2/2π and its derivative being Φ̇ = (−k + ly/π)ẏ. We find
two types of critical points: the horizontal tangents ẏ = 0 and the points of
rational height y = π k

l . We observe that when ẏ = 0 the amplitude is O( 1n)
and hence these contributions can be neglected compared with the other
ones, where y = π k

l .

We compute Φ̈ = l
π ẏ

2 + (−k + ly/π)ÿ = l
π ẏ

2 and Φ = −πk2

2l . As Φ̈ > 0,
the stationary phase approximation gives

µl
n =

1√
2n

∑

y=πk
l

e−in k2π
2l

−i kx
2
+ilθ +O(

1

n
)

In order to give the final result, observe that the map t 7→ (t, π k
l ,

kt
2 )

defines a flat section of Lℓ that we denote by i
k/ℓ
1/0.

We can sum up the discussion by stating the following proposition.

Proposition 2.2. Let i : T → L be a Legendrian immersion and suppose

that π ◦ i is transverse to ipn/−1 for n large enough and to the circles of

equation y = πξ for ξ ∈ Q.

Then writing i(t) = (x(t), y(t), θ(t)) and µℓ
n = 1

n

∫

eiℓθdφ(i, ipn/−1)(θ) we

have for all ℓ > 0:

µℓ
n =

1√
2n

∑

k∈Z/2ℓZ

∑

t∈T,y(t)=πk/ℓ

e
−inπ k2

2ℓ
+iφ

(

i(t),i
k/l
1/0

(x(t))
)

+O
( 1

n

)

2.2. Application to Chern-Simons invariants. Let M be a 3-manifold
with ∂M = T×T. We assume that X(M) is at most 1-dimensional and that
the restriction map Res : X(M) → X(∂M) is an immersion on the smooth
part and map the singular points to non-torsion points. Then we know that
Res(X(M)) is transverse to Tp/q for all but a finite number of p/q, see [4].

Consider the projection map π : T2 → X(∂M) which is a 2-fold ramified
covering. We may decompose X(M) as a union of segments [ai, bi] whose
extremities contain all singular points. The restriction map Res can be
lifted to T2 and the Chern-Simons invariant may be viewed as a map CS :
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[ai, bi] → L. Hence, we may apply it the results of Proposition 2.2 and
obtain Theorem 1.2.

We may comment that the flat sections i
k/ℓ
1/0 of Lℓ over the line y = πk

ℓ

induces through the quotient (x, y, θ) ∼ (−x,−y,−θ) a flat section of Lℓ

that we denoted CS
k/l
0/1 over the subvariety Res−1

0/1(
πk
ℓ ).

3. Chern-Simons invariants of coverings

3.1. General setting. Beyond Dehn fillings, we can ask for the limit of the
Chern-Simons measure of any sequence of 3-manifolds. A natural class to
look at is the case of coverings of a same manifold M . Among that category,
one can restrict to the family of cyclic coverings. One can even specify the
problem to the following case.

Question: Let p : M → T be a fibration over the circle and Mn be the
pull-back of the self-covering of T given by z 7→ zn. What is the asymptotic
behaviour of µMn?

This problem can be formulated in the following way. Let Σ be the fiber
of M and f ∈ Mod(Σ) be its monodromy. Any representation ρ ∈ X(M)
restricts to a representation Res(ρ) ∈ X(Σ) invariant by the action f∗ of f
on X(Σ). Reciprocally, any irreducible representation ρ ∈ X(Σ) fixed by f∗
correspond to two irreducible representations in X(M).

The Chern-Simons invariant corresponding to a fixed point may be com-
puted in the following way: pick a path γ : [0, 1] → X(Σ) joining the trivial
representation to ρ and consider the closed path obtained by composing
γ with f(γ) in the opposite direction. Then its holonomy along L is the
Chern-Simons invariant of the corresponding representation.

Understanding the asymptotic behaviour of µMn consists in understand-
ing the fixed points of fn

∗ on X(Σ) and the distribution of Chern-Simons
invariants of these fixed points, a problem which seems to be out of reach
for the moment.

3.2. Torus bundles over the circle. In this elementary case, the compu-
tation can be done. Let A ∈ SL2(Z) act on R2/Z2. Its fixed points form
a group GA = {v ∈ Q2, Av = v mod Z2}/Z2. If Tr(A) 6= 2, which we
suppose from now, GA is isomorphic to Coker(A − Id) and has cardinality
|det(A− Id)|.

Following the construction explained above, the phase is a map f : GA →
Q/Z given by f([v]) = det(v,Av) mod Z. Hence, the measure we are trying
to understand is the following:

µA =
1

|det(A− Id)|
∑

v∈GA

δ2π det(v,Av).

Consider the ℓ-th moment µℓ
A of µA. It is a kind of Gauss sum that can

be computed explicitly. The map f is a quadratic form on GA with values
in Q/Z. Its associated bilinear form is b(v,w) = det(v,Aw) + det(w,Av) =
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det(v, (A − A−1)w). As A + A−1 = Tr(A) Id and det(A − Id) = 2 − Tr(A)
we get b(v,w) = 2det(v, (A − Id)w) mod Z. Hence, if 2ℓ is invertible in
GA, then ℓb is non-degenerate and standard arguments (see [5] for instance)

show that |µℓ
A| = |det(A − Id)|−1/2. Hence we still get the same kind of

asymptotic behaviour for the Chern-Simons measure of the torus bundles
over the circle.
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E-mail address: julien.marche@imj-prg.fr

http://arxiv.org/abs/1406.2862

	1. Introduction
	1.1. Distribution of quadratic residues
	1.2. Distribution of Chern-Simons invariants
	1.3. Dehn Fillings
	1.4. Intersection of Legendrian subvarieties

	2. The torus case
	2.1. Immersed curves in the torus
	2.2. Application to Chern-Simons invariants

	3. Chern-Simons invariants of coverings
	3.1. General setting
	3.2. Torus bundles over the circle

	References

