DISTRIBUTION OF CHERN-SIMONS INVARIANTS

Let M be a 3-manifold with a finite set X(M ) of conjugacy classes of representations ρ : π1(M ) → SU2. We study here the distribution of the values of the Chern-Simons function CS : X(M ) → R/2πZ. We observe in some examples that it resembles the distribution of quadratic residues. In particular for specific sequences of 3-manifolds, the invariants tends to become equidistributed on the circle with white noise fluctuations of order |X(M )| -1/2 . We prove that for a manifold with toric boundary the Chern-Simons invariants of the Dehn fillings M p/q have the same behaviour when p and q go to infinity and compute fluctuations at first order.

1. Introduction 1.1. Distribution of quadratic residues. Let p be a prime number. We consider the weighted counting measure on the circle T = R/2πZ defined by quadratic residues modulo p, that is:

µ p = 1 p p-1 k=0 δ 2πk 2 p .
We investigate the limit of µ p when p goes to infinity and to that purpose, we consider its ℓ-th momentum i.e µ ℓ p = e iℓθ dµ p (θ) = 1 p p-1 k=0 exp(2iπℓk 2 /p). We have µ ℓ p = 1 if p|ℓ, and else by the Gauss sum formula, µ ℓ p = ℓ p 1 √ p where ℓ p is the Legendre symbol. This shows that µ p converges to the uniform measure µ ∞ whereas the renormalized measure √ p(µ p -µ ∞ ) -that we call fluctuation-has l-th momentum ±1 depending on the residue of l modulo p and hence is a kind of "white noise".

1.2. Distribution of Chern-Simons invariants. On the other hand, such Gauss sums appear naturally in the context of Chern-Simons invariants of 3-manifolds. Consider an oriented and compact 3-manifold M and define its character variety as the set X(M ) = Hom(π 1 (M ), SU 2 )/ SU 2 . In what follows, we will confuse between representations and their conjugacy classes. The Chern-Simons invariant may be viewed as a locally constant map CS : X(M ) → T. We refer to [START_REF] Kirk | Chern-Simons invariants of 3-manifolds and representation spaces of knot groups[END_REF] for background on Chern-Simons invariants and give here a quick definition for the convenience of the reader.

Let ν be the Haar measure of SU 2 normalised by ν(SU 2 ) = 2π and let π : M → M be the universal cover of M . There is an equivariant map F : M → SU 2 in the sense that F (γx) = ρ(γ)F (x) for all γ ∈ π 1 (M ) and x ∈ M . The form F * ν is invariant hence can be written F * ν = π * ν F . We set CS(ρ) = M ν F and claim that it is independent on the choice of equivariant map F modulo 2π. Definition 1.1. Let M be a 3-manifold whose character variety is finite. We define its Chern-Simons measure as

µ M = 1 |X(M )| ρ∈X(M )
δ CS(ρ) .

1.2.1. Lens spaces. For instance, if M = L(p, q) is a lens space, then π 1 (M ) = Z/pZ and X(M ) = {ρ n , n ∈ Z/pZ} where ρ n maps the generator of Z/pZ to a matrix with eigenvalues e

± 2iπn
p . We know from [START_REF] Kirk | Chern-Simons invariants of 3-manifolds and representation spaces of knot groups[END_REF] that CS(ρ n ) = 2π q * n 2 p where qq * = 1 mod p. Hence, the Chern-Simons invariants of L(p, q) behave exactly like quadratic residues when p goes to infinity.

Brieskorn spheres.

To give a more complicated but still manageable example, consider the Brieskorn sphere M = Σ(p 1 , p 2 , p 3 ) where p 1 , p 2 , p 3 are distinct primes. This is a homology sphere whose irreducible representations in SU 2 have the form ρ n 1 ,n 2 ,n 3 where 0

< n 1 < p 1 , 0 < n 2 < p 2 , 0 < n 3 < p 3 .
From [START_REF] Kirk | Chern-Simons invariants of 3-manifolds and representation spaces of knot groups[END_REF] we have

CS(ρ n 1 ,n 2 ,n 3 ) = 2π (n 1 p 2 p 3 + p 1 n 2 p 3 + p 1 p 2 n 3 ) 2 4p 1 p 2 p 3 Setting n = n 1 p 2 p 3 + p 1 n 2 p 3 + p 1 p 2 n 3 ,
we observe that -due to Chinese remainder theorem-n describes (Z/p 1 p 2 p 3 Z) × when n i describes (Z/p i Z) × for i = 1, 2, 3. Hence, we compute that the following ℓ-th momentum:

µ ℓ p 1 p 2 p 3 = 1 |X(Σ(p 1 , p 2 , p 3 ))| ρ∈X(M ) exp(iℓ CS(ρ)) ∼ 1 p 1 p 2 p 3 p 1 p 2 p 3 -1 n=0 e iπℓn 2 2p 1 p 2 p 3 .
Assuming ℓ is coprime with p = p 1 p 2 p 3 we get from [START_REF] Berndt | Canadian Mathematical Society Series of Monographs and Advanced Texts[END_REF] the following estimates where ǫ n = 1 is n = 1 mod 4 and ǫ n = i if n = 3 mod 4:

µ ℓ p ∼      ǫp √ p ℓ/4 p if ℓ = 0 mod 4 0 if ℓ = 2 mod 4 1+i 2 √ pǫ l p ℓ
else.

Again we obtain that µ p converges to the uniform measure when p goes to infinity. The renormalised measure √ p(µ p -µ ∞ ) have ℓ-th momentum with modulus equal to 1, 1 √ 2 , 0, 1 √ 2 depending on ℓ mod 4. 1.3. Dehn Fillings. The main question we address in this article is the following: fix a manifold M with boundary ∂M = T×T. For any p q ∈ P 1 (Q), we denote by T p/q the curve on T 2 parametrised by (pt, qt) for t in T. We define the manifold M p/q by Dehn filling i.e the result of gluing M with a solid torus such that T p/q bounds a disc. We recall from [START_REF] Kirk | Chern-Simons invariants of 3-manifolds and representation spaces of knot groups[END_REF] that in the case where M has boundary, there is a principal T-bundle with connection L → X(∂M ) such that the Chern-Simons invariant is a flat section of

Res * L L X(M ) CS 9 9 s s s s s s s s s s s Res / / X(∂M )
where Res(ρ) = ρ • i * and i : ∂M → M is the inclusion. We will denote by |dθ| the natural density on X(T) = T/(θ ∼ -θ). We also have X(T 2 ) = T 2 /(x, y) ∼ (-x, -y) and for any p, q the map Res p/q : X(T 2 ) → X(T p/q ) is given by (x, y) → px + qy.

Moreover, for any p q , ℓ > 0 and 0 ≤ k ≤ ℓ, there are natural flat sections CS k/ℓ p/q of L ℓ over the preimage Res -1 p/q ( πk ℓ ). These sections are called Bohr-Sommerfeld sections and they coincide for k = 0 with CS ℓ . See [START_REF] Kirk | Chern-Simons invariants of 3-manifolds and representation spaces of knot groups[END_REF] or [START_REF] Charles | Knot asymptotics II, Witten conjecture and irreducible representations[END_REF] for a detailed description.

Theorem 1.2. Let M be a 3-manifold with ∂M = T 2 satisfying the hypothesis of Section 2.2. Let p, q, r, s be integers satisfying ps -qr = 1 and for any integer n, set p n = pn -r and q n = qn -s. Then setting

µ ℓ n = 1 n ρ∈X(M pn/qn ) e iℓ CS(ρ)
we get first

µ 0 n = X(M ) Res * r/s |dθ| + O 1 n
and for ℓ > 0

µ ℓ n = 1 √ 2n l k=0 ρ,k/ Res r/s (ρ)=π k l exp(-2iπn k 2 4ℓ + iℓ CS(ρ) -i CS k/l r/s (ρ)) + O( 1 n ) 
Hence, we recover the behaviour that we observed for Lens spaces and Brieskorn spheres. The measure converges to a uniform measure µ ∞ and the renormalised measure √ n(µ n -µ ∞ ) has an oscillating behaviour controlled by representations in X(M ) with rational angle along T r/s .

1.4. Intersection of Legendrian subvarieties. We will prove Theorem 1.2 in the more general situation of curves immersed in a torus. Indeed, the problem makes sense in an even more general setting that we present here. (i) Take R 2 ×T with λ = dθ + 1 2π (xdy -ydx). This gives a prequantum bundle on R 2 . Dividing by the action of Z 2 given by

(1) (m, n) • (x, y, θ) = (x + 2πm, y + 2πn, θ + my -nx)
gives a prequantum bundle π : L → T 2 . (ii) Any complex projective manifold M ⊂ P n (C) has such a structure by restricting the tautological bundle whose curvature is the restriction of the Fubini-Study metric. (iii) The Chern-Simons bundle over the character variety of a surface.

In all these cases, there is a natural subgroup of the group of symplectomorphisms of (M, ω) which acts on the prequantum bundle. The group SL 2 (Z) acts in the first case and the mapping class group in the third case. In the second case, a group acting linearly on C n+1 and preserving M will give an example. 1.4.2. Legendrian submanifolds and their pairing. Consider a prequantum bundle π : L → M where M has dimension 2n and denote by λ ∈ Ω 1 (L) the connection 1-form. By Legendrian immersion we will mean an immersion i : N → L where N is a manifold of dimension n + 1 such that i * λ = 0. This condition implies that i is transverse to the fibres of π and hence π • i : N → M is a Lagrangian immersion. Definition 1.5.

(1) Given i 1 : N 1 → L and i 2 : N 2 → L two Legrendrian immersions, we will say that they are transverse if it is the case of π • i 1 and π • i 2 .

(2) Given such transverse Legendrian immersions and an intersection point, i.e. x 1 ∈ N 1 and x 2 ∈ N 2 such that π(i 1 (x 1 )) = π(i 2 (x 2 )) we define their phase φ(i 1 (x 1 ), i 2 (x 2 )) as the element θ ∈ T such that i 2 (x 2 ) = i 1 (x 1 ) + θ. (3) The phase measure φ(i 1 , i 2 ) is the measure on the circle defined by

φ(i 1 , i 2 ) = π(i 1 (x 1 ))=π(i 2 (x 2 )) δ φ(i 1 (x 1 ),i 2 (x 2 )) .
If M is a 3-manifold obtained as M = M 1 ∪ M 2 then, assuming transversality, the Chern-Simons measure of M is given by µ M = φ(CS 1 , CS 2 ) where CS i : X(M i ) → L is the Chern-Simons invariant with values in the Chern-Simons bundle.

The torus case

2.1. Immersed curves in the torus. Consider the pre quantum bundle π : L → T 2 given in the first item of Example 1.4. We consider a fixed Legendrian immersion i : [a, b] → L and for any coprime integers p, q the Legendrian immersion i p/q : T → L, i p/q (t) = (pt, qt, 0). Our aim here is to study the behaviour of φ(i, i p/q ) when (p, q) → ∞. We first lift i to an immersion I : [a, b] → R 2 × R of the form I(t) = (x(t), y(t), θ(t)). By assumption we have θ = -1 2π (x ẏ -y ẋ). For instance, lifting i p/q we get simply the map I p/q : t → (pt, qt, 0). Let r, s be integers such that A = p r q s has determinant 1. Take

F A : R 2 → R the function F A (x, y) = 1 2π (sx -ry)(qx -py)
A direct computation shows that this function satisfies (m, n).I p/q (t) = (pt + 2πm, qt + 2πn, F (pt + 2πm, qt + 2πn)). We obtain from it the following formula:

(2) φ(i, i p/q ) = a≤t≤b,qx(t)-py(t)∈2πZ

δ θ(t)-F (x(t),y(t)) .

If we put

i = i 0/1 this formula becomes φ(i 0/1 , i p/q ) = p-1 k=0 δ 2π rk 2 p
. This measure is related to the usual Gauss sum in the sense that denoting by q * an inverse of q mod p we have:

e iθ dφ(i 0/1 , i p/q )(θ) = k∈Z/qZ exp(2iπ q * k 2 p ).
Suppose that p n = pn -r and q n = qn -s. A Bézout matrix is given by A n = pn -r p qn -s q . Up to the action of SL 2 (Z), we can suppose that p = s = 1 and q = r = 0 in which case F An (x, y) = -y 2π (x + ny). We get from Equation (2) the following formula for µ ℓ n = 1 n e iℓθ dφ(i, i pn/-1 )(θ):

(3)

µ ℓ n = 1 n x(t)+ny(t)∈2πZ a≤t≤b exp iℓ(θ(t) + y(t) 2π (x(t) + ny(t))) .
Taking ℓ = 0, we are simply counting the number of solutions of x(t) + ny(t) ∈ 2πZ for t ∈ 

g(t) = 1 2π k∈Z b a e -ikf (t) |f ′ (t)|g(t)dt
Applying it here, we get

µ ℓ n = 1 2π k∈Z b a e -ik(x+ny)+iℓ(θ+ y 2π (x+ny)) | ẋ n + ẏ|dt
We apply a stationary phase expansion in this integral, the phase being Φ = -ky + ly 2 /2π and its derivative being Φ = (-k + ly/π) ẏ. We find two types of critical points: the horizontal tangents ẏ = 0 and the points of rational height y = π k l . We observe that when ẏ = 0 the amplitude is O( 1 n ) and hence these contributions can be neglected compared with the other ones, where y = π k l . We compute Φ = l π ẏ2 + (-k + ly/π)ÿ = l π ẏ2 and Φ = -πk 2 2l . As Φ > 0, the stationary phase approximation gives

µ l n = 1 √ 2n y= πk l e -in k 2 π 2l -i kx 2 +ilθ + O( 1 n ) 
In order to give the final result, observe that the map t → (t, π k l , kt 2 ) defines a flat section of L ℓ that we denote by i k/ℓ 1/0 . We can sum up the discussion by stating the following proposition. Proposition 2.2. Let i : T → L be a Legendrian immersion and suppose that π • i is transverse to i pn/-1 for n large enough and to the circles of equation y = πξ for ξ ∈ Q.

Then writing i(t) = (x(t), y(t), θ(t)) and µ ℓ n = 1 n e iℓθ dφ(i, i pn/-1 )(θ) we have for all ℓ > 0:

µ ℓ n = 1 √ 2n k∈Z/2ℓZ t∈T,y(t)=πk/ℓ e -inπ k 2 2ℓ +iφ i(t),i k/l 1/0 (x(t)) + O 1 n 2.
2. Application to Chern-Simons invariants. Let M be a 3-manifold with ∂M = T × T. We assume that X(M ) is at most 1-dimensional and that the restriction map Res : X(M ) → X(∂M ) is an immersion on the smooth part and map the singular points to non-torsion points. Then we know that Res(X(M )) is transverse to T p/q for all but a finite number of p/q, see [START_REF] Marché | Singular intersections of subgroups and character varieties[END_REF]. Consider the projection map π : T 2 → X(∂M ) which is a 2-fold ramified covering. We may decompose X(M ) as a union of segments [a i , b i ] whose extremities contain all singular points. The restriction map Res can be lifted to T 2 and the Chern-Simons invariant may be viewed as a map CS : [a i , b i ] → L. Hence, we may apply it the results of Proposition 2.2 and obtain Theorem 1.2.

We may comment that the flat sections i k/ℓ 1/0 of L ℓ over the line y = πk ℓ induces through the quotient (x, y, θ) ∼ (-x, -y, -θ) a flat section of L ℓ that we denoted CS k/l 0/1 over the subvariety Res -1 0/1 ( πk ℓ ).

3. Chern-Simons invariants of coverings 3.1. General setting. Beyond Dehn fillings, we can ask for the limit of the Chern-Simons measure of any sequence of 3-manifolds. A natural class to look at is the case of coverings of a same manifold M . Among that category, one can restrict to the family of cyclic coverings. One can even specify the problem to the following case. Question: Let p : M → T be a fibration over the circle and M n be the pull-back of the self-covering of T given by z → z n . What is the asymptotic behaviour of µ Mn ?

This problem can be formulated in the following way. Let Σ be the fiber of M and f ∈ Mod(Σ) be its monodromy. Any representation ρ ∈ X(M ) restricts to a representation Res(ρ) ∈ X(Σ) invariant by the action f * of f on X(Σ). Reciprocally, any irreducible representation ρ ∈ X(Σ) fixed by f * correspond to two irreducible representations in X(M ).

The Chern-Simons invariant corresponding to a fixed point may be computed in the following way: pick a path γ : [0, 1] → X(Σ) joining the trivial representation to ρ and consider the closed path obtained by composing γ with f (γ) in the opposite direction. Then its holonomy along L is the Chern-Simons invariant of the corresponding representation.

Understanding the asymptotic behaviour of µ Mn consists in understanding the fixed points of f n * on X(Σ) and the distribution of Chern-Simons invariants of these fixed points, a problem which seems to be out of reach for the moment.

3.2. Torus bundles over the circle. In this elementary case, the computation can be done. Let A ∈ SL 2 (Z) act on R 2 /Z 2 . Its fixed points form a group G A = {v ∈ Q 2 , Av = v mod Z 2 }/Z 2 . If Tr(A) = 2, which we suppose from now, G A is isomorphic to Coker(A -Id) and has cardinality | det(A -Id)|.

Following the construction explained above, the phase is a map f : G A → Q/Z given by f ([v]) = det(v, Av) mod Z. Hence, the measure we are trying to understand is the following:

µ A = 1 | det(A -Id)| v∈G A δ 2π det(v,Av) .
Consider the ℓ-th moment µ ℓ A of µ A . It is a kind of Gauss sum that can be computed explicitly. The map f is a quadratic form on G A with values in Q/Z. Its associated bilinear form is b(v, w) = det(v, Aw) + det(w, Av) = det(v, (A -A -1 )w). As A + A -1 = Tr(A) Id and det(A -Id) = 2 -Tr(A) we get b(v, w) = 2 det(v, (A -Id)w) mod Z. Hence, if 2ℓ is invertible in G A , then ℓb is non-degenerate and standard arguments (see [START_REF] Turaev | Reciprocity for Gauss sums on finite abelian groups[END_REF] for instance) show that |µ ℓ A | = | det(A -Id)| -1/2 . Hence we still get the same kind of asymptotic behaviour for the Chern-Simons measure of the torus bundles over the circle.

Lemma 2 . 1 .

 21 [a, b]. Assuming that y is monotonic, the number of solutions for t ∈ [a, b] is asymptotic to |y(b) -y(a)|. Hence the asymptotic density of intersection points is i * |dy| and we get lim n→∞ µ 0 n = b a i * |dy|. To treat the case ℓ > 0, we need the following version of the Poisson formula: If f, g : [a, b] → R are respectively C 1 and continuous and f is piecewise monotonic, then if further f (a), f (b) / ∈ 2πZ we have a≤t≤b,f (t)∈2πZ

  It is well-known that the set of isomorphism classes of prequantum bundles is homogeneous under H 1 (M, T) and non-empty if and only if ω vanishes in H 2 (M, T). Let us give three examples:

	Example 1.4.

1.4.1. Prequantum bundles.

Definition 1.3. Let (M, ω) be a symplectic manifold. A prequantum bundle is a principal T-bundle with connection whose curvature is ω.